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Abstract Reliable prediction and diagnosis of concussion
is important for its effective clinical management. Previous
model-based studies largely employ peak responses from a
single element in a pre-selected anatomical region of interest
(ROI) and utilize a single training dataset for injury predic-
tion. A more systematic and rigorous approach is necessary
to scrutinize the entire white matter (WM) ROIs as well
as ROI-constrained neural tracts. To this end, we evaluated
injury prediction performances of the 50 deep WM regions
using predictor variables based on strains obtained from
simulating the 58 reconstructed American National Football
League head impacts. To objectively evaluate performance,
repeated random subsampling was employed to split the
impacts into independent training and testing datasets (39
and 19 cases, respectively, with 100 trials). Univariate logis-
tic regressions were conducted based on training datasets to
compute the area under the receiver operating characteris-
tic curve (AUC), while accuracy, sensitivity, and specificity
were reported based on testing datasets. Two tract-wise injury
susceptibilities were identified as the best overall via pair-
wise permutation test. They had comparable AUC, accuracy,
and sensitivity, with the highest values occurring in supe-
rior longitudinal fasciculus (SLF; 0.867-0.879, 84.4-85.2,
and 84.1-84.6%, respectively). Using metrics based on WM

B Songbai Ji
sji@wpi.edu

Department of Biomedical Engineering, Worcester
Polytechnic Institute, Worcester, MA 01609, USA

Department of Biomedical Data Science, Geisel School of
Medicine, Dartmouth College, Lebanon, NH 03766, USA

Department of Mechanical Engineering, Worcester
Polytechnic Institute, Worcester, MA 01609, USA

Thayer School of Engineering, Dartmouth College, Hanover,
NH 03755, USA

fiber strain, the most vulnerable ROIs included genu of cor-
pus callosum, cerebral peduncle, and uncinate fasciculus,
while genu and main body of corpus callosum, and SLF were
among the most vulnerable tracts. Even for one un-concussed
athlete, injury susceptibility of the cingulum (hippocampus)
right was elevated. These findings highlight the unique injury
discriminatory potentials of computational models and may
provide important insight into how best to incorporate WM
structural anisotropy for investigation of brain injury.

Keywords Concussion - Deep white matter - Fiber strain -
Injury susceptibility - Tractography

1 Introduction

Traumatic brain injury (TBI) is a leading cause of morbidity
and mortality in the USA (CDC 2015). Of the estimated 1.7—
3.8 million individuals suffering from TBI each year in the
USA alone, 75% are classified as mild traumatic brain injury
(mTBI) or concussion (CDC 2015). The public awareness of
concussion and its adverse cognitive and neurodegenerative
consequences is growing (NRC 2014). A reliable prediction
and diagnosis of TBI, including concussion, is important for
effective management of this prevailing neurological disor-
der.

Despite decades of active research, the biomechanical
mechanisms behind TBI remain elusive. Historically, efforts
have been focused on characterizing head impact kinematics,
using linear and/or rotational acceleration peak magnitudes
and their variants. However, as head rotation is considered
the main mechanism for mTBI and that angular velocity, as
opposed to acceleration, is more predictive of strains (Zhao
and Ji 2016), recent metrics have explicitly incorporated
peak angular velocity [e.g., Rotational Injury Criterion (RIC)
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and Power Rotational Head Injury Criterion (PRHIC) (Kim-
para and Iwamoto 2012), and Brain Injury Criterion (BrIC)
(Takhounts et al. 2013)].

Unfortunately, these empirically derived kinematic met-
rics do not directly inform brain mechanical responses that
are thought to initiate injury (King et al. 2003). In part, this
may explain why no consensus has been reached on the most
appropriate metric for injury prediction. To estimate impact-
induced responses, finite element (FE) models of the human
head are important tools (Yang et al. 2011). Model-estimated
brain responses have been shown to be more effective in
predicting injury than kinematic metrics alone (Zhang et al.
2004; Marjoux et al. 2008; Takhounts et al. 2008; Giordano
and Kleiven 2014a; Hernandez et al. 2014). In addition, FE
models also enable correlating tissue deformation with spe-
cific concussion symptomatic measures (Viano et al. 2005),
which is not feasible for kinematic metrics.

Improving the models’ injury predictive power is an ongo-
ing, constant process. Sophisticated head models continue
to emerge with more anatomical details (Mao et al. 2013),
representing subject-specific anatomies (Ji et al. 2015), and
characterizing anisotropic material properties of the white
matter (WM) (Sahoo et al. 2014; Giordano and Kleiven
2014b). Lately, there are also efforts to integrate informa-
tion from neuroimages (Fahlstedt et al. 2015; Miller et al.
2016), e.g., WM structural anisotropy (Wright and Ramesh
2012; Garimella and Kraft 2016), into biomechanical mod-
eling for injury analysis. This aligns well with in vitro
studies that suggest strain component along axonal longi-
tudinal direction responsible for axonal injury (Cullen and
LaPlaca 2006). Initial evidence indicates that WM fiber
orientation-dependent strain (termed “fiber strain”, “axonal
strain”, or “tract-oriented strain”) improves injury prediction
performance relative to its isotropic counterpart, maximum
principal strain (Chatelin et al. 2011; Wright et al. 2013;
Giordano and Kleiven 2014a; Sullivan et al. 2014; Ji et al.
2015).

Regardless of the injury predictor variables employed,
previous model-based studies typically utilize responses
from a single pre-selected anatomical region of interest (ROI)
to assess injury risk. The commonly used CSDM (cumulative
strain damage measure) relies on maximum principal strain
of the entire brain (Bandak and Eppinger 1994), while a vari-
ant is defined on generic ROIs (Weaver et al. 2012). Other
generic or more targeted ROIs, including the corpus callo-
sum, midbrain, and brainstem, are also common choices. For
example, the maximum shear stress in the brainstem was
found to correlate the strongest with the occurrence of mTBI
when analyzing 24 NFL head impacts [9 concussions vs. 15
non-injury cases; (Zhang et al. 2004)]. Using an expanded
dataset (58 impacts; 25 concussions vs. 33 non-injury cases),
Kleiven studied 8 tissue injury predictors in 6 brain regions.
He found that strain in the gray matter and CSDMj ; (using a
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strain threshold of 0.1) in the WM had the highest accuracy in
concussion classification (Kleiven 2007). After incorporat-
ing WM material property anisotropy, however, their model
indicated that instead, peak axonal strain within the brain-
stem had the highest predictive power (Giordano and Kleiven
2014a).

These conflicting reports on the “best” predictor variable
and brain ROI to achieve the most accurate injury prediction
highlight current challenges in studying the biomechani-
cal mechanisms of TBI. Conceptually, model-based brain
injury prediction is analogous to an ill-posed optimization
problem—using model-estimated responses to “fit” the given
binary injury data. First, errors in the “input variables”,
head impact kinematics, seem unavoidable. Laboratory-
reconstructed NFL head impacts had a reported error of
up to 11% for impact velocity and a maximum error of
25% for resultant angular acceleration (Newman et al.
2005). However, error magnitude in angular velocity was
not available, even though it is considered as the primary
injury mechanism (Takhounts et al. 2013) and more pre-
dictive of strains (Kleiven 2006; Zhao and Ji 2015, 2016).
For on-field head impacts, temporally validated rotational
acceleration/velocity profiles appear yet to be developed
(Beckwith et al. 2012; Allison et al. 2014).

Second, the “optimizer”, FE models of the human head,
could vary substantially due to uncertainties in model
assumptions [material properties of the brain in particular
(Chatelin et al. 2010)]. The lack of high-quality experi-
mental data especially in live humans under injury-causing
impacts (Hardy et al. 2001, 2007; Sabet et al. 2008) also
precludes sufficient, reliable model validations (Yang et al.
2011). Consequently, even “validated” head models could
produce substantially discordant brain responses under iden-
tical head impacts (Ji et al. 2014a).

Third, and equally importantly, the “objective function”
is also under-defined. Well-documented and accepted brain
injury cases including both impact kinematics and clinical
injury diagnoses are lacking and are subject to errors. Thus,
a single “training dataset” has been used in previous studies
to evaluate injury prediction performance. A separate “test-
ing dataset” is not widely available to enable an independent
performance verification, even though this is considered nec-
essary and important (Anderson et al. 2007; Sullivan et al.
2014). Taken together, these uncertainties and lack of high-
quality, well-accepted injury data could yield multiple “local
minima” in the optimization, which may explain previous
conflicting observations based on the same injury dataset.
However, they may not necessarily correspond to the true
“global minimum”.

Given these challenges, potentially there could be data
“over-fitting” concerns when attempting to pinpoint a spe-
cific injury predictor and ROI for the best performance,
especially when using responses from a single element [e.g.,
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peak maximum strain regardless of the location in a given
ROI; (Zhang et al. 2004; Giordano and Kleiven 2014a)].
Therefore, there is a need for more systematic and objec-
tive evaluation and comparison of the injury predictors’
performances. Here, we employed a repeated random sub-
sampling technique to train and optimize injury predictors
while reporting their performances using independent test-
ing datasets. This is a popular cross-validation technique
(Arlot and Celisse 2010), but does not appear to have been
applied in model-based TBI studies to date. Further, we ana-
lyzed injury prediction performances and vulnerabilities of
the entire deep WM ROIs as well as ROI-constrained neu-
ral tracts from whole-brain tractography (Zhao et al. 2016).
Instead of relying on peak responses from a single element
from a predefined ROI, we used data sampling across all of
the deep WM ROlIs/neural tracts. Similarly, regional vulner-
abilities were also evaluated via data sampling of predictor
responses across all of the simulated head impacts.

These injury analyses significantly extended previous
model-based TBI studies to formulate a more systematic and
rigorous approach for evaluation of injury prediction per-
formance. A generic head model was also established with
the directly associated neuroimages and whole-brain trac-
tography, which was a critical stepping stone toward better
integration of neuroimaging and TBI biomechanics studies
in the future. Therefore, findings from this work may provide
important insight into how best to predict injury for improved
mitigation and clinical management.

2 Methods
2.1 Image registration and geometrical transformation

Essential to this study was to integrate structural neuroimag-
ing into biomechanical modeling. This required transforming
all image volumes, their corresponding geometrical entities,
and the head FE model into a common coordinate system.
For convenience, we have chosen the coordinate system of
the Worcester Head Injury Model [WHIM; formerly known
as the Dartmouth Head Injury Model or DHIM; (Ji et al.
2015; Zhao et al. 2016)] as a common reference. The WHIM
was created based on high-resolution T1-weighted MRI (at
an isotropic resolution of 1 mm?) of an individual. It had a
resolution of 3.3 &£ 0.79 mm for the brain. Diffusion ten-
sor imaging (DTI) of the same individual provided WM
fiber orientations at discrete voxels (at an isotropic resolu-
tion of 2 mm?) and real-valued fiber sampling points of the
whole-brain tractography (at a resolution of 1 mm). In com-
parison, the standard ICBM-DTI-81 WM atlas (Mori et al.
2008) averaged from a group of 81 healthy adults served as
the WM ROI anatomical constraints. This atlas is provided
within another standard anatomical template (ICBM-152).

Figure 1 schematically illustrates how these image volumes
were registered to transform their corresponding geometrical
entities into the WHIM common coordinate system. A rigid
registration was performed between the T1-weighted MRI
and DTI anatomical image (b = 0) of the same individual.
In contrast, a non-linear registration using the FNIRT tool in
FSL was applied to transform the ICBM-DTI-81 atlas into
the WHIM space (Andersson et al. 2007).

2.2 The Worcester Head Injury Model

Details of the Worcester Head Injury Model (WHIM; Fig. 2),
including model creation, mesh quality, assignment of mate-
rial properties and boundary conditions, and validation
performances have been reported extensively in recent pub-
lications (Ji et al. 2015; Ji and Zhao 2015; Zhao et al. 2016;
Zhao and Ji 2016). Therefore, they are not repeated here.
Importantly, the WHIM has achieved an overall “good”
to “excellent” validation [as assessed by correlation score
based on Normalized Integral Square Error (Donnelly et al.
1983; Kimpara et al. 2006)] at the low (~250-300 rad/ s2
for a live human volunteer), mid (~1.9-2.3 krad/s*> for
cadaveric impact tests C755-T2 and C383-T1), and high
(~11.9 krad/s> for cadaveric test C393-T4) levels of head
angular acceleration magnitudes provided important confi-
dence of the fidelity in WHIM-estimated brain responses.

2.3 Simulation of the NFL reconstructed head impacts

We used the 58 reconstructed NFL head impacts as model
inputs (Newman et al. 2000), which included 25 concus-
sions and 33 non-injury cases. Details of video recording
analysis (Pellman et al. 2003) and the procedures of head
impact reconstruction (Newman et al. 2000, 2005) were pre-
viously reported. Briefly, all head impact accelerations were
collected at 10 kHz following the SAE J211 protocol. The
acceleration profiles were pre-processed according to the
CFC 1000 requirements (Newman et al. 2000). Identical to
previous studies (Newman et al. 2000; Kleiven 2007), all
acceleration profiles were filtered using the CFC 180 low-
pass filter. The resulting time histories of the linear and
angular accelerations were prescribed to the WHIM head
center of gravity (CG) to induce brain mechanical responses.

2.4 Voxel- and tract-wise WM fiber strains

Whole-brain tractography was generated using the DTI of
the same individual selected to develop the baseline WHIM,
as previously reported (Zhao et al. 2016). This led to ~35 k
fibers and ~3.3 million sampling points in total. Using the
transformed ICBM-DTI-81 atlas (Fig. 1) as anatomical con-
straints, the 50 deep WM ROIs (see Table 4 in “Appendix 17)
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Fig. 1 Schematic illustration of image volume registrations to transform all geometrical entities into the common reference coordinate system of

the Worcester Head Injury Model (WHIM)
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Fig. 2 The exterior features (a) and intracranial components (b) of
the WHIM (formerly known as the Dartmouth Head Injury Model or
DHIM), along with eight representative WM ROIs (c¢) and four corre-

and their corresponding neural tracts were identified within
the WHIM [illustrated in Fig. 2c¢, d; (Zhao et al. 2016)].

For each impact simulated, element-wise maximum prin-
cipal strain and strain tensor were extracted at every time step
during the entire impact simulation (temporal resolution of
1 ms). Fiber strain at each WM voxel or fiber sampling point
was calculated, at every time step, using the corresponding
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fiber orientation and strain tensor of the nearest element (Ji
etal. 2015). For all strains, their peak values across the entire
impact simulation, regardless of the time of occurrence, were
used. They were denoted as ¢, and ¢, for maximum principal
strain and fiber strain, respectively. Due to the large number
of fibers for each WM neural tract, a 10% random subset
was utilized for improved computational efficiency. This led
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to an average of 183 £ 42 (range of 88-307) fibers for a
given WM neural tract. The down-sampling did not signif-
icantly alter strain or injury susceptibility measures (Zhao
et al. 2016).

2.5 Injury susceptibility measures in the deep WM
neural tracts

A tract-wise injury susceptibility index (@act) Was estab-
lished for a given neural tract as the fraction of “injured”
WM fibers (i.e., &, greater than a threshold, determined in
Sect. 2.8, regardless of the occurrence location along the
given fiber):

@ract (Ethresh)
# of injured fibers for the given neural tract

ey

total # of fibers for the given neural tract

However, a potential weakness of this, perhaps over-simp-
lified, definition was that it did not differentiate the relative
likelihood of injury to a given fiber according to the number
of sampling points exposed to high strains (e.g., a fiber with
either one or 100% of the sampling points “injured” would be
treated equally). To characterize this “confidence” in injury
likelihood, a weighting factor, w, was devised:

__ #of injured sampling points for the single fiber

2
# of total sampling points for the given fiber @

Applying w to the binary injury status (0 and 1 for “unin-
jured” and “injured”, respectively) of each fiber led to the
following enhanced tract-wise injury susceptibility index:
¢§r§l§f need (&thresh)

B > w x (binary injury status of a given fiber)

total # of fibers for the given neural tract

>w

~ ‘total # of fibers for the given neural tract

3

Further, a sampling point-based susceptibility index was also
established to describe the fraction of “injured” fiber sam-
pling points:

oint
<P§act (&thresh)
# of injured samping points for the given neural tract

total # of sampling points for the given neural tract
“)
Essentially, ggthanced ang PO extended the concept of
CSDM, which was originally developed for the entire brain,
to individual WM neutral tracts (Zhao et al. 2016). The
former further accounted for the distribution of “injured”
sampling points among fibers.

2.6 Injury predictor variables

While tissue strain is considered as a primary variable to
assess injury risk and severity, no consensus exists how best
to describe the tissue strain status. Common choices include
the maximum strain magnitude from a single element in a par-
ticular region, regardless of the time of occurrence or location
[i.e., peak strain (Zhang et al. 2004; Giordano and Kleiven
2014a)], or a dichotomous variant describing the percent-
age of tissue volume experiencing large strains [e.g., CSDM
(Takhounts et al. 2008) or Pop90 (Sullivan et al. 2014)]. In
this study, we evaluated the performances of peak strain,
regional average strain, and the dichotomous variants based
on either ¢, or ;. Specifically, a total of nine strain-based
injury predictor variables were evaluated, as summarized in
Table 1. All strains were evaluated on MR voxel locations
by interpolating from neighboring FE elements, except for
tract-wise injury susceptibilities for which &, was evaluated
at higher-resolution fiber sampling points. For clarity, here
we referred to an injury predictor as the predictor variable
obtained from a given ROI or neural tract.

2.7 Repeated random subsampling and logistic
regression

The 58 NFL head impact cases were randomly split into
training (39 cases, or approximately two-thirds) and test-
ing (the remaining 19 cases) datasets. This process was
repeated 100 times (considered sufficiently large) (Arlot and
Celisse 2010). For each training dataset in a random sub-
sampling trial, a standard univariate logistic regression was
performed against the binary injury statuses (0 and 1 for
“uninjured” and “injured”, respectively) for each injury pre-
dictor. A receiver operating characteristic (ROC) curve was
generated to export the area under the curve (AUC). The
logistic regression model was then applied to the correspond-
ing non-overlapping testing dataset for injury prediction. The
resulting numbers of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) were used to
calculate performance measures such as the accuracy, sensi-
tivity, and specificity according to the following equations:

TP + TN

accuracy = . (@)
TP 4+ FP + TN + FN

tivit TP ©)

sensitivity = ———,
YT TP I EN

ificit ™ (7)
specificity = ———,
PeCiclty = IN ¥ Fp

For each random trial, this produced four 9-by-50 matri-
ces encoding the AUC, accuracy, sensitivity, and specificity,
respectively (9 predictor variables and 50 WM ROIs/neural
tracts). Combining all of the 100 random trials led to four
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Table 1 Summary of injury predictor variables used in this study

Predictor variable Definition

Example references

Largest strain Peak ¢, Largest value of ¢, from a single FE element or Zhang et al. (2004) and Giordano
voxel and Kleiven (2014a)
Peak ¢, Largest value of €, from a single FE element or voxel Giordano and Kleiven (2014a)
Average strain Average ¢ Regional average of ¢, Jietal. (2014b) and Zhao and Ji
(2015)
Average ¢, Regional average of ¢, In this study
Injury susceptibility index 9"18161 Volume fraction of “injured” voxels based on¢, in a Giordano and Kleiven (2014a)
ROI
‘/’Ii"OI Volume fraction of “injured” voxels based on ¢, in a In this study
ROI
Prract Tract-wise injury susceptibility index, Eq. 1 Zhao et al. (2016)
gnhanced Enhanced tract-wise injury susceptibility index, In this study
Eq.3

point
tract

Fraction of “injured” fiber sampling points based on

Zhao et al. (2016)

&n in a neural tract, Eq. 4

corresponding 9-by-50-by-100 matrices, which were used
for subsequent evaluation.

2.8 Optimal &resh for injury susceptibility indices

The dichotomous injury susceptibility indices (Table 1)
depended on a strain threshold. A definitive ewresh for the
human brain has not been established. An in vivo study sug-
gests a wide range [0.09-0.47 to induce impairment (Bain
and Meaney 2000)]. Thresholds from other model-based
studies also varied depending on the region (e.g., 0.21 in
the corpus callosum (Kleiven 2007); 0.26 (Kleiven 2007) or
0.19 (Zhang et al. 2004) in the gray matter) or type of strain
[e.g., 0.21 in maximum principal strain (Kleiven 2007) or
0.07 in axonal strain in the corpus callosum (Giordano and
Kleiven 2014a)]. As even “validated” head injury models can
produce substantially discordant strains under identical head
impact conditions (Ji et al. 2014a), these thresholds were not
directly applicable here.

Instead, the following method was adopted within the
repeated random subsampling framework, which was an
extension to that applied to determine the threshold for
CSDM (Giordano and Kleiven 2014a). Specifically, for each
training dataset and a given injury susceptibility index, a
range of candidate thresholds (&wresh; 21 unique values
within a range of 0.05-0.25 at a step size of 0.01, based

on the previous studies) were enumerated to define the sus-
ceptibility index for a given WM ROI/neural tract. A logistic
regression analysis was then conducted, from which a Wald
x? test was performed. A significant relationship was said to
exist between the injury risk and the predictor when the p
value was less than 0.05, with a lower value indicating a more
significant relationship. Next, for each WM ROI/neural tract,
tied rank values were assigned to score resh in the order of
their corresponding x 2 test p values (Wilcoxon 1946), where
alower value led to a smaller rank value. At each gypresh Value,
the average rank value across all WM ROIs/neural tracts was
used to represent its overall performance. The optimal egpyresh
corresponding to the smallest rank value was then identi-
fied (Table 2). Essentially, this was to minimize the overall
p value, or to maximize the significance of risk-response
relationship, for the group of ROIs/tracts. This process is
illustrated in Fig. 3 for a typical training dataset. Finally,
an average optimal &gresn among the trials was obtained
for each injury susceptibility index, which was subsequently
used in a separate round of repeated random subsampling to
evaluate injury prediction performances. The three ¢,-based
metrics, Pgp;, gomnanced and @R had an optimal &gresh of
0.09-0.10, which was consistent with the lower bound of a
conservative injury threshold of 0.09 established from an in
vivo optical nerve stretching experiment (Bain and Meaney
2000).

Table 2 Summary of the average strain threshold (&yesh; from 100 random trials) and standard deviation for each injury susceptibility index

Susceptibility index variable ‘ﬂ;& PR Prract pEananced tl:'ggtn
Optimal &resh 0.20 £ 0.01 0.09 £ 0.01 0.21 £0.01 0.10 £ 0.01 0.10 £ 0.01
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Fig. 3 a Illustration of the ranking approach to identify the optimal
Ethresh based on the training dataset in a typical round of random sub-
sampling trial. For each WM ROI/neural tract, a tied rank was assigned
for each &resh according to the Wald X2 test p values. For each &resh,

2.9 Relative injury prediction performance among
predictor variables

For each predictor variable, its performance measures in each
WM ROI/neural tract were averaged across the 100 subsam-
pling trials. This led to a 9-by-50 matrix of average values
for each performance measure. To assess the relative per-
formances among these predictor variables, we performed
a pair-wise one-sided permutation test (see “Appendix 2”)
based on the average AUC, accuracy, sensitivity, and speci-
ficity (9 x 8 = 72 pairs for each performance metric) sampled
across all of the 50 deep WM ROls/neural tracts. The predic-
tor variables were then ranked by the number of times that
a given candidate was found to have a significantly larger
average value than others (as determined by the permutation
test p values).

2.10 Relative vulnerability among deep WM ROIs and
neural tracts

Identifying the most vulnerable WM ROIs or neural tracts
may be of clinical significance to potentially relate impacts
to specific brain functional alteration as well as for poten-
tial targeted therapeutic treatment in the future. Here, we
defined the relative vulnerabilities among the 50 ROIs/neural
tracts as the frequency that each region experienced responses
larger than others. Similarly, for each injury predictor vari-
able (Table 1), we employed one-sided permutation test based
on paired-sample ¢-statistics, using the response values of
the ROIs/neural tracts sampled across the 58 simulated head
impacts. A total of 50 x 49 = 2450 pairs of permutation test
were conducted for a given injury predictor variable. Finally,
their relative vulnerabilities were ranked.

an average rank value was obtained, as shown. b Average rank values
as a function of egpyesh. For each injury susceptibility measure, the one
that yielded the smallest (i.e., the best) average rank value was chosen
as the optimal &presh (Table 2)

3 Data analysis

All head impacts were simulated using Abaqus/Explicit (Ver-
sion 6.12; Dassault Systemes, France). For each impact,
element-wise peak strains during the entire simulated event
were obtained. For injury predictor variables that required
a pre-determined threshold, an optimal threshold value was
determined. Repeated random subsampling was utilized to
assess injury performances. For each performance measure,
average values across all of the WM ROlIs/neural tracts were
used to conduct one-sided permutation tests based on paired-
sample 7-statistics. For each injury predictor variable, the
relative vulnerabilities of the WM ROlIs/neural tracts were
ranked to identify the top five most vulnerable ones. Injury
thresholds at 50% injury probability were computed. Finally,
representative distributions of strain and injury susceptibility
responses for a pair of striking and struck athletes (non-
concussed and concussed, respectively) were also illustrated.

For each head impact (100ms in duration), the compu-
tational cost was ~120min for impact simulation with 8
CPUs and ~60 min for response extraction (parallel process-
ing on 12 CPUs). All data analyses were performed with
in-house MATLAB programs (R2016a; MathWorks, Nat-
ick, MA) on a 12-core Linux machine (Intel Xeon X5560,
2.80GHz, 126 GB memory).

4 Results
4.1 Injury prediction performances
Figures 4, 5, 6, and 7 summarize the average AUC, accuracy,

sensitivity, and specificity for the 9 injury predictor variables
across the 50 ROIs/neural tracts. For each predictor variable,
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Fig. 5 Summary of average accuracy measures based on the testing datasets. Four of the nine injury predictor variables achieved the best accuracy

score in the CGC-R and SLF-R (four for each; arrows)

the performance consistency among the 100 subsampling tri-
als was assessed in terms of standard deviation (either further
averaged across the 50 regions or using the maximum value
to represent the “extreme” case). In general, AUC based on
training datasets had the highest consistency, which was not
surprising as this variable was a more stable measure. Other
performance measures based on independent testing datasets
were also largely consistent among the subsampling trials,
perhaps, with an exception of the original @qc in terms
of sensitivity and specificity (maximum standard deviation
reached 37.3 and 33.6%, respectively; Figs. 6 and 7).

The two tract-wise injury susceptibility indices, ggnhanced
and (pgglcrtlt, consistently achieved the highest AUC, accuracy,

@ Springer

and sensitivity (averaged from the 50 regions; Figs. 4, 5, 6,
7). However, without weighting the “confidence” of injury
for each fiber within a neural tract, the original ¢yac¢ had
the worst average AUC (tied with peak ¢,; Fig. 4). It was
intriguing to observe that 5 of the 9 injury predictor variables
achieved the best AUC in SLF-R (superior longitudinal fas-
ciculus right) among the 50 deep WM regions. Similarly, 4
(3) of the 9 metrics had the best accuracy (sensitivity) in the

same region. Overall, the same three metrics, pgiy;, pgmanced

and <ptracrt1 , performed the best in AUC, accuracy and sensitiv-
ity in SLF-R (Figs. 4, 5, 6). In terms of specificity, however,

N ) int
5 of the 9 metrics, including gihanced and P, performed

the best in CGC-R (cingulate gyrus right; Fig. 7). Pair-wise
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Fig. 7 Summary of average specificity based on the testing datasets. Five of the nine injury predictor variables achieved the best specificity score

in the CGC-R (arrow)

permutation tests based on performances sampled across the
50 regions confirmed that the two tract-wise injury suscep-
tibility indices, ggmhanced and P were the best overall,
despite the statistically significant but subtle difference in
sensitivity (between themselves; 72.5 vs. 71.7%) and speci-
ficity (slightly lower than that for average ¢, ; Fig. 8). For each
best performer (i.e., region of the highest values in each row
in Figs. 4, 5, 6, 7), its metric value was significantly higher
than most of the other remaining regions (at least 90% or 44
out of the other 49), according to permutation tests.

4.2 Injury vulnerability and threshold
The relative vulnerabilities for ROI-based injury predictor

variables using &, and ¢, are reported in Figs. 9 and 10,
respectively. Results for tract-based predictor variables are

given in Fig. 11. For ROI-based variables, CP-R (cerebral
peduncle right) consistently ranked within the top five most
vulnerable regions (highlighted; Figs. 9, 10). When using
&, for injury prediction, GCC (genu of corpus callosum),
besides CP, was also identified within the top five (Fig. 10).
When using the tract-wise injury predictors (Fig. 11), how-
ever, BCC (body of corpus callosum) was consistently found
to experience high vulnerability. Perhaps most interestingly,
for the top five most vulnerable neural tracts identified by the
two best performing injury predictors, g&ihanced apd PO
four of them overlapped. They were GCC, BCC, SLF-L
(superior longitudinal fasciculus left) and ALIC-R (anterior
limb of internal capsule right; Fig. 11b, c¢). Finally, thresh-
olds at the 50% injury probability are summarized for the
predictor variables (Table 3).
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Fig. 8 Pair-wise performance comparisons between the injury predic-
tor variables in terms of AUC (a), accuracy (b), sensitivity (c), and
specificity (d). Each square in a row represents whether the perfor-

4.3 Illustration from selected cases

Distributions of &, voxel- and tract-wise &, are shown for
a pair of striking and struck athletes (non-concussed and
concussed, respectively) involved in the same head colli-
sion (Casel57). For the striking player, large ¢, responses
occurred in the midbrain region (Fig. 12c). For the con-
cussed player, higher ¢, and ¢, mostly occurred in the
peripheral subcortical areas and the midbrain (Fig. 12b,
d). The injury susceptibilities using the two best predic-
tors are also illustrated (Fig. 13). Perhaps as expected, most
of the tracts in the struck/concussed athlete experienced
injury susceptibilities greater than the respective tract-wise
thresholds. While the opposite was true for the striking/un-
concussed athlete, CGH-R (cingulum (hippocampus) right)
also experienced elevated pghhanced that exceeded its injury
threshold.

@ Springer

w W R B & &
0 o »°
Q/ A &Q ,og‘” Q¥ Q¥ Lo R & Q% o
Q Q & Q
Q<

mance measure was significantly larger (dark gray; otherwise, white)
than that in a column (self-comparisons along the diagonal excluded)

5 Discussion

Numerous biomechanical (Yang et al. 2011) and neuroimag-
ing (Bigler and Maxwell 2012; Shenton et al. 2012) studies
exist that attempt to elucidate the mechanisms behind trau-
matic brain injury (TBI). However, their integration remains
rather limited. Our study using whole-brain tractography and
a well-established WM atlas to analyze brain injury in con-
tact sports is an important extension to previous efforts (Kraft
etal. 2012; Wright et al. 2013; Giordano and Kleiven 2014b;
Sullivanetal. 2014; Jietal. 2015; Zhao et al. 2016). Instead of
similarly pinpointing a specific injury predictor variable in a
given brain ROI for injury prediction, here we systematically
analyzed injury prediction performances and vulnerabilities
of the entire deep WM ROIs and neural tracts. Further,
a repeated random subsampling technique was employed
to objectively evaluate prediction performances in order to
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Fig. 9 The number of times that a given WM ROI had an average
response value (from the 58 simulated head impacts) significantly larger

than others using injury predictors based on ¢,: peak ¢, (a), average
&p (b), and ‘/’182161 (c). Their respective top five most vulnerable ROIs are

highlighted (gray)

avoid or minimize “over-fitting” concerns in previous efforts
where a single training dataset was used.

5.1 Injury prediction performance

The two tractography-based injury susceptibility indices,
(pterglclfnced and (pgggtn, consistently had the best overall pre-
dictive power, while peak ¢, performed the worst in general
(Fig. 8). Without weighting the “confidence” of injury in
each WM fiber, however, the performance of ¢y, degraded
significantly. The two best performers virtually had identi-
cal AUC and accuracy. Their responses as sampled across

the 58 impacts were highly correlated (Pearson correlation
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Fig. 10 The number of times that a given WM ROI had an average
response value significantly larger than others using injury predictors
based on ¢,: peak &, (a), average &, (b), and ‘/’182"01 (c). Their respective
top five most vulnerable ROIs are highlighted

coefficients close to 1.0 for all of the neural tracts; range
of 0.989-0.998, p < 0.0001). This suggests certain inher-
ent concordance between the two. This was not surprising,
given that the two predictor variables would become iden-
tical if a neural tract were to be composed of a single fiber.
However, unlike ggthanced /POt jepends on the total num-
ber of “injured” sampling points only and is invariant to their
distribution among the fibers. Therefore, some subtle, but
statistically significant, differences were found in their sen-
sitivity and specificity (Fig. 8c, d). Further investigation is
necessary to discern their similarities/differences as well as
implications in assessing injury risk.

The regional average ¢, and ¢, within a given ROI consis-
tently outperformed their peak counterparts found in a single
element, regardless of its location, for all of the performance
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Fig. 12 Brain strain
distributions for a pair of
striking/struck athletes involved
in the same head collision. a, b
Peak ¢, resampled on a coronal
plane; ¢, d Peak ¢, in a coronal
MR image; and e, f peak ¢,
along a 10% subset of the
whole-brain tractography. For
the resampled strain map, only
regions corresponding to the
brain parenchyma are
shown—other regions such as
falx and tentorium appear as
empty space. All responses are
peak values during the entire
impact, regardless of the time of
occurrence [vs. a time-frozen
snapshot (Kleiven 2007)]. The
peak magnitudes of resultant
angular acceleration and
velocity were 3807 rad/s? and
25rad/s for the striking athlete
and were 7083 rad/s? and
38rad/s for the struck player,
respectively

relative to the mid-sagittal plane (WHIM, WM atlas, and
largely for whole-brain tractography as well), the ROI/tract
results should be interpreted bilaterally. For example, find-
ings regarding SLF-R would be equally applicable to its
contralateral counterpart, SLF-L [e.g., considering mirrored
head impacts (Zhao and Ji 2015)].

SLF appeared to be one of the most injury discriminative
neural tracts across a number of ¢,,-based predictor variables
that consistently achieved the best AUC, accuracy, and sen-

sitivity. For example, the two best performers, gthanced apq

tract
@hout in this region, had an accuracy and sensitivity of 84.4—

85.2 and 84.1-84.6%, respectively, and the corresponding
specificity score was only slightly less than CGC (85.4-86.3
vs. 86.2—-87.5%). Interestingly, the same neural tract, SLF,

Strking player
non-concussed

Struck player
concussed

(b)

0.4
0.3
0.2

0.1

0.2

0.1

0.2

0.1

was also among the most vulnerable ones, both biomechan-
ically (Fig. 11) and in neuroimaging ((Bigler and Maxwell
2012; Gardner et al. 2012); further see below).

5.2 Injury vulnerability

The relative vulnerabilities depended on the injury predic-
tor variables used. For ROI-based predictor variables, CP
(cerebral peduncle, near the brainstem and midbrain) was
consistently found to be among the most vulnerable ROIs,
regardless of whether ¢, or &, was used (Figs. 9 and 10).
This agreed well with typical reports of vulnerability in this
region (Zhang et al. 2004; Viano et al. 2005). Large &, and ¢,
occurred near this area even for the striking/uninjured athlete
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(Fig. 9a, c; similarly for the other). Regardless, the regional
average responses and susceptibility measures yielded more
consistent findings than when using peak values. For exam-
ple, three of the top five most vulnerable ROIs were identical
[CP-R, FX/ST-R (fornix and stria terminalis), and IFO-R
(inferior fronto-occipital fasciculus)] when using average ¢,
and <p§’61 as predictor variables. In comparison, average ¢,
and gof{bl identified the same top five most vulnerable ROIs
[GCC, CP-L/R and UNC-L/R (uncinated fasciculus)]. These
ROI-wise observations agreed well with a previous study
utilizing a subset of the NFL impact cases, where fornix,
midbrain, and corpus callosum were found to experience the
largest strains (Viano et al. 2005).

For the two best injury predictors based on neural tracts,
the top four most vulnerable ones were identical (GCC, BCC,
ALIC-R and SLF-L; Fig. 11). In general, this agreed well
with neuroimaging studies in the context of sports-related
concussion. Certain neural tracts, including GCC (genu of
the corpus callosum), SLF, UNC, the inferior longitudinal
fasciculus, internal capsule, among others, are known to be
more susceptible to mTBI (Kraus et al. 2007; Niogi et al.
2008; Bigler and Maxwell 2012). For example, using tract-
based spatial statistics (TBSS), significant increase in mean
diffusivity (MD) was observed in the SLF for concussed
collegiate athletes playing football ((Cubon et al. 2011);
significant changes in DTI parameters are considered indi-
cations of damages to the underlying WM). An increased
fractional anisotropy (FA) was also found in the GCC and
BCC in injured student athletes (Zhang et al. 2010a), while
a decreased FA and increased apparent diffusion coefficient
(ADC) were found in internal capsule based on a cohort of
81 professional male boxers and 12 male controls (Chap-
pell et al. 2006). In general, these results also agreed with
other neuroimaging findings using data from traffic accidents
(Messé et al. 2011; Xiong et al. 2014), falls, and assaults
(Messé et al. 2011).

Even for un-concussed players, pihanced jn CGH-R (cin-
gulum (hippocampus) right) was found to have exceeded
the corresponding injury threshold (Fig. 12). This appeared
to agree with the notion that athletes even without a clini-
cally diagnosed concussion could still experience significant
changes in neuroimaging (Talavage et al. 2014; Bazarian
et al. 2014) or cognitive alteration (McAllister et al. 2012,
2014), presumably a result from local tissue deformation.

Taken together, our biomechanical investigation, espe-
cially for results based on ¢, (Figs. 10, 11), appeared to
reinforce reports from various neuroimaging studies that
have identified the corpus callosum, SLF, UNC, and inter-
nal capsule as more frequently injured in mTBI patients
(Bigler and Maxwell 2012). Undoubtedly, further studies
and more independent models (further see below) are neces-
sary to verify the concordance between biomechanical and
neuroimaging findings on a same sizable population in the
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future. Nevertheless, collectively, these findings do seem
to provide a multi-faceted insight into the mechanisms of
mTBI.

5.3 Comparison with previous findings

The corpus callosum ranked among the most vulnerable
regions for ¢,-based predictors. However, it did not have the
best injury predictive power. For example, AUC of 0.812 and
0.809 for ggihanced and P in the main body, respectively,
lower than that for SLF-R: 0.879 and 0.867, respectively;
Fig. 4). Further, peak ¢, in the main body of corpus callous
achieved relatively poor AUC, accuracy, sensitivity, speci-
ficity scores (0.685, 62.3,43.9, and 79.0%). In contrast, peak
&y in this region was one of the “best” injury predictors for
the latest KTH model that reported an AUC of 0.9488 (Gior-
dano and Kleiven 2014a). This was notably higher than those
achieved in our study. Unfortunately, injury prediction per-
formances based on independent testing datasets were not
available in that study to enable a direct, more objective com-
parison.

Nevertheless, these findings, once again, highlight dif-
ferences among models. A more systematic and objective
comparison of brain responses across models may be valu-
able to gain further confidence in model-based injury studies.
This is particularly true given the challenges for reliable,
high-quality model validations at present (Yang et al. 2011)
and the fact that significant differences exist even among
“validated” models (Ji et al. 2014a). The approach presented
here (random subsampling and evaluation of the entire deep
WM ROIs and neural tracts via a standard WM atlas) may
provide a common framework for future model compar-
isons [vs. simply peak responses in generic regions (Ji et al.
2014a)]. With more independent models analyzing an iden-
tical injury dataset using the same approach, the observed
concordance between biomechanical and neuroimaging find-
ings may be further reinforced.

5.4 Limitations

Limitations of WHIM on the use of isotropic, homoge-
neous (vs. anisotropic, heterogeneous) material properties
of the brain, and resolution mismatch between FE elements
and DTI voxels have been discussed (Ji et al. 2015; Zhao
et al. 2016). They are not repeated here. Extensive discus-
sions also exist on errors in the impact kinematics (Newman
et al. 2005), the resulting uncertainties in model results,
and implications in injury prediction such as under-sampled
non-injury cases that could have biased injury thresholds
(Zhang et al. 2004; Kleiven 2007; Giordano and Kleiven
2014a). These random kinematic errors likely could signif-
icantly influence results on an individual basis. This will
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Fig. 13 Tllustration of injury susceptibilities using gS2anced (zop) and

(pggi':t (bottom) for the same pair of athletes. Stars/dashed lines rep-

resent tract-wise/average injury thresholds at a 50% probability for
concussion. Potentially “injured” tracts (i.e., susceptibilities exceed-

be the subject of a future “sensitivity” evaluation. How-
ever, they are unlikely to significantly alter the group-wise
results presented here such as the relative discriminative
power among the injury predictor variables (as indicated by
the consistency among random trials; Figs. 4, 5, 6, 7) or
vulnerabilities among the ROIs/tracts. Importantly, a model-
based TBI study is analogous to an ill-posed optimization
problem—uncertainties and potential errors will likely per-
sist in virtually all aspects involved. A systems or integrated
approach is important to ultimately elucidate the mech-
anisms behind TBI (Zhao et al. 2016). When additional
injury datasets are available, further independent evaluations
would reveal whether the findings in this study based on the
limited NFL dataset could be generalized to other at-risk
populations.

There are several other limitations. First, we have used
neuroimaging and whole-brain tractography from one indi-
vidual to study the NFL athletes on a group-wise basis.
Individual variability could not be assessed because their
neuroimages were unavailable. Despite this limitation, it
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ing the corresponding tract-wise thresholds) are highlighted in gray.
Even for the un-concussed athlete, gofrglc‘f‘med in CGH-R still exceeded
its tract-wise threshold (arrow)

must be recognized that our generic head model was a criti-
cal stepping stone toward more individualized integration of
neuroimaging with TBI biomechanics studies in the future.
The model-image mismatch was similar to arecent study that
used 2D head models (vs. 3D here) developed from images
of a normal individual to study injury of a reconstructed acci-
dent in ice-hockey of a different subject (Wright et al. 2013).
Another study correlated simulated strain patterns from a
generic model with injury findings from individual neuroim-
ages for three reconstructed bicycle accidents, where model
and images differed in size and shape (Fahlstedt et al. 2015).
An image-atlas-based model represented “averaged” neu-
roimages but not specific individuals (Miller et al. 2016).
Further work is necessary to understand the implications of
using generic vs. individualized model and/or neuroimages
in injury characterization; however, this is beyond the scope
of this study. Nevertheless, importantly, our generic model
with the associated neuroimages and whole-brain tractogra-
phy may provide a valuable tool to enable better integration
of neuroimaging and TBI biomechanics studies in the future,
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especially given that most 50th percentile head models do
not yet have detailed neuroimages directly associated with
(Zhang et al. 2004; Kleiven 2007; Kimpara and Iwamoto
2012; Takhounts et al. 2013; Giordano and Kleiven 2014a;
Sahoo et al. 2016).

Second, a more complete WM atlas also exists [contain-
ing as many as 130 ROIs (Zhang et al. 2010b)], which was
employed before (Wright et al. 2013). Here, we chose to
focus on the deep WM ROls/neural tracts because certain
regions deep in the brain appear more susceptible to mTBI
based on neuroimaging findings (Kraus et al. 2007; Bigler
and Maxwell 2012). In addition, there is inconsistency in
representing the brain-skull boundary conditions in FE head
models [e.g., frictional sliding interface (Kleiven 2007) vs.
direct nodal sharing via a layer of soft CSF in between the
brain and skull (Takhounts et al. 2003; Ji et al. 2015)]. Thus,
there could be greater response uncertainty in cortical and
subcortical regions. Although using ROIs/tracts only in the
deep WM did not necessarily eliminate the concern, it was
a reasonable compromise, at least at present, to enable our
study along this line of research.

Finally, we have used a univariate logistic regression in
each WM region (ROI/neural tract) independently to assess
injury risk. As concussion is diffuse in nature, a binary brain
injury may well have involved damages to multiple (vs. a
single) WM ROIs and/or neural tracts (Fig. 13b, d). It is
reasonable to assume that combining responses from all of
these regions could improve injury prediction performance.
In this case, responses from each WM region (ROI or tract)
could serve as unique “features” to enable more sophisti-
cated analysis techniques—multi-variate logistic regression
or machine learning [e.g., support vector machine (Hernan-
dez et al. 2014)]—for more effective injury classification. In
addition, strain rate (Cullen and LaPlaca 2006), the combina-
tion of strain and strain rate (King et al. 2003), inter-regional
differences in injury tolerance (Elkin and Morrison 2007), as
well as “sustained maximum principal strain” (Fijalkowski
et al. 2009) that considers the duration of above-threshold
strains (vs. peak strains alone in this study) could also be
incorporated. These will be the subjects of future investiga-
tions.

6 Conclusion

Using WHIM to simulate brain strain responses in NFL head
collisions, we found that two injury susceptibility indices
based on fiber strain along WM neural tracts had the best
overall performance. SLF (superior longitudinal fasciculus)
appeared to be among the most injury discriminative neural
tracts (e.g., AUC and accuracy up to 0.879 and 85.2%, using
training and testing datasets, respectively, based on tract-wise
injury susceptibilities at an optimal strain threshold of 0.10).

@ Springer

It was also among the top most vulnerable ones, along with
corpus callosum. These findings highlight the unique injury
discriminatory potentials of computational models and may
provide important insight into how best to incorporate WM
structural anisotropy for investigation of brain injury. Future
studies include (1) applying multi-variate analysis techniques
to classify injury, while accounting for inter-regional dif-
ferences in tolerance; (2) investigating the significance of
neuroimaging inter-subject variability and accuracy of neural
tracts on brain injury risk; and (3) assessing the general-
izability of the findings to other at-risk populations using
additional, independent injury datasets.
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Appendix 1: Description of deep brain white matter
atlas

Table 4 ICBM-81 deep brain white matter atlas labels and regions of
interest (ROI)

ID  Label ROI name

1 MCP Middle cerebellar peduncle

2 PCT Pontine crossing tract (a part of MCP)
3 GCC Genu of corpus callosum

4 BCC Body of corpus callosum

5 SCC Splenium of corpus callosum

6 FX Fornix (column and body of fornix)
7 CST-R  Corticospinal tract right

8 CST-L  Corticospinal tract left

9 ML-R Medial lemniscus right

10 ML-L Medial lemniscus left

11 ICP-R  Inferior cerebellar peduncle right
12 ICP-L Inferior cerebellar peduncle left

13 SCP-R  Superior cerebellar peduncle right
14 SCP-L  Superior cerebellar peduncle left

15 CPR Cerebral peduncle right

16 CP-L Cerebral peduncle left
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Table 4 continued

ID Label ROI name

17 ALIC-R  Anterior limb of internal capsule right

18 ALIC-L  Anterior limb of internal capsule left

19 PLIC-R  Posterior limb of internal capsule right

20 PLIC-L  Posterior limb of internal capsule left

21 RLIC-R  Retrolenticular part of internal capsule right

22 RLIC-L  Retrolenticular part of internal capsule left

23  ACR-R  Anterior corona radiata right

24  ACR-L Anterior corona radiata left

25 SCR-R Superior corona radiata right

26 SCR-L Superior corona radiata left

27 PCR-R Posterior corona radiata right

28 PCR-L Posterior corona radiata left

29 PTR-R Posterior thalamic radiation (include optic radiation)
right

30 PTR-L Posterior thalamic radiation (include optic radiation)
left

31 SS-R Sagittal stratum (include inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus)
right

32 SS-L Sagittal stratum (include inferior longitudinal
fasciculus and inferior fronto-occipital fasciculus)
left

33 EC-R External capsule right

34 EC-L External capsule left

35 CGC-R  Cingulum (cingulate gyrus) right

36 CGC-L  Cingulum (cingulate gyrus) left

37 CGH-R  Cingulum (hippocampus) right

38 CGH-L  Cingulum (hippocampus) left

39 FX/ST-R Fornix (cres)/stria terminalis (cannot be resolved
with current resolution) right

40 FX/ST-L  Fornix (cres)/stria terminalis (cannot be resolved
with current resolution) left

41 SLF-R Superior longitudinal fasciculus right

42  SLF-L Superior longitudinal fasciculus left

43  SFO-R Superior fronto-occipital fasciculus (could be a part
of anterior internal capsule) right

44 SFO-L Superior fronto-occipital fasciculus (could be a part
of anterior internal capsule) left

45 IFO-R Inferior fronto-occipital fasciculus right

46 IFO-L Inferior fronto-occipital fasciculus left

47 UNC-R  Uncinate fasciculus right

48 UNC-L  Uncinate fasciculus left

49 TAP-R Tapatum right

50 TAP-L Tapatum left

Appendix 2: One-sided permutation test

We adopted a non-parametric, one-sided permutation test
(Rice 2006) to compare injury prediction performances and

vulnerabilities of the deep WM ROIs/neural tracts. A paired-
sample ¢-statistic is first calculated according to:

d=x—y, (8)
T :J/s/ﬁ, ©9)

where d is the mean of the difference between two samples, x
and y; s is the standard deviation of d; and 7 is the sample size.
The pseudo-algorithm for the permutation test is described
below:

Step 1 For a given pair of data samples, calculate the base-
line paired-sample ¢-statistic, Ty, using Eqns. 8 and
0.

Step 2 Randomly flip the pairs of values from the two sam-
ples to generate two new samples.

Step 3 Compute a new paired-sample ¢-statistic, Tperm.,
using the newly generated samples from Step 2.

Step 4 Repeat Steps 2-3 by Nperm times (e.g., 100).

Step 5 Calculate a probability p value:

_ #(Tperm > Top) (10)
Nperm ’

where “#(Tperm > Tp)” is the number of permutations where
Therm is found to be greater than Ty. A p value smaller than a
given threshold (e.g., 0.05) is considered a strong indication
that the given pair has a statistically significant difference.
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