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Abstract Inflammation is the body’s attempt at self-
protection to remove harmful stimuli, including damaged
cells, irritants, or pathogens and begin the healing process. In
this study, strain-induced inflammation in pulmonary alve-
olar tissue under high tidal volume is investigated through
a combination of an inflammation model and fluid struc-
ture interaction (FSI) analysis. A realistic three-dimensional
organ model for alveolar sacs is built, and FSI is employed
to evaluate strain distribution in alveolar tissue for different
tidal volume (TV) values under the mechanical ventilation
(MV) condition. The alveolar tissue is treated as a hyper-
elastic solid and provides the environment for the tissue
constituents. The influence of different strain distributions
resulting from different tidal volumes is investigated. It is
observed that strain is highly distributed in the inlet area.
In addition, strain versus time curves in different locations
through the alveolar model reveals that middle layers in the
alveolar region would undergo higher levels of strain during
breathing under the MV condition. Three different types of
strain distributions in the alveolar region from the FSI sim-
ulation are transferred to the CA model to study population
dynamics of cell constituents under MV for different TVs;
200, 500 and 1000mL, respectively. The CA model results
suggests that strain distribution plays a significant role in
population dynamics. An interplay between strain magni-
tude and distribution appears to influence healing capability.
Results suggest that increasing TV leads to an exponential
rise in tissue damage by inflammation.
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1 Introduction

Inflammation is an immune response to tissue stimulation
and is a complex process that involves diverse tissue con-
stituents. It can be triggered by foreign matter entering the
tissue, or amechanical signal. Inflammation that occurswhen
mechanical ventilation (MV) is applied to support breathing
in an alveolus environment is known to be induced by applied
strain on the tissue, which may be caused by over-inflating
the airways. In the case of MV, this leads to a dilemma–MV
is necessary to maintain respiration, but it may also cause
the lung to fail by inflammation-related problems. In partic-
ular, the pressure needed to maintain respiration under MV
is more than normal breathing pressure. This is necessary to
open presumed collapsed alveoli.

The mechanosensitive nature of pulmonary tissue has
been known for a long time. Foda et al. (2001), focused on
identifying major factors in the development of ventilator-
induced lung injury. They demonstrated that high volume
ventilation caused acute lung injury. Copland et al. (2003),
studied the influence of high lung tidal volume and gene
activation induced by mechanical stretch that occurs in
the absence of physiologic or structural impairments in rat
lung. They concluded that the pattern of gene activation
that precedes high lung tidal volume-induced injury plays
a significant role in the pathogenesis of high tidal volume-
induced lung injury. Carnell et al. (2007), developed a
histology-basedmethodology to explore the relation between
intramural stress and combined monocyte/macrophage den-
sity and arteries branch elevation. They also tested the
correlation between elevated stresses in hypertensive bifur-
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cations and inflammation increase. They observed that cell
density peaks appeared in regions where surface curvature
would cause stress concentrations. They also concluded that
there is a strong positive correlation betweenmean stress and
cell density in each bifurcation.

Experimental studies (Li 2003; Li et al. 2004; Oudin and
Pugin 2002) infer the mechanotransduction nature of lung
tissue cells by statistical measurement of cytokines expres-
sion after they are subjected to stress. These results however,
ignore factors such as strain level and distribution. There
is also an issue of reproducibility where some cytokines
are easily released in vitro but not in vivo. Several stud-
ies have shown that various cell signaling pathways were
activated by subjecting pulmonary tissue to static or cyclic
stretch. The cell signaling pathways during pulmonary tissue
stretchmay produce a number of proteins involved in inflam-
mation, including p38 (Li et al. 2004; Uhlig et al. 2002),
MAPK (Uhlig et al. 2002), IL-8 (Mascarenhas 2004), MMP-
2 (Haseneen et al. 2003), ERK and NF-B (Birukov et al.
2003), MMP-9 (Pugin et al. 1998) and NOS (Kuebler et al.
2003), that are responsible for producing TNF, a well-known
cytokine associated with inflammation. It is recognized that
cytokines are redundant; hence, these cytokines may be
released by the same triggers. These various cytokines would
play different roles in inflammation; some would cause
inflammation or dysfunction of other organs and are the pre-
cursor to biotrauma during MV. One way to study complex
interactions between cells and cytokines in the pulmonary
tissue environment is to treat the interaction as a discrete
network. Insights might be gained from studying dynamics
emerging from this interaction.

In this study, two different models are employed to study
the strain-induced inflammation in the pulmonary alveolar
tissue environment. First, a realistic three-dimensional (3D)
organ model for alveolar sacs is built and fluid structure
interaction (FSI) is employed to evaluate strain distributions
in alveolar tissue under the MV condition. Alveolar tissue
is treated as a hyperelastic solid and provides the environ-
ment for the tissue constituents. The tissue constituents are
mechanosensitive cells that give rise to the dynamics at the
cellular level by bio-chemical signaling. Second, a discrete
network system modeled by Cellular Automata (CA) was
used to represent the cellular model. Post-processed strain
distributions from FSI are applied to the CA model to study
population dynamics of cell constituents of tissue under the
MV condition. The results obtained from both the models
regarding the mechanical environment in alveolar tissue are
discussed.

2 Materials and methods

To investigate the strain-induced inflammation in a pul-
monary alveolar tissue environment, both fluid-solid interac-

tion (FSI) and cellular automata (CA) models are employed.
A realistic 3D organ model for alveolar sacs is built, and
hyperelastic material properties are assigned to the alveo-
lar tissue. FSI is conducted to obtain strain distributions in
alveolar tissue under MV condition. Appropriate boundary
conditions are defined for FSI analysis and governing equa-
tions for fluid and solid domain are solved iteratively to obtain
the strain distributions in alveolar tissue. These strains from
FSI are applied to the CA model to study cell population
dynamics of the tissue. Figure1 presents an overview of the
strain-induced inflammation model considered in this study.

2.1 Fluid solid interaction (FSI)

FSI studies that include both solid and fluid domains were
used to investigate strain distributions in the alveolar region
(Bungartz and Schfer 2006). A 3D realistic geometry of the
alveolar region is created based on realistic dimensions (Hae-
feliBleuer and Weibel 1988; Harding and Robinson 2010;
Weibel 1964) and it is imported as geometry into the ANSYS
transient structural and Fluent solvers. Constitutive equa-
tions for structure and fluid are integrated interactively in the
time-domain, and structure displacement and fluid velocity
and pressure are obtained iteratively. In each iteration, fluent
transfers the fluid dynamic loads data to the transient struc-
tural solver at each pre-defined synchronization point and
a transient structural solver transfers the structure response
data to the FLUENT solver for the next iteration. These iter-
ations are repeated until a maximum number of stagger iter-
ations is reached or until the data transferred between solvers
and all field equations have converged (ANSYS2013). Strain
distribution from FSI are post-processed for three different
TVs and results for strain are employed for CA model.

2.1.1 Computational domain and boundary conditions

A3Dmodel of alveolar sacs is builtwith realistic dimensions.
Shell element is considered for the solid domain and space
inside the alveolar region is devoted to the fluid domain. The
finite element converged mesh consists of 91,540 and 60,195
tetrahedrons and triangles for the fluid and solid domains,
respectively. Neo-Hookean hyperelastic material properties
with incompressible air are assigned to the alveolar wall and
flowing fluid. In addition, pulmonary alveoli are the terminal
ends of the respiratory tree, which contain some collagen and
elastic fibers. The elastic fibers allow the alveoli to undergoes
strain as they are filled with air during inhalation. Then they
spring back during exhalation in order to expel the carbon
dioxide-rich air. Therefore, boundary conditions for the solid
domain are allocated as free displacements in the radial direc-
tion for the model and longitudinal and rotational displace-
ment are fixed for the simulation (Fig. 2; Table1). Nonuni-
form inlet velocity boundary conditions for the fluid domain
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Fig. 1 Overview of strain-induced inflammation in this study
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Fig. 2 Alveolar sac model geometry and B.Cs in the current study. a Fluid domain and b cut view of solid domain with shell element
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Table 1 Alveolar sac model
dimensions from the current
study compared to morphometry
reported in the literature

Parameters Alveolar sac model
current study

Dimensions
literature review

References

Duct diameter (Dd) (mm) 0.19 0.25 HaefeliBleuer and Weibel (1988)

Alveolus radius (Ar) (mm) 0.15 0.14 Weibel (1964)

Alveolus depth (D) (mm) 0.2 0.23 Weibel (1964)

Sac length (SL) (mm) 0.87 0.75 HaefeliBleuer and Weibel (1988)

Number of alveoli 24 17 Weibel (1964)

Table 2 Inlet velocity wave form for MV

Inhalation/exhalation MV

t ≤ Inhalation time (tin) (tin ≤ 0.4s) Flowrate
S∗2(g−1)

t > Exhalation time (tex) (0.4 < tex ≤ 2s)
−Flowrate×exp

(
− tin+tex

tin

)

S∗2g−1

are defined in the formof constant and exponentially decreas-
ing flow rate profiles for inhalation and exhalation duringMV
in the form of UDF files which are presented in Table2.
where S is equal to the alveolar duct cross section, g is equal
to the generation number which is equal to 23 in this study
and flow rate is equal to the proportion of TV (lung volume
that represents the normal volume of air displaced between
inhalation and exhalation when extra effort is not applied) to
the inhalation time. Three different values for TV (200, 500
and 1000mL) are considered in the inlet velocity relation-
ship to investigate their effects on increasing or reducing the
damage in alveolar tissues under MV condition.

2.1.2 Governing equations for fluid

Since Reynolds numbers in the pulmonary sacs are generally
sufficiently small (Clark et al. 2010; Kolanjiyil and Klein-
streuer 2013), a 3D incompressible laminar Navier–Stokes
and continuity equations in a 3Dmesh domain with a control
volume approximation (Liu et al. 2002) are solved numeri-
cally to give the velocity field within the alveolar region:

∇ · u = 0 (1)

ρ f

(
∂u

∂t
+ u · ∇ · u

)
= −∇ p + μ∇2u (2)

where u is the velocity field, ρ f is fluid density equal to

1.225 kg
m3 , p is the pressure, and μ is the dynamic viscos-

ity. The continuity equation represents the conservation of
mass, Eq. (1), and the Navier–Stokes equations represent the
conservation of momentum, Eq. (2), that would be solved
numerically on a moving grid using a commercial finite-
volume based program with fully implicit time marching
techniques under isothermal conditions in ANSYS fluent
solver (Fluent 2011).

2.1.3 Governing equations for structure

The governing equations for the movement of the alveolar
sac walls during inhalation and exhalation are the time-
dependent structural equations shown below:

∂σij

∂x j
+ Fi = ρs

∂2ui
∂t2

(3)

σi j = Ei jklεkl (4)

In the equations above is the stress in each direction, F is
the body force, ρs is the density of tissue, u is the displace-
ment, E is the elasticity tensor, and is the strain in each
direction. Hyperelastic Neo-Hookean material parameters
have been assigned to alveolar wall materials. Neo-Hookean
hyperelasticmaterials have evolving nonlinearmaterial prop-
erties and often used in large displacement applications (Tang
et al. 2015; Wiechert et al. 2009). Neo-Hookean model with
free energy density is adopted for FSI simulation in this
study:

W = G

2

(
I 1 − 3

) + Km (J − 1)2 (5)

where J = det(F) and I 1 = J− 2
3 I1 . I1 is the first invariant of

the left Cauchy-Green Tensor C = FTF is the deformation
gradient. G and Km are the shear and bulk moduli, respec-
tively. For this study G = 2000 (Pa) and Km = 13.5 (kPa)
are considered for Neo-Hookean parameters (Wiechert et al.
2009; Cavalcante et al. 2005). Also alveolar density is

appointed as 196
(
kg
m3

)
(Gefen et al. 1999).

2.1.4 Coupling fluid-solid interactions

For each time step during FSI, initially Eqs. (1, 2) are solved
and applied forces on the alveolar wall are calculated. Next,
constitutive equations for solid are employed to obtain alve-
olar wall displacement. Then, the generated mesh is updated
with the diffusion-based smoothingmethod in dynamicmesh
in Fluent, based on the response of the structure. Inter-
actions between solid and fluid are restated iteratively for
optimization. Next, post-processed results from FSI are used
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to investigate population dynamics of cells constituent of tis-
sue under MV with different TVs in the cellular level model.

2.2 Cellular automata

CA is a discrete and rule-based model that has been used for
both physics and biologic modeling. A well-known compi-
lation of CA-oriented physical model is a work by Chopard
andDroz (2005). They covered commonphysicalmodel such
as fluid flow, elastic solid, diffusion and reaction-diffusion.
Ermentrout and Edelstein-Keshet (1993), compiled various
CA model in biology. This works covered CA model built
to give pattern commonly found in biologic system. The
models built based on description of the components and
interactions in associated biologic system. Recent applica-
tion of CA includes cancer spread modeling (Alemani et al.
2012), disease infection (Precharattana and Triampo 2014)
and inflammation (Reynolds et al. 2012; Brown et al. 2011;
Dutta-Moscato et al. 2014). These models consist of sev-
eral agents that interacts to give rise to the dynamics of the
environment. Reynolds et al. (2012), defined several agents
in the model that represent epithelium and macrophages
with finite states. These agents change states according to
environmental interactions. Other studies would provide fur-
ther information on possible agents definition on CA model
Brown et al. (2011), Dutta-Moscato et al. (2014). A CA
model typically consists of a set of uniform cells (or agents),
space represented by grids, and rules that define the cells
behavior. The cells can be seen as mini-computer that com-
putes the rules. Mathematically, a CA is defined in terms of
set theory as a tuple:

A = {G, E,U, f } (6)

where G, E,U and f are a grid of cells, set of finite states of
cells, set of neighborhood and set of local rule, respectively.
The grid is typically defined as d-dimensional square grid,
that is G = Zd . The state is typically defined as a finite set
of numbers (e.g., binary, real). There is various definition of
neighborhood, one of themost used isMoores neighborhood,
defined as U (xi ) = {

x | ||xi − x ||∞ ≤ 1
}
. The local rule

defines the evolution of state. The general form of rule is,

zt+1(x) = f
(
zt

∣∣U (x)
)

(7)

where zt (x) is state at x at time step t , and zt |U (x) is state
at the neighborhood of x . Finally, there needs to be a map
from grid to states before applying the rules, that is z : G ⇒
E . One of the most common forms of local rules in CA is
employing conditionals, which can also be represented as
step function,

zt =
{
1, if (A)

0, else
(8)

where A is conditional statement(s). The conditional state-
ments typically involve the states of neighbors. Other recur-
ring local rule is the summation of states,

zt+1(x) = f
(
zt

∣∣U (x)
)

(9)

Throughout this study, these two general forms of rule are
used which are discussed in results and discussion section.
The boundary of CA grid can be defined by two conditions:
fixed or periodic. Fixed boundary condition imposes a con-
stant value on the boundary. Periodic boundary lends itself
from molecular modeling, and is used to approach large
domain. It imposes continuum between two opposite fac-
ing boundaries. This condition can also be seen as a domain
which satisfies torus topology.

2.3 Inflammation model

As it was discussed, inflammation is a complex process that
involves the release and spread of cytokines and cells inter-
action with the environment. That is to say, inflammation
is mainly the interplay between reaction–diffusion (R/D) of
cytokines and cells response. To model this process, a dis-
crete computational method based on cellular automata (CA)
is employed (Mascarenhas 2004). The CA has been success-
fully applied tomodel behavior biologic system (Tanabe et al.
2000), including reaction diffusion and cells response and
arrangement to environment, inflammation (Birukov et al.
2003; Moriyama 2004; Uhlig and Uhlig 2001) and can-
cer modeling (Haseneen et al. 2003). The discrete model
employed in this study is largely based on probability. As
usual, the CA model is built upon a definition of the grid. In
this study, a square two-dimensional grid is used. The grid
consists of several layers, as can be found in R/D modeling.
There are four layers of grid: epithelial cells, immune cells
(cellswithmotility), cytokines, proteins and elastic field grid.
As per CAmodeling, the evolution of the grids is dictated by
a set of rules. The rules and grids are explained below. Fig-
ure3 illustrates the CA model with multiple grids, as well as
a graph showing the causal path of the CA model.

2.3.1 Epithelial cells grid

The epithelial cells grid is a typical CA grid, with only two
states: 1 and 0, representing dead and healthy, respectively.
The rule that defines evolution of the CA cells in this grid is,

zt+1
1 (x) =

{
1, rand(α1, β1) < zt3T N F (x)
0, otherwise, or healing

(10)

zt+1
1 (x) = samp(d, w) (11)
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Fig. 3 CA with multiple grids, each grid represents the event and
dynamics in the tissue. The graph on the left shows the causal path
of the events. Each edge associated with plus (+) sign represents posi-

tive feedback to the vertex it is pointing on (activation, release/adding
concentration, healing), while the one associated with negative sign (−)
carries negative feedback (inhibition, damage)

where zt1(x) is the epithelial cells state at time step t and
location x, zt3T N F (x) is concentration of pro-inflammatory
cytokine (explained later) occupying the same grid coordi-
nate, rand is randomnumber generator based on beta function
probability density, α1 and β1 are two beta function param-
eters, and samp(w, d) is random sampling algorithm that
samples data set d by weights w. Equation (10) describes the
state transition by cytokine (TNF) and fibroblast (healing).
The healing condition comes from cellmitosis and fibroblast,
and is described by Eqs. (12) and (13) below.

unirand < Pmt (12)

zt+th
1 (x) = 1 when zt2 f (x) = 2 (13)

where unirand is uniform random number generator between
0 and 1, Pmt is mitosis rate, and zt2 f is the state of immune
cells grid. The mitosis rate defines the probabilistic rate of

mitosis, as part of self-healing process of the cells. Equa-
tion (11) describes state transition influenced by scarring
(explained in Sect. 2.3.5). Function samp randomly chooses
the state of a cell, d, with some bias w. In this case, d is the
possible state the grid can have (i.e., 0 and 1). The weight
w skews samp to choose state 1 according to the numbers
of collagen deposits) at vicinity. If Moore’s neighborhood is
used, then maximum number of collagen deposits is 9.

2.3.2 Immune cells

The immune cells move according to the concentration gra-
dient (chemotaxis). The grids can contain three states: 0, 1
and 2, representing nonexistence of cells, inactivated, acti-
vated and secondary state for the immune cells. A simple
probabilistic model of cell motility is used here, i.e.,
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a2 = samp
(
U (x), zt3(x)

)
(14)

zt+1
2 (x)

∣∣U (x) =
{
1, at zt2(a2)
0, otherwise

(15)

where samp(w, d) has been used once again, with differ-
ent terms regarding w and d. In this case, samp randomly
choose local grid site according to neighborhood U (x), and
the choice is biased according to zt3, which is the state of
cytokine grid at current cell location, x . Variables in Eq. (14)
is as follow: U (x) is Moores neighborhood function, zt2(x)
is the state of immune cells grid at time step t. There are two
type of immune cells, the macrophages (agent of inflamma-
tion) and fibroblasts (agent of healing). The state transition of
the grid is applied toward grid with state zt2(x) > 0 (the grid
occupied by immune cells), and governed by rule as follows,

zt+1
2m (x) (16)

=
⎧
⎨
⎩
1, ttop > εpop
2, zt1 = 1(fibroblast), rand(α2, β2) < zt4(x)(macrophage)
0, otherwise or if tim > εim

where εim is the age of immune cells, zt4(x) is the state
of elastic field grid (which will be explained later) and the
random number generation using beta function probability
density has been used once again. Equation (15) is applied to
both type of immune cells, with minor differences in details
(including the rule for activation) as shown in Eq. (16). The
macrophages are still mobile after activation, while fibroblast
will stay at the last grid site after activation. The latter rep-
resent fibroblast differentiating at injured site. This means
the rule in Eqs. (14) and (15) still applies to macrophages
after activation, but not fibroblasts. In addition, the εim of
fibroblast also reduced by 75% after activation.

When activated, the immune cells release cytokines. Each
type of immune cell is associated with a specific cytokine
(i.e., macrophage releases TNF, and fibroblast releases
TGF). Macrophage tends to release TNF where the envi-
ronment experiences more strain, while fibroblast tends to
release TGF in the presence of TNF. However, TGF inhibits
macrophage in releasing TNF. Hence, the CA reflects the
activator-inhibitor system. The cytokines release by immune
cells can generally be expressed as,

zt+1
3T N F (x)

=
{
1, rand(α3, β3) ≥ zt3TGF (x) when zt2m(x) = 2
0, otherwise

(17)

zt+1
3TGF (x)

=
{
1, rand(α4, β4) ≤ zt3T N F (x) when zt2 f (x) = 1
0, otherwise

(18)

Table 3 Beta Function Parameters

Subscript number Case α β

1 Epithelial cells grid (Eq.6) 5 1

2 Macrophages activation (Eq.11) 5 1

3 TNF release (Eq.13) 1 3

4 TGF release (Eq.14) 2 1

Table 4 CA parameters for simulation in this paper

Mitosis probability, Pmt 1/5

Healing time 5

Collagen time, Kc 10

Collagen dissolution 10%/tick

TNF diffusity, DTNF 0.07

TGF diffusity, DTGF 0.1

TNF dissolution constant, KTNF 1E−3

TGF dissolution constant, KTGF 1E−5

Repopulation of immune cells, εpop 5 ticks

Immune cells life time 20 ticks

Immune cells speed 3 cells/tick

Population of immune cells, nim 25

where zt3(x) is the state of cytokine grid at time t, the subscript
denotes the type of cytokine, zt2(x) is the state of immune cell
grid at the same time step, and subscript m and f denote the
type of immune cell (macrophage and fibroblast), consecu-
tively, α and β are beta function parameters which are given
in Table3.

The population of immune cells is also kept at averagely
nim numbers, with 0.25 variance. This means the first condi-
tion in Eq. (15) applies at random grid location to ensure the
population is at nim on average. As before, the beta function
and rules parameters are given in Tables3 and 4.

2.3.3 Cytokine grid

The cytokine grid contains an array of CA cells to simulate
the spread of cytokines by diffusion, and its disintegration
over time. One way to simulate spread is to employ an addi-
tive rule such as,

zt+1
3 (x) = ΣU (x)ki z

t
3(x) (19)

where ki is a set of constant corresponding to neighborhood
function,U (x). To determine ki , one may gain insights from
a system appearing as a numerical solution of diffusion equa-
tions with additional disintegration terms,

Ċ = D∇2C − K · C (20)
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where C is concentration, D is diffusity, K is a constant
determining the rate of disintegration. Numerical solution
by Finite Difference Method gives,

zt+1
3 (x) = zt3(x) + DΣU (x)ki z

t
3(x) − Kzt3(x) (21)

where Neumanns neighborhood is used, and cells have con-
tinuous state, and ki = 1 − 4D for U (x) = 0, anki = D
otherwise. As before, D and K are shown in Table4.

2.3.4 Elastic field grid

It is theorized that mechanical strain on tissue activates ion
channel(s) on the cells that leads to the release of an array
of cytokines (Halbertsma et al. 2005). In this model, the
mechanical strain is represented by another layer of CA grid
as a discretized strain field. The FEM simulation in the study
provides insights into the strain distribution. This is translated
into the discretized distribution of strain fields in the CA grid.
This strain field acts as an energy gradient in activating the
immune cells. Themodel simplifies the activation process by
ignoring the molecular mechanism of ion channels opening
by strain and cell signaling pathways that lead to the release
of specific cytokines. In addition, only the macrophage is
activated by strain. The rule dictating macrophage activation
is expressed in Eq. (16).

2.3.5 Scarring

The healing by fibroblasts release TGF that contributes to
production of collagen. Hence, there is a surge of collagen
concentration as a result of healing by fibroblasts. This intro-
duces scar to the tissue, and reduce tissue compliance. In
the present study, we represent this phenomenology where
collagen deposits after healing add risks to damage on epithe-
lial cells. In CA, the site of these collagen deposits are the
same as the location of fibroblast after activation. The effect
of these collagen deposits will stay after specified time, as
shown Table2 as collagen time. The rule of collagen deposits
is as follow,

zt+th
5 (x) =

{
1, at zt2 f (x) = 2
0, otherwise

(22)

CA rules were implemented inMATLABR2016. The sta-
tistical toolbox was used for random algorithms, rand and
samp. The samp is basically a randomized data sampling
algorithm, andMATLABR2016 uses the algorithm provided
by Wong and Easton (1980). The simulation is run for a
domain representing tissue experiencing mechanical strain,
expressed in elastic field grid of CA. The grids contain 100
by 100 cells, where a biologic epithelial cell size is around
1µm. The boundary condition used is periodic boundary

condition, where continuum between two opposite edge of
the boundary is imposed as,

Zt
∣∣
Γ1(x) = Zt

∣∣
Γ2(x) (23)

where Γ1 and Γ2 are set of two opposing boundaries.

3 Results and discussion

FSI is conducted on a 3D model of alveolar sac and three
different values of TV (TV = 200, 500 and 1000mL).
Strain distributions are post-processed to investigate regions
with highest concentration of strain. Next, strain versus time
curves in different locations of the model are post-processed
to evaluate effect of tidal volume on strain level changes dur-
ing the breathing cycle. Then, maximum strain values from
FSI are employed in the CA model. The CA model is imple-
mentedusingMATLABR2016A, and three commonly found
strain distributions (uniform, middle trough and sinusoidal
bumps strain distributions) are taken into consideration to
explore the influence of different TVs in mechanical venti-
lation on cell population dynamics.

3.1 Strain distribution

Strain distributions are presented in Fig. 4 for different tidal
volumevalues.As can be seen, higher strain is observed at the
inlet area and increasing tidal volume leads to higher strain
levels in the alveolar model. Initially, the alveolar model
shows a slight contraction but the alveolar duct shows an
expansion to let air enter into the alveolar region. Then, at
the end of inspiration time, the alveolar volume will be filled
with air and this process would again happen in the reverse
direction, inlet duct contractswhile alveolar region is expand-
ing until air leaves the alveolar region and then the alveolar
would return back to the nondeformed shape. This proce-
dure is regarded as nonuniform deformation of alveolar wall
(Gefen et al. 1999).

Three different types of strain distribution in alveolar
region. As can be observed, strain in the center of alveoli is
distributed uniformly but in each alveolus, it is concentrated
in the connection of the alveolus to the neighbor alveoli, as
compared to the center of the alveolus itself which is termed
middle through strain distribution in this study. In addition,
another strain distribution, defined as sinusoidal bumps, is
distinguished on the connection edge of the alveoli where it
is approximately distributed in symmetric formwith a higher
strain distribution. These three types of strain distributions
are presented in Fig. 5.
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Fig. 4 Strain distribution at inhalation (t = 0.2 s) and exhalation time (t = 0.5, 0.8 and 2s) for TV = 200, 500and1000mL

3.2 Strain level at various regions in alveolar sacs

Strain versus time curves for different TVs are plotted at
different locations in alveolar region and as it is illustrated
in Fig. 6, max equivalent elastic strain value for tidal volume
equal 500mL is approximately 2 times bigger than strain
value for 200mL and 2 times smaller than strain value for
1000mL. Also, it can be seen that middle layers in alveolar
region represent higher strain level in comparison to upper
and lower layers.

3.3 Sensitivity analysis

Sensitivity of strain level to changes in alveolar tissue’s
mechanical properties and wall thickness is examined. For
this aim, shear and bulk modulus values are altered by 10
and 25% (reduction and increase compare to initial values).
Sensitivity analyses is also conducted by reconstructing 10
times thicker and thinner alveolar wall thickness compare to
initial model. As it was discussed earlier, middle layer would
sustain higher strain level in alveolar model. Therefore, FSI
results for different case studies for morphological changes
with TV = 500 are compared at middle layer within alveo-
lar model. Results presented that decreasing shear and bulk

modulus would lead to higher strain level within the alve-
olar model and in contrast, increasing discussed parameters
reduce strain level in the model. It is observed that increasing
and decreasing by 10 and 25% would correspondingly lead
to 10 and 30% change in strain level and 10 times increased
and decreased alveolar wall thickness would subsequently
increase and reduce strain level by almost 10 times. Strain
distributions, by contrast, are same for all case studies. In
following results from FSI are imported in CA model.

3.4 Strain-induced inflammation simulation

The developed CA model was used to study the effect of
different tidal volumes in mechanical ventilation on the cell
population dynamics. Based on FSI analysis at the alveolar
region, three commonly found strain distributions are taken
into consideration for the cell population dynamics as shown
in Fig. 5. Since we are interested in the percentage of para-
metric change, the simulation is carried out with normalized
variables. Hence, the magnitude of strain is normalized with
respect to the highest value of the three schemes as shown in
Table5. In addition, the time scale of cell population dynam-
ics is remarkably higher than typically found in breathing
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Fig. 5 Typical distribution of
strain. The color bar on the
right shows the magnitude
correspond to the color plot.
a Uniform, b middle trough and
c sinusoidal bumps

Fig. 6 Strain level alternation from location 1 to location 3 for different TVs

Table 5 Three schemes for CA simulation of cell population dynamics

TV (mL) Real value Normalization

200 2.4E−05 0.21

500 5.99E−05 0.52

1000 1.15E−04 1.00

cycle. Hence the justification is made for taking the ampli-
tude of strain during the breathing cycle for this CA model.

3.4.1 Case study I (uniform strain)

FSI results suggest the cell population in the tissue experi-
ence some uniform level of strain. The amplitudes of strain

as shown in Table5 were applied for the three strain distri-
butions. Figure7 shows numbers of dead epithelial cells and
collagen deposited according to different level of strain. The
numbers of dead epithelial cells can be seen as a measure
of damage done in epithelium. Figure7 also shows differ-
ent trend of damage occurring on the tissue. Figure7a shows
a spike that last until approximately 600 simulation time,
followed by smaller spike of damage. In Fig. 7b, the dam-
age increased rapidly and the increasing trend stopped at
approximately 100 simulation time. In Fig. 7c, the damage
keeps increasing until 1000 simulation time. Notice that the
CA grid has 10,000 cells in total, but the damage in case
of Fig. 7c did not spread to the whole grid. The numbers of
collagen deposits follow the trend of epithelium damage in
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Fig. 7 Cell population dynamics corresponding to case study I; numbers of dead epithelial cells on, a norm. strain = 0.21, b norm. strain = 0.52,
c norm. strain = 1, and d numbers of collagen deposits

Fig. 7a, b. However, in the case of Fig. 7c, the numbers of
collagen deposits increase and tend to slow down at approx-
imately 600 simulation time.

Figure8a, b shows the spatial distribution of epithelium
damage for the case shown in Fig. 7a at 300 and 550 simula-
tion times, respectively. The damage in Fig. 8a corresponds
to the spike damage in Fig. 7a, and it shows that the damage
appeared in random locations as three patches on the tis-
sue represented by CA grid. After 550 simulation time, the
patches of damage reduced into only one of the previous three
patches. Figure8c shows the distribution of fibroblasts (yel-
low dots) and collagen deposits (dark dots). The fibroblasts
are clearly distributed around the damage patches. Figure8d
shows the comparison of the peak damage occurring for the
three strainmagnitudes considered in this study. The increase
in the peaks shows the exponential rise in damaged cells as
the strain was increased.

Figure9 shows the snapshots of damage distribution for
the case illustrated in Fig. 7b. The damage in this case tended
to be steady after approximately 100 simulation times. In
Fig. 9a, the damage appeared at random locations as patches
with an intact tissue after 180 simulation times. After 900
simulation times the patches shrank, but the damage was
distributed more spatially with smaller patches. However, as
can be seen in Fig. 7b, the damage seems to be steady.

3.4.2 Case study II (middle trough)

In this case, the peak strain surrounds an area of low strain.
Figure10 shows the dynamics of cell population under dif-
ferent strain amplitudes, which are the same as described
in a previous section. Figure10a shows two clear spikes
of epithelium damage during the simulation time. Fig-
ure10(b) shows peak damage that lasted longer than the
previous one; this one is similar to the case in Fig. 7a. The
case in Fig. 10c shows the tendency of constant increase
in damage over time. As before, the collagen deposits in
Fig. 10b showed a similar trend to epithelium damage. How-
ever, there is no collagen deposit in Fig. 10a, and collagen
deposits in the last case as shown in Fig. 10c decreased
and showed a tendency to stabilize after approximately 600
simulation times, despite the increasing damage to the epithe-
lium

Figures11a, b shows spatial distributions of epithelium
damage of the case shown in Fig. 10a. Figure11a corresponds
to the first spike in Fig. 10a at 67 simulation time, andFig. 11b
corresponds to the second spike at 444 simulation times.
There is only one patch of damage with minimum numbers
of dead cells. The spikes in Fig. 10a apparently correspond
to two different locations of patches of damage. The location
of patches, as should be expected, tends to appear in regions
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Fig. 8 a Epithelial cells damaged after 300 simulation times, yellow-colored grid denotes the portion of tissue with dead epithelial cells, b epithelial
cells damaged after 550 simulation times, c fibroblasts (white dots) and collagen deposits (dark dots) and d peak damage to epithelium

Fig. 9 Snapshots of case with norm strain = 0.52, a epithelial cells damages after 180 simulation time, yellow-colored grid denotes the portion of
tissue with dead epithelial cells and b epithelial cells damages after 900 simulation time

close the amplitude of strain. Figure11c shows fibroblasts
distribution corresponding to the case shown in Fig. 10a at
67 simulation times (coinciding with the first spike). As can
be seen, the fibroblasts are not concentrated in one place, and
are spread out on the whole CA grid. Figure11d shows the
peak damage in the epithelium, aswell as the exponential rise
in damage as strain increased, similar to the previous case of
uniform strain.

3.4.3 Case study III (sinusoidal bumps)

Figure12 shows epithelium cells population dynamics under
the strain distribution as shown in Fig. 5c. As shown in
Fig. 12a, there is clearly no damage to the epithelium,
despite some degree of damage that occurred in the pre-
vious case with the same strain amplitude. In Fig. 12b,
we can see that the damage increased rapidly after 200
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Fig. 10 Cell population
dynamics corresponding to case
study II ; numbers of dead
epithelial cells on,
a norm. strain = 0.21,
b norm. strain = 0.52,
c norm. strain = 1, and
d numbers of collagen deposits

Fig. 11 a Epithelial cells
damaged after 67 simulation
times, yellow-colored grid
denotes the portion of tissue
with dead epithelial cells, b
epithelial cells damaged after
444 simulation times, c
fibroblasts (white dots) and d
peak damage to epithelium

simulation times, but decreased after a short period of
time. However, the damage did not vanish completely
and some level of damage remained until the end of
simulation time. Figure12c shows population dynamics
under the highest strain amplitude. The damage increased
since the epithelium is subjected to the strain, and stabi-
lized after approximately 500 simulation times. Figure12d
shows peak damage for this case, and it showed a simi-
lar exponential tendency as discussed in the previous two
cases.

4 Discussion

FSI analysis is conducted on a symmetric alveolar sac model
for three different tidal volume values. Strain distributions
in the alveolar region were analyzed, and it was observed
that the connection points of the alveoli undergo higher
strain during the breathing cycle.While nonsymmetricmodel
would generate more variations of strain distribution that
may present nonuniform distribution similar to the consid-
ered symmetric alveolar sacmodel in this study.Additionally,
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Fig. 12 Cell population dynamics corresponding to case study III; numbers of dead epithelial cells on, a norm. strain = 0.21, b norm.
strain = 0.52, c norm. strain = 1, and d peak damage to epithelium

strain-time curves plotted for different tidal volumes at three
different locations through the model showed that the middle
layers would tolerate a higher level of strain in compari-
son to the upper and lower layers considered in the model.
Sensitivity analysis shows that strain level in alveolar region
is highly sensitive to alveolar sacs morphological changes
in pulmonary acinar region, but it would not considerably
change strain distribution. Three different strain distributions
derived from post-processed FSI results were implemented
in the CA model to investigate influence of tidal volume and
strain level on cell population dynamics under theMV condi-
tion. Thefirst case considered in theCAmodel clearly depicts
that while the strain is low enough, the tissue is still able to
sustain healing capacity bymitosis and fibroblasts eventually
mitigate the damage. Increasing the TV (and hence, increas-
ing strain), leads to reduction of healing capacity. Generally,
the tissue is able to mitigate damage, but some amount of
damage still persists. Furthermore, the simulations show that
the strain distributions significantly impact the population
dynamics of epithelial cells. It is interesting to note that the
epithelium under the same amplitude of strain demonstrates
specific population dynamics. This may be caused by the
chances of macrophages exposed to strains of the tissue. The
initial locations of macrophages are initially determined by
uniform RNG. Although the macrophages are initially ran-
domly distributed on the grid (and expectedly statistically
uniform as the result of uniform RNG), it can be said that
the strain distributions pose less risk of initially triggering
inflammation by macrophages (that is, the release of TNF).

Increasing the strain amplitude will affect the chances of
macrophages releasing TNF. The interplay between strain
amplitude and distribution also influences the healing capac-
ity of the tissue. The tissue and its constituents will still able
to reduce or withhold damage when the strain amplitude is
low enough. However, when the strain distribution lowers
the chance of the macrophages being exposed to strain, the
tissue is still able to stop the rate of damage, although not
reduce it. Snapshots of the spatial distribution of damage on
the epithelium provide more insights into the inflammation.
Generally, damage appears randomly as patches and these
patches are reduced in number gradually by the healing effect
which is influenced by fibroblasts (along with mitosis). As
soon as one or a few fibroblasts are found in the location of
a damage patch, the cell signaling by TNF will attract more
fibroblasts that wander randomly on the grid. This prevents
the damage from spreading and localizing. However, in the
case of steady damage withholds, the damage at first appears
as patches. Next, the patches are reduced by healing. How-
ever, more damage appears on different locations, leading to
smaller and more distributed damage. In this case, the tis-
sue constituents are not able to localize damages. Hence, the
quantitative charts would not reveal the whole dynamics of
the damage. Since, fibroblasts are cellswithmotility, andmay
not arrive at the damage locations, in the case which dam-
age patch appeared after 67 simulation times in a region with
higher strain amplitude. This patch quickly healed by mito-
sis as the fibroblasts which can be seen did not surround the
location. After 444 simulation times, another spike appeared,
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Table 6 Qualitative behavior of the alveolar tissue CA model when
being subjected to strain at different level

Cases Inflammation

Strain: 0.21 Strain: 0.52 Strain: 1.00

1: Uniform Suppressed Steady Rising

2: Middle Trough Spikes Suppressed Steady

3: Sinusoidal Nonexistent Suppressed Steady

corresponding to another patch that appeared in a different
location. From these snapshots, it can be inferred that as
long as the damage patches can be healed quickly, the tis-
sue and its constituents will still able to revert back to intact
tissue. Peak damage (assumed as the number of dead cells)
in all the three cases in this study showed an exponential
rise as strain amplitude increased, despite strain distribution.
As expected, the uniform strain distribution had the highest
damage. Results from the other two strain distributions sug-
gested that they led to similar amounts of peak damage. It is
well known that tissue integrity is influenced by the popula-
tion of the cells. The quantitative comparison of the number
of dead cells presented in this study can be used as a justifi-
cation for analysis at the organ level. For instance, based on
the results from this study, one could suggest an exponential
function to find the changes in mechanical properties of tis-
sue as a result of increasing TV in MV. It is to be noted that
the collagen parameters only contribute to damaging airway
tissue. It is also implied that collagen accumulation may con-
tribute to increased airway impedance (Estrada and Chesler
2009), which can be reflected by alteration of airway tissue
elasticity in the organ model. This will be included in future
works. It must be acknowledged that the CAmodel presented
needs experimental tuning, since it has only been compared
qualitatively. However, the CAmodel has also been shown to
address a variety of dynamic behavior, based on the abstrac-
tion of interaction of cells in tissue. Thus, the model has
provided a framework for experimental tuning and paramet-
ric matching tools for studying the complex dynamics of
inflammation.

Table6 summarizes the qualitative behavior captured in
the CA model based on the quantitative results. In this table,
the inflammation score is defined as the number of dead
epithelial cells. When inflammation rises and slows down
after some time steps (such as in Case I with uniform 0.21
strain magnitude), the behavior is called suppressed. When
the healing can maintain inflammation, it is called steady.
And when healing function breaks down, it is termed ris-
ing. When inflammation is suppressed quickly by healing
function, it is termed spikes. The summary clarifies that the
immune response differs when the strain distribution is not
uniform and strain distributionmay play a role in the immune
system overall. However, small or little bumps of strain on

the tissue apparently have minimal effect on the qualitative
behavior of the immune response.

5 Conclusion

In this study, FSI analysis was employed to study strain
levels in the alveolar region. This was followed by imple-
mentation of a CA model for strain-induced inflammation.
It was observed that strain is highly concentrated in the inlet
area. In addition, strain versus time curves in different loca-
tions through the alveolar model showed that middle layers
in the alveolar region underwent higher level of strain dur-
ing breathing in the MV condition. Three different types of
strain distributions in the alveolar region were analyzed; uni-
form, middle through and sinusoidal bumps. Since the time
scale of deformation for the alveolar model is largely dif-
ferent from the deformation at the tissue level, the results
from the alveolar model were abstracted into the CA model.
This information was used to study population dynamics of
cell constituents of tissue under MV for different strain lev-
els associated with different TVs: 200, 500 and 1000mL.
The CA model results suggest that strain distribution plays a
significant role in population dynamics. They also implied
that interplay between strain magnitude and distribution
determines healing effectiveness. Lastly, results suggest that
increasing TV leads to an exponential rise in damage on tis-
sue by inflammation.
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