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Abstract Computational models of tumors have the poten-
tial to connect observations made on the cellular and the
tissue scales. With cellular scale models, each cell can be
treated as a discrete entity, while tissue scale models typi-
cally represent tumors as a continuum. Though the discrete
approach often enables a more mechanistic and biologically
driven description of cellular behavior, it is often compu-
tationally intractable on the tissue scale. Here, we adapt
peridynamics, a theoretical and computational approach
designed to unify the mechanics of discrete and continuous
media, for the growth of biological materials. The result is
a computational model for tumor growth that can represent
either individual cells or the tissue as awhole.We take advan-
tage of the flexibility provided by the peridynamic framework
to implement a cell divisionmechanism,motivated by the fact
that cell division is the mechanism driving tumor growth.
This paper provides a general framework for implementing
a new tumor growth modeling technique.
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1 Introduction

Neoplasms, commonly referred to as tumors, are defined as
abnormal growth of tissue (Deisboeck et al. 2011). Tumor
growth is problematic because tumors can disrupt organ
function and infiltrate and invade healthy tissue (Gatenby
and Gawlinski 1996). Tumor growth is also the precursor
for metastasis, the spread of cancer from the primary tumor
location to secondary locations, where patient outcomes sig-
nificantly worsen (Poste and Fidler 1980). On the cellular
scale, tumor growth is driven bymitosis, the process bywhich
a single-parent cell divides into two daughter cells (Bel-
lomo et al. 2008). This differs from other forms of biological
growth, such as the progression of cardiovascular disease,
which are driven by changes in cell size and shape (Kuhl
et al. 2006). Despite significant scientific interest and study,
tumor growth is still far from fully understood (Wang et al.
2015). A better understanding of tumor growth would aid in
predictive modeling of tumor progression and contribute to
more robust clinical decision making, and the development
of new therapies (Clatz et al. 2005). The focus of this paper
is on developing a computational model to aid in bridging
the gap between the cellular and tissue scale.

In computational modeling of tumor growth, there is an
inherent trade-off between continuous and discrete
approaches. Continuum modeling is typically used to under-
stand tumors on the tissue scale, where tumors are treated
as either a volumetrically growing solid (Ambrosi and Mol-
lica 2002) or as a constituent in a mixture theory approach
(Byrne 2003; Preziosi and Tosin 2008). Discrete modeling,
on the other hand, views tumors as a collection of cellular or
subcellular components (Drasdo et al. 2007; Sandersius and
Newman 2008). Discrete modeling, which is often favored
by the biophysics community (Norton et al. 2010), allows
a mechanistic description of tumor cell growth and divi-
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sion, but is computationally intractable on the tissue scale,
which severely limits potential applications in the clinical
setting such as modeling the macroscale mechanical interac-
tions between tumors and healthy tissue or organs (Frieboes
et al. 2007; Lowengrub et al. 2010). To capture the benefits
of both discrete and continuum modeling, hybrid modeling
approaches have been proposed (Stolarska et al. 2009). For
example, one approach treats the active cells on the perime-
ter of a tumor as discrete particles and the necrotic cells
at the center of the tumor as a continuum captured by a
finite element mesh (Kim et al. 2007). In addition, there
has been significant effort to formulate continuum mod-
els that phenomenologically reflect processes occurring on
the cellular scale (Ambrosi et al. 2012; Araujo and McEl-
wain 2004). However, current approaches are imperfect.
Therefore, developing tumor models that can overcome the
trade-off between the continuous and discrete approaches
remains an active area of research (Bellomoet al. 2008;Byrne
and Drasdo 2008). Here, we present a new approach to mod-
eling tumor growth. Our aim is to capture the behavior of
tumor cells as mechanistically as possible while creating a
framework that can ultimately be implemented on the tissue
scale. The starting point for our model is peridynamics.

Peridynamics, a framework that is designed to unify the
mechanics of discrete and continuous media, is a technique
originally developed for fracture mechanics applications
(Silling and Lehoucq 2010). Rather than using partial dif-
ferential equations to formulate the equations of motion,
as is done in classical continuum mechanics, peridynam-
ics uses integral equations which exist on crack surfaces
and other singularities (Silling 2000; Silling et al. 2007).
The first paper introducing peridynamics was published
in 2000 and presents peridynamics as a methodology for
modeling discontinuities and long range forces using a con-
stitutive relation based on pair-wise interactions between
particles (Silling 2000). Since then, peridynamic theory has
been extended to include more complex constitutive models
(Silling et al. 2007; Warren et al. 2009), developed numeri-
cally (Bobaru andHa 2011), and applied tomodel a variety of
engineered systems (Kilic and Madenci 2010b). Peridynam-
ics is typically implemented as a mesh-free method where
a block of material is discretized into an array of nodes that
each interact with their neighbors (Silling and Askari 2005).
Here, we will extend peridynamics to capture volumetric
growth and cellular growthmechanisms such as cell division.
In our implementation, a node can represent either a single
cell or a collection of cells. We use the node as a single-cell
interpretation, illustrated in Fig. 1, to guide our formulation
of a cell divisionmechanism. However, it is important to note
that while that interpretation can be helpful, the framework
we propose here is not limited to it.

The remainder of the paper is organized as follows.
Section 2 provides a general background on dual-horizon

(a)

(b)

Fig. 1 Fundamentally, tumors are composed of biological cells and
tumor growth is driven by cell division. Schematic (a) shows a tumor
growing around a blood vessel, and Schematic (b) shows an idealized
discrete approximation of the cells in a tumor. In this paper, we present
a framework for modeling tumor growth that approximates tumors with
the idealization shown in (b)

peridynamics. Section 3 discusses the implementation of
volumetric biological growth effects using the dual-horizon
peridynamic framework. Section 4 introduces cellular scale
growth mechanisms, specifically a cell division mechanism,
to the peridynamic framework. Section 5 demonstrates our
numerical implementation of peridynamics with volumetric
growth and a cell division mechanism, first by comparing
our results to two benchmark problems, second by using our
framework to examine macroscale isotropic and anisotropic
growth as an emergent property of cell division behavior, and
third by showing an example of how our framework can be
used to study tumor morphogenesis. We conclude the paper
in Sect. 6.

2 Background: dual-horizon peridynamics

Peridynamics is a formulation that writes the classical bal-
ance equations as integrals rather than partial differential
equations. In a conventional peridynamic formulation, a
given point x interacts with other points within its horizon
Hx where Hx is a line (1D), circle (2D), or sphere (3D),
defined by radius δx , as illustrated in Fig. 2. The difference
between the conventional formulation of peridynamics and
dual-horizon peridynamics is that dual-horizon peridynamics
allows non-uniformity in horizon size across different points
(Ren et al. 2016). Dual-horizon peridynamics is equipped to
handle the case where some point x is within the horizon
of x′, but x′ is not within the horizon of x. Implementing
variable horizon size is an important feature for adaptive
refinement and multi-scale modeling (Bobaru et al. 2009;
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(a)

(b)

(d) (e)

(c)

Fig. 2 This figure illustrates the terminology used in dual-horizon peri-
dynamics. Schematic (a) shows domainΩ0 transformed toΩ t , points x
and x′ transformed to y and y′ and bond vector ξ transformed to ξ +η;
Schematic (b) defines horizon Hx as all points within distance δ of x;
Schematic (c) shows the peridynamic force densities f that arise when

x′ is in the horizonHx and dual horizonH′
x of x; Schematic (d) shows

the force densities that arise when x′ is in Hx but not H′
x ; Schematic

(e) shows the force densities that arise when x′ is not in Hx but is in
H′

x . The corresponding formal definitions are given in Sect. 2.1

Bobaru andHa 2011).And, variable horizon size is a required
feature for implementing the cellular scale growth mecha-
nisms presented in Sect. 4 of this paper.

This section will begin by introducing the kinematics and
terminology of dual-horizon peridynamics (which are nearly
identical to that of conventional peridynamics) and subse-
quently present the balance laws and the ordinary state-based
constitutive equation. It is worth noting that the notation used
to present the peridynamic equations is not consistent across
the literature. We base our notation on the notation for dual-
horizon peridynamics (Ren et al. 2016) and recommended
notation for peridynamic software implementation (Little-
wood 2015) and use the symbol “∗” in Sect. 3 to indicate the
terms that we introduce to capture the effects of growth.

2.1 Kinematics and terminology

In peridynamic theory, the equation of motion is formulated
as an integral of interaction forces between points on the body
Ω . To formulate the balance of linear momentum, presented
in Sect. 2.2, it is first necessary to define parameters. Here, we
introduce the terminology required to define the interaction
between material points in the initial configuration Ω0 as x
and x′, illustrated in Fig. 2a. The bond vector between points
x and x′ in the initial configuration is defined by the term
ξ = x′ − x. In the discrete setting, suitable for numerical
implementation, point x is referred to as node j, point x′ is
referred to as node k, and the bond between them is defined
as ξ jk = xk − xj. And, as illustrated in Fig. 2a, the displace-
ment vector u(x, t) and position vector y(x, t) = x+u(x, t)

define the current configuration. The relative displacement
of a bond is defined as η = u′ − u, described in the dis-
crete setting as ηjk = uk − uj. Finally, in peridynamics, it is
typical to use state notation (Silling et al. 2007). State nota-
tion defines a state of order m as a function A〈·〉 that maps
the vector in angle brackets 〈·〉 to a tensor of order m. For
example, the relative position of bond ξ can be written as
y〈ξ 〉 = y(x′, t) − y(x, t) = ξ + η. In this paper, states are
writtenwith an underline, and angle brackets are used to indi-
cate the quantity which the state function is acting on. State
notation is convenient in defining the peridynamic constitu-
tive relations and is amenable to numerical implementation.

Fundamental to peridynamics is the concept of horizon.
The bonds between point x and the points inside the horizon
of x are assumed to be existent and non-negligible. The hori-
zon of point x is defined geometrically as all points x′ such
that x′ ∈ Hx , where Hx is

Hx = {x′ | ||x′ − x|| < δx} (1)

with δx as the parameter that dictates horizon size. Physi-
cally, Hx is defined as the domain where any particle will
experience force exerted by x. The concept of horizon Hx

was introduced for conventional peridynamics, dual-horizon
peridynamics inherits this concept and expands on it (Ren
et al. 2016). In dual-horizon peridynamics, the dual horizon
H′

x is defined as the union of points whose horizons include
x, written as

H′
x = {x′ | x ∈ Hx′ } . (2)
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For all points x withinHx′ , x′ acts on x. And, unlike the hori-
zon which has a circular (2D) or spherical (3D) shape, the
dual horizon has an arbitrary shape. If the horizon size δ does
not vary across points, then Hx = H′

x and the dual-horizon
peridynamics formulation will be identical to that of conven-
tional peridynamics. Moving forward, we will define force
density and the equation of motion in the context of dual-
horizon peridynamics with the knowledge that it reduces to
conventional peridynamics if horizon size is identical for all
points.

In dual-horizon peridynamics, the force between points x
and x′ is defined in two distinct steps, first using the dual
horizon and then using the horizon. We define force density
vector f xx′(η, ξ) as the force per volume acting on particle
x due to particle x′. This implies that x is the location of the
force and x′ is the source of the force, illustrated in Fig. 2c,
e. Likewise, f x′x(−η,−ξ) is the force density vector acting
on particle x′ due to particle x, illustrated in Fig. 2c, d. Each
force density is accompanied by a reaction force density,
i.e., f xx′ is a direct force density acting on x and − f xx′ is a
reaction force density acting on x′. The direct force density
at x is computed from points in the dual horizon of x, while
the reaction force density at x is computed from points in the
horizon of x. The net force density acting on point x due to
bond x-x′ is a sum of the direct force density and reaction
force density written as

f xx′(η, ξ) − f x′x(−η,−ξ) . (3)

Similarly, the net force density acting on a point x′ due to
bond x-x′ is

f x′x(−η,−ξ) − f xx′(η, ξ) . (4)

When x is outside the horizon of x′ (x′ /∈ H′
x), as illus-

trated in Fig. 2d, direct force f xx′ = 0 and corresponding
reaction force − f xx′ = 0. Likewise, in the reverse scenario
illustrated in Fig. 2e where x /∈ H′

x′ f x′x = 0 correspond-
ing reaction force − f x′x = 0. By differentiating between
the contributions from H′

x and Hx (and subsequently direct
and reaction forces) the antisymmetry of net force density is
preserved even in the case of variable horizon size.

2.2 Balance of linear momentum

The defining feature of peridynamics is that the classical
balance equations are formulated as integrals rather than par-
tial differential equations (Silling 2000). In the peridynamic
version of the balance of linear momentum, inertial force,
body force, and internal force terms at point x and time t are
equated as

ρ ü(x, t) =
∫
x′∈H′

x

f xx′(η, ξ) dVx′

−
∫
x′∈Hx

f x′x(−η,−ξ) dVx′ + b(x, t) (5)

where ρ is density, ü is acceleration, and b is body force (Ren
et al. 2016). Internal force is computed as a function of the
force density vectors defined in Sect. 2.1. Integrating over
the dual horizon H′

x contributes the direct force term acting
on point x, while integrating over the horizonHx contributes
the reaction force term. In the conventional version of peri-
dynamics, where horizon size is uniform,H′

x = Hx and the
expression for internal force can be written as a single inte-
gral. The discrete form of the balance of linear momentum
is written as

ρ ü(xj, t) =
∑
k∈H′

j

f jk(ηjk, ξ jk)ΔVk

−
∑
k∈Hj

f kj(−ηjk,−ξ jk)ΔVk + b(xj, t) (6)

where the integral in Eq. (5) is simply replaced by a sum-
mation. In the numerical implementation of dual-horizon
peridynamics, this equation can be assembled easily by loop-
ing through the horizon of each node and subsequently
inferring each node’s dual horizon (Ren et al. 2016). For
every node k inHj, calculate f kj and add the term− f kjΔVk
to the horizon summation term of node j and add the term
f kjΔVj to the dual horizon H′

k summation term of node
k. With this procedure, the dual horizon is never computed
explicitly.

2.3 Constitutive equations

The first version of peridynamics, bond-based peridynam-
ics, treats bonds as independent springs (Silling 2000). In
bond-based peridynamics, Poisson’s ratio is limited to 1/3 in
two dimensions and 1/4 in three dimensions which makes
it unsuitable for modeling many engineering materials. In
response to the limitations of bond-based peridynamics, ordi-
nary state-based and non-ordinary state-based peridynamics
were introduced (Silling et al. 2007). The qualification “state-
based” comes from the fact that the constitutive law utilizes
the state notation introduced in Sect. 2.1. In state-based
peridynamics, bond force is a function of the collective
deformation of all bonds that act on the same points as
the bond in question. In state-based peridynamics, Poisson’s
ratio is not fixed. When modeling soft biological tissue, it
is typical to assume incompressibility or near incompress-
ibility (ν ≈ 0.5); therefore, we do not present the equations
for bond-based peridynamics in this paper. The maximum
flexibility in constitutive modeling is introduced with the
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non-ordinary state-based peridynamics approach (Warren
et al. 2009); however, an adaptation of non-ordinary state-
based peridynamics for the cell division aspect of biological
growth discussed in Sect. 4 is beyond the scope of this work.
In this section, we describe the constitutive equations for
ordinary state-based peridynamics that will be used for the
remainder of the paper.

In dual-horizon peridynamics, a distinction is made
between forces that arise at point x from the horizon and
forces that arise at point x from the dual horizon. In this sec-
tion, we define the constitutive relation based on bond x− x′
assuming that x is in the dual horizon of x′ (x′ is in the hori-
zon of x). This means that for a given bond x− x′ we present
the force density corresponding to the action force applied at
point x′ due to x and the subsequent reaction force applied at
point x. The distinction between which point is x and which
point is x′ is arbitrary; therefore, in computing force density
at all points x, bond x− x′ will eventually be treated as bond
x′ − x. The constitutive equations are presented this way
because it is convenient for numerical implementation.

Fundamentally, peridynamics is a non-local theory mean-
ing that non-adjacent points interact. The degree to which
non-local forces come into play is controlled by two parame-
ters, horizon size δ and influence functionω〈ξ 〉. The influence
function can be chosen to weight the effect of certain bonds
more heavily or it can be set to a constant. For example, ω〈ξ 〉
can be equal to

ω〈ξ 〉 = exp

(
−||ξ ||2

δ2

)
or ω〈ξ 〉 = 1 (7)

or another user-defined function (Ren et al. 2016; Littlewood
2015). Given a chosen influence function, we compute the
influence function weighted volume of the horizon at point
x, mx , by integrating over Hx as

mx =
∫
Hx

ω〈ξ〉 ξ · ξ dVξ (8)

which is written discretely at node j as

mj =
∑
k∈Hj

ω〈ξ jk〉 ξ jk · ξ jk ΔVk (9)

with ΔVk representing the nodal volume associated with the
node located at node k. In 2D, some constant thickness h is
assumed and ΔV = hΔA. In addition, we define extension
state e〈ξ〉 as

e〈ξ〉 = ||ξ + η|| − ||ξ || (10)

based on the difference in separation between bonds in the
deformed and reference configurations. Using mx defined at

point x and e〈ξ 〉 defined for each bond associated with x, we
compute the dilation at x, θx as

θx = n

mx

∫
Hx

ω〈ξ 〉 ||ξ || e〈ξ〉 dVξ (11)

where n is the dimension number, n ∈ {2, 3}. This equation
is discretized at node j as

θj = n

mj

∑
k∈Hj

ω〈ξ jk〉 ||ξ jk|| e〈ξ jk〉ΔVk . (12)

Then, the deviatoric extension state for bond ξ from the per-
spective of point x can be computed as

ed〈ξ 〉 = e〈ξ 〉 − θx ||ξ ||
n

. (13)

Using these terms, the scalar force state that defines the linear
elastic ordinary state-based constitutive law for each bond ξ

from the perspective of point x is written as

t x′x = n κ θx

mx
ω〈ξ 〉 ||ξ || + n (n + 2) μ

mx
ω〈ξ 〉 ed〈ξ 〉 (14)

where κ and μ are the Lamé parameters bulk modulus and
shear modulus, respectively (Littlewood 2015). Given the
scalar force state t , the force density vectors corresponding
with each bond are computed based on the direction of the
deformed bond vector as

f x′x(η, ξ) = t x′x
−η − ξ

||η + ξ || (15)

which is the action force applied at point x′, and

− f x′x(η, ξ) = t x′x
η + ξ

||η + ξ || (16)

which is the reaction force applied at point x. To compute the
total force at each node, required for solving Eq. (6), force
density vectors are summed over all bonds in the horizon.

2.4 Bond breaking

Although the focus of this paper is not on fracture, we first
describe bondbreaking as is typical for solving a peridynamic
fracture problem. For modeling bond breaking to simulate
fracture, one approach is to compute the work required to
break a single bond as a function of bond stretch,

s = ||ξ + η|| − ||ξ ||
||ξ || (17)

compute the total amount of work required to generate a
fracture surface, equalize the total amount of work with the
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(a) (b) (c)

Fig. 3 Growth is modeled as an increase in nodal radius which causes
nodes to shift to a new equilibrium position. Schematic (a) shows
nodes at equilibrium prior to applied growth; Schematic (b) shows the
non-equilibrium state immediately after applied growth; Schematic (c)

shows the new, growth induced, equilibrium position. This process is
driven by step (i) where growth is applied, and step (ii) where the peri-
dynamic framework is used to reach a new equilibrium position

strain energy release rate, and solve for critical bond stretch
s0 (Silling and Lehoucq 2010). The value of s0 will be a
function of material and discretization defining parameters.

Given some value for critical bond stretch s0, we define
history variable γ where

γ (t, ξ) =
{
1 if s(t ′, ξ) < s0 for all 0 <= t ′ <= t

0 otherwise .
(18)

This equation states that once bonds break they do not re-
form. Broken bonds enter the constitutive relationship by
redefining the influence functionω as a function of γ , written
as

ω〈ξ 〉 := γω〈ξ 〉 . (19)

Section 3.2 will discuss bond breaking in the context of bio-
logical materials.

3 Modeling biological materials and volumetric
growth with dual-horizon peridynamics

As is typical for modeling biological growth, we focus on the
quasi-static response (Ambrosi et al. 2011). In the absence
of inertial and body forces, the balance of linear momentum
at point x can be expressed as,

0 =
∫
x′∈H′

x

f xx′(η, ξ) dVx′

−
∫
x′∈Hx

f x′x(−η,−ξ) dVx′ (20)

and written in discrete form at node j as

0 =
∑
k∈H′

j

f jk(ηjk, ξ jk)ΔVk

−
∑
k∈Hj

f kj(−ηjk,−ξ jk)ΔVk. (21)

This equation is solved numerically using either implicit
pseudo time integration at every load step (Mitchell 2011)

or explicit integration with adaptive dynamic relaxation at
every load step (Kilic and Madenci 2010a). In a relatively
straightforward manner, isotropic volumetric growth can be
captured by including a growth term g in the constitutive
equation analogous to the term αΔT in a one-way coupled
thermomechanical formulation (Kilic and Madenci 2010b).
As illustrated in Fig. 3, we implement growth as a two step
process: first the volume associatedwith each node increases,
then the peridynamic balance equations are used to determine
the newmechanical equilibrium configuration of the system.
In Sect. 3.1, we introduce a constitutive law that includes
growth. Unlike Sect. 2, we present equations in their discrete
form only, because the discrete form translates directly to
both the numerical implementation of the peridynamic equa-
tions and the interpretation of the cellular scale mechanisms
presented in Sect. 4. In Sect. 3.2, we discuss the additional
considerations required to deal with both bond breaking and
bond forming and re-forming, because unlike most engineer-
ingmaterials, biologicalmaterials regularly formand re-form
internal bonds.

3.1 Peridynamics constitutive relation including
volumetric growth

We introduce a growth parameter g into the constitutive equa-
tion in the discrete setting. We define g at each node as an
increase in node radius, where rg = (1 + g)r0. This means
that when prescribing area growth Ag = (1 + ga)A0 in
dimension n = 2 or volume growth Vg = (1 + gv)V0 in
dimension n = 3 we update g as

g = (1 + ga)
1/2 − 1 in n = 2

g = (1 + gv)
1/3 − 1 in n = 3 .

(22)

Given this definition, g is restricted to g > −1, and g < 0
corresponds physically to shrinkage. In this paper, we intro-
duce g to the constitutive equation through amodified version
of ||ξ ||, noted as ||ξ∗|| and a modified version of ΔVx noted
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as ΔV ∗
x . The parameters ||ξ ||, defined for the bond between

node j and node k, are written as

||ξ∗
jk|| =

(
1 +

∫ 1
0 g( xj + (xk − xj )s ) |xk − xj| ds∫ 1

0 |xk − xj| ds

)

||ξ jk|| (23)

for some positionally dependent growth function g(x).When
nodes are interpreted as individual cells, it often makes sense
to think of g as piece-wise constant function where each cell
is attributed some level of growth. If growth g is homoge-
neous, this equation reduces to

||ξ∗
jk|| = (1 + g)||ξ jk|| . (24)

The equation for ΔV ∗ at node i is defined similarly by inte-
grating position dependent growth over either the volume or
the area associated with node i defined by node radius ri. For
every node, we can define g in spherical coordinates centered
on the node and compute ΔV ∗ as

ΔV ∗
i =

∫ π

0

∫ 2π

0

1

3
sin(φ)

[ ∫ r0

0
(1+gi (r, θ, φ))dr

]3
dθdφ.

(25)

In two dimensions, we instead define g in polar coordinates
and compute ΔV ∗ as

ΔV ∗
i =

∫ 2π

0

1

2

[ ∫ r0

0
(1 + gi (r, θ))dr

]2
dθ . (26)

For a constant level of growth gi at each node i, the equation
for ΔV ∗ is reduced to

ΔV ∗
i = (1 + gi)

nΔVi . (27)

For n = 2, ΔV ∗ represents an area multiplied by some
constant thickness h = 1. In both Sect. 4 and Sect. 5, we
assumehomogeneous growth associatedwith eachnode, thus
Eq. (27) is sufficient.

The influence function can alsobe re-written to account for
growth,ω∗〈ξ∗〉, though if the influence function is defined as
a constant, as in (7), it will remain identical. Growthmodified
stretch is computed as

s∗
jk = || yk − yj|| − ||ξ∗

jk||
||ξ∗

jk||
(28)

where a bondwith identical levels of growth and deformation
will have zero stretch. Here, in addition to introducing ξ∗, we
replace ξ + η with the term yk − yj because this alternative
notation will be helpful in Sect. 3.2. The term γ will enter the

influence function in the manner defined by Eq. (19), and in
Sect. 3.2we provide an alternative definition for γ that allows
for bond breaking and forming. Using these new parameters,
we redefine horizon weighted volume at a node j as m∗

j . The
updated version of Eq. (9) is written as

m∗
j =

∑
k∈Hj

ω∗〈ξ∗
jk〉 ||ξ∗

jk||2 ΔV ∗
k . (29)

The expression for elongation state including growth e∗ mod-
ifies Eq. (10) as

e∗〈ξ∗
jk〉 = || yk − yj|| − ||ξ∗

jk|| (30)

where we again replace ξ jk + ηjk with the expression yk −
yj. Putting these expressions together, the new equation for
dilation θ∗ at node j, an update of Eq. (12), is written as

θ∗
j = n

m∗
j

∑
k∈Hj

ω∗〈ξ∗
jk〉 ||ξ∗

jk|| e∗〈ξ∗
jk〉ΔV ∗

k . (31)

The modified deviatoric extension state ed
∗
, an update of

Eq. (13), is

ed
∗〈ξ∗

jk〉 = e∗〈ξ∗
jk〉 − θ∗

j ||ξ∗
jk||

n
. (32)

Scalar force state t∗ is then expressed as

t∗kj = n κ θ∗
j

m∗
j

ω∗〈ξ∗
jk〉||ξ∗

jk|| + n (n + 2) μ

m∗
j

ω∗〈ξ∗
jk〉 ed∗〈ξ∗

jk〉
(33)

replacing Eq. (14). Finally, the force density vectors includ-
ing growth are computed as

f ∗
kj( yj, yk, ξ

∗
jk) = t∗kj

−( yk − yj)

|| yk − yj||
and

− f ∗
kj( yj, yk, ξ

∗
jk) = t∗kj

( yk − yj)

|| yk − yj||
(34)

and inserted into Eq. (21). Again, ξ jk + ηjk is replaced with
the expression yk − yj.

3.2 Peridynamics with bond breaking, forming and
re-forming

In the typical formulation of peridynamics, Eq. (18) indicates
that once bonds are broken they will not re-form or “heal”.
This is consistent with our understanding of most materials:
fracture is irreversible. However, this is not a requirement of
the peridynamic constitutive relation. In fact, peridynamics
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has been used to model fracture and subsequent healing of
cortical bone through a modified version of Eq. (18) (Deng
et al. 2008). Biological materials can form and re-form bonds
because unlike standard engineering materials, biological
materials are able to adapt to their surroundings through
both passive and active processes (Ambrosi et al. 2012). For
example, inmany types of tissue adjacent cellmembranes are
attached by adhesion links that can either break apart or form
due to external stimuli (Drasdo andHöhme 2005). Therefore,
in addition to introducing growth into the constitutive equa-
tion, we present three additional considerations required for
modeling biological materials and growth with peridynam-
ics. First, bonds can form and re-form. Second, despite the
fact that the material model is linear elastic, bond breaking
and forming can lead to a nonlinear material response. Third,
when nodes are changing their connectivity it may be neces-
sary to redefine stretch and elongation.

3.2.1 Bond forming and re-forming

As stated previously, Eq. (18) prohibits bond healing and new
bond formation. There are many possible different ways to
approach formation of new bonds, herewe present the simple
modification

γjk(t, ξ jk) =
{
1 if sjk(t, ξ jk) < sinter
0 otherwise .

(35)

where a bond automatically exists if two nodes are within
a certain distance defined by interaction stretch sinter. In a
biological context, sinter is some distance below which cells
will develop adhesive connections between them. We also
update Eq. (35) to include growth g consistent with Eq. (28)
as

γ ∗
jk(t, ξ

∗
jk) =

{
1 if s∗

jk(t, ξ
∗
jk) < sinter

0 otherwise
(36)

where influence function is modified by γ ∗ as

ω∗〈ξ∗
jk〉 := γ ∗ω∗〈ξ∗

jk〉 . (37)

In the future, as this methodology develops, a more complex
expression may replace Eqs. (35–37). In particular, it would
be interesting to directly and meaningfully relate sinter to the
energy required to break or form adhesion links between
cells.

3.2.2 Nonlinear quasi-static solution scheme

Although this paper focuses on linear elastic material
response and a quasi-static solution, bond breaking, forming,
and re-forming can introduce nonlinearity. To capture this

nonlinearity, we apply loading (in this case applied growth
g) incrementally as

gt+1 = (1 + gt )(1 + ginca )1/2 − 1 in n = 2

gt+1 = (1 + gt )(1 + gincv )1/3 − 1 in n = 3
(38)

where gt+1 is defined as growth at step t + 1 and com-
puted as a function of growth at step t and some incremental
scaling magnitude. Several small increments of growth are
applied, and the quasi-static solution is obtained following
each increment. In the original implementations of peri-
dynamics, where a node’s horizon Hx remains the same
throughout the simulation (i.e., it does not grow), the list
of nodes within the horizon and dual horizon of x are deter-
mined by Eqs. (1, 2) at the start of the simulation. In the case
where bond forming is allowed, the horizon must be updated
at the start of every load increment. Since the horizon of
each node changes, it is necessary to re-compute the horizon
between each step. Furthermore, it is logical to make hori-
zon size δ dependent on growth g. We implement the simple
dependence

δ∗
i = (1 + gi) δ0i (39)

where δ0 is horizon size without any growth. And, rather
than determining the horizon based on position in the initial
configuration, the horizon of node i is determined based on
position at the end of the previous time step as

Hi = {k| || yk − yi|| < δ∗
i } (40)

where y refers to the calculated position at the end of the last
quasi-static step.Alternative relationshipsmay also be appro-
priate; however, nuance in determining horizon size is not
necessarily critical because the influence function ω can also
be tuned to define interacting nodes. Also, it is worth pointing
out again that the dual-horizon formulation of peridynamics
makes it acceptable for adjacent nodes to have different lev-
els of growth and subsequently different spacing and horizon
sizes.

3.2.3 Redefine initial separation with an assumed
separation distance

Sections 3.2.1 and 3.2.2 provide a framework for nodes to
break apart and re-attach. This means that nodes which were
not initially close enough together to be considered bonded
may subsequently form a bond. In Sect. 4, introducing a cell
division mechanism will introduce new nodes and cause the
connectivity between nodes to change. Therefore, defining
||ξ∗

jk|| based on g and the distance between coordinates in
the reference configuration ||ξ jk|| is not sufficient. To solve
this problem, we redefine ||ξ∗

jk|| as a function of node radius,
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rj and rk, and growth, gj and gk, assuming that the area asso-
ciated with each node experiences a homogeneous level of
growth. The new definition of ||ξ∗

jk|| is

||ξ∗
jk|| = (1 + gj)rj + (1 + gk)rk (41)

and may be inserted into Eqs. (28)–(37) in place of the
original definition of ||ξ∗

jk||. Using this approach, the typi-
cal practice of implementing short range contact forces to
stop nodes from overlapping (Littlewood 2015) is redundant
because forces between nodes will automatically become
repulsive when the distance between them is less than ||ξ∗

jk||.
With regard to numerical implementation, this new form

of ||ξ∗|| implies that for a stress-free initial configuration and
subsequent meaningful results, each node should be sepa-
rated by distance ||ξ∗|| and each node’s horizon H, dual
horizonH′ and influence functionω∗ should ensure that only
immediate neighbors contribute to the computation of force
density at a node. For the remainder of this paper, we assume
a horizon size δ such that only immediate neighbors will be
within a node’s horizon.

Introducing growth and a mechanism that allows cells
to detach and re-attach means that there are three compo-
nents contributing to the material deformation response. The
components are pure growth (application of g at the nodes),
cell reorganization, and elastic deformation. Similar compo-
nents have been proposed in a phenomenological tissue scale
framework, where cell reorganization was treated as analo-
gous to plasticity in that it occurs after some yield stress is
achieved (Ambrosi and Preziosi 2008; Ambrosi et al. 2012).
Using peridynamics, the cell reorganization mechanism is
captured mechanistically. Future work will involve refining
the constitutive relation to better include the physics control-
ling cell attachment and detachment. In Sect. 4, we introduce
an additional cellular scale growth mechanism, cell division,
into the peridynamic framework.

4 Implementing cellular scale growth mechanisms
in the peridynamic framework

Thus far, we model biological growth by applying load steps
and repeatedly solving a quasi-static problem. Based on the
implementation of growth and cellular reorganization pre-
sented in Sect. 3, the procedure contains three steps: (i)
determining nodal connections using δ and ω, (ii) applying
growth to each node, and (iii) using established peridynamic
equations to relax to mechanical equilibrium. In this section,
we provide a framework for implementing additional cellular
scalemechanisms of growth. Section 4.1 discusses the imple-
mentation of a cell division mechanism, and then Sect. 4.2
contains a general implementation algorithm summarizing
the procedures introduced in Sects. 2, 3 and 4.1.

4.1 Cell division (mitosis) in the peridynamic framework

From a biological perspective, tumor growth is driven by cell
division (Gillies and Cabernard 2011). And, the transition
fromnormal cells to tumor cells is oftenmarked by a dramatic
increase in cell proliferation rate. On the cellular scale, a
parent cell grows and then subsequently divides into two
daughter cells, as illustrated in Fig. 4. To capture this process
within a peridynamic framework, we allow cells to divide
once they exceed a certain threshold level of growth gth. In
n = 2, this threshold level corresponds to area growth gA = 1
and radius growth gth = 2

√
2−1. In n = 3, this threshold level

corresponds to volume growth gV = 1 and gth = 3
√
2−1. For

both cases, this is equivalent to cells doubling in size. When
a cell divides, it divides along an axis with unit vector m
which is dictated by a prescribed angle φ in two dimensions
and two prescribed anglesφa andφb in three dimensions. The
division angle, illustrated in Fig. 4, can be either random or
deterministic. At one extreme (in 2D), φ = U (−π/2, π/2)
corresponds to a uniformly random division angle. At the
other extreme (in 2D), φ = α corresponds to a consistent
deterministic division angle. During each cell division event,
a new node is introduced at a position and with properties
determined by division angle, parent cell radius, parent cell
growth, and parent cell initial position. The original node’s
position and properties are also updated to transform it from
a parent cell to a daughter cell. In Sect. 3, we replaced the
term ξ jk+ηjk with yk− yj to clearly deal with the new nodes
which were not present in the initial configuration.

In this implementation, we choose simple and symmetric
rules for splitting a parent node into two daughter nodes. The
radii of the daughter nodes are assigned as identical to the
radius of the parent node rd = r0. Then, to preserve total area
(A0 = 2Ad in n = 2) or volume (V0 = 2Vd in n = 3), the
daughter node growth gd is determined as function of parent
node growth g0:

gd = 2

√
1

2
(1 + g0) − 1 in n = 2

gd = 3

√
1

2
(1 + g0) − 1 in n = 3.

(42)

Then, given some division axis unit vector, m, which is a
function of φ in n = 2 and φa and φb in n = 3, a new node
position is assigned to each of the daughter cells. The node
position is selected such that the nodal areas/volumes do not
overlap. If y0 is the position of the parent cell, and vector m
defines the angle on which the node divides, then yj and yk
are the positions of the daughter cells written as

yj = y0 + (1 + gd) r0 m

yk = y0 − (1 + gd) r0 m .
(43)
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(a) (b)

(c) (d) (e) (f) (g)

Fig. 4 Cell division is implemented as a multi-step process where a
parent node splits into two daughter nodes on an axis defined in two
dimensions by angle φ. Schematic (a) shows cell division with p = 4
defined by division angle φ; Schematic (b) illustrates parameters di ,
ri and θi used in Eq. (45); Schematics (c–g) illustrate initial equilib-

riumnode position (c), non-equilibriumgrown position (d), equilibrium
grown position (e), non-equilibrium divided position (f), and final equi-
librium position (g) where each parent node has split into two daughter
nodes. Nodes will grow according to a prescribed growth rule until they
exceed a threshold size that triggers the division algorithm

During implementation, the node number of y0 is preserved
in either yj or yk. Immediately after the division step, the
cells will not be at mechanical equilibrium. Their position
and the position of their neighboring cells will subsequently
adjust to attain mechanical equilibrium.

In the numerical setting, splitting cells over multiple steps
and allowing mechanical relaxation between each step may
yield more stable results. We implement a cell division algo-
rithm inspired by the ellipse/barbell shape that cells take on
as they divide (Gillies and Cabernard 2011). This algorithm,
illustrated in Fig. 4 and detailed in this section in 2D, starts
with overlapping daughter cells with a small separation dis-
tance and increases the separation distance until the end of
the cell division procedure where cells will no longer over-
lap. Given p, the number of steps to complete cell division,
we define separation distance di at step i as

di = 2 i (1 + gp
d ) r0

p
. (44)

During the subsequent mechanical relaxation step, di will
replace ||ξ∗|| when determining the force between parti-
cles mid-division. During the stepped division process, the
particles are overlapped. In the two-dimensional case, an
equivalent level of growth at each step gid is determined such
that the area of the two daughter cells minus the area of the
overlap remains equal to the area of the parent cell. Angle
θ i , illustrated in Fig. 4b is defined as θ i = arcsin di/2ri , and
used to define total area Ai as

Ai = 2π [(1 + gid)r0]2

− 2[(1 + gid)r0]2( π
π − 2θ

2π
− sin θ cos θ ) .

(45)

Using Ai , gid is solved for by equating Ai and area before
division procedure A0 = π(1 + g0)2r20 as

gid = 1

r0

√
A0/[ 2π − 2( π

π − 2θ

2π
− sin θ cos θ ) ] − 1 .

(46)

The number of steps p to complete cell division is a matter of
discretion, typical values used in our simulations are p = 2
to p = 5. Furthermore, in the numerical settingmultiple divi-
sion events occurring in unisonmay cause stability problems.
To remedy this,we introduce an additional randomparameter
that represents probability of division and decrease the step
size whenmultiple cell division events are about to occur and
staggers the cell division events such that they occur within
some interval [gth − τ, gth + τ ] rather than at the thresh-
old gth exactly. Making this adjustment means only a small
fraction of cells divide in unison, and numerical stability is
preserved. Beyond cell division, cellular scale mechanisms
such as cell necrosis and apoptosis may be implemented in a
similar fashion by shrinking (g < 0) or removing nodeswhen
g falls below some threshold value. In Sect. 4.2, where we
summarize the overall implementation procedure, we refer
to these potential algorithms via the general phrase “cellular
scale mechanisms”.
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Algorithm 1: Biological growth with peridynamics:
numerical implementation procedure.
Input : Initial node positions and properties, prescribed loading,

prescribed cell division parameters
Output: Final node positions, final peridynamic forces.
for Load step t in prescribed loading do

for Node j in node list do
increment growth at each node gj according to prescribed
growth rule (ex: eqn. (38))

end
for Node j in node list do

if gj > gcrit then
begin cell division algorithm: separate parent node
into two daughter nodes with φ eqn. (43)

end
end
while Nodes are not at mechanical equilibrium (i.e.,
acceleration ≥ ≈ 0) do

for Node j in node list do
Compute horizon Hj using eqn. (40)

end
for Node j in node list do

Compute ω∗〈ξ∗
jk〉 using eqn. (37) for every bond with

node k in Hj

end
for Node j in node list do

Compute m∗
j using eqn. (29) by looping through the

nodes k in Hj

end
for Node j in node list do

Compute θ∗
j using eqn. (31) by looping through the

nodes k in Hj

end
for Node j in node list do

Compute t∗kj and subsequently f ∗
kj and − f ∗

kj using eqn.
(34) by looping through the nodes k in Hj

end
for Node j in node list do

Compute acceleration, velocity and displacement
using an adaptive dynamic relaxation algorithm

end
end

end

4.2 Implementation procedure including cellular scale
mechanisms

The integrated implementation of the work detailed in
Sects. 2–4 is summarized in Algorithm 1. This algorithm
is the foundation of the numerical implementation used to
generate the results presented in Sect. 5. Overall, the imple-
mentation procedure follows a pattern where the amount of
growth at each node at each step is prescribed according to
user-defined rules, cellular scale mechanisms are prescribed
according to user-defined rules, and the quasi-static solu-
tion to the peridynamic equation of motion is subsequently
solved to reach mechanical equilibrium. In this implemen-
tation, growth on the node-level is always isotropic. Growth
ratemaydiffer at eachnodedependingonposition, andglobal

anisotropymay emerge due to directional cell division. These
concepts are further explored in Sect. 5.

5 Numerical studies

Numerical implementation of the peridynamic framework
for modeling biological growth follows directly from the
algorithm presented in Sect. 4.2. In this section, we begin
by comparing the numerical framework with growth and no
division to two benchmark problems with known analyti-
cal solutions. Then, we examine isotropic and anisotropic
growth as emergent properties of the division angle. Finally,
we look at an example problem where growth rate varies
based on location. In this section, we show results from a
two-dimensional numerical implementation. Table 1 lists all
the parameters required to implement the simulations aside
from the prescribed loading conditions which are specific to
each subsection.

5.1 Benchmark comparison

In order to validate our implementation of growth in the peri-
dynamic framework and ensure that our numerical solution
scheme is functioning,we chose two simple benchmarkprob-
lems with an analytical solution for comparison. The first
problem is quasi-static homogeneous growth of a rectangu-
lar block oriented perpendicular to the x-y plane where the
displacement along cuts perpendicular to the x and y axis
can be computed as

ux = (1 + g)x uy = (1 + g)y, (47)

Table 1 All of the parameters used to implement the numerical exam-
ples are as follows

Parameter Value

Dimension n 2

Initial radius r0 0.5

Initial growth g0 0.0

Initial horizon δ0 1.15

Breaking stretch sinter 1.15

Young’s modulus E 1.0

Poisson’s ratio ν 0.45

Influence function ω∗〈ξ∗
ij〉 1.0

Number of division steps p 4

Division interval τ 0.025

Incremental area growth ginca 0.01

Every node in the domain is assigned these parameters. In addition, at
the start of every simulation nodes are equally spaced in a hexagonal
configuration. If the units are not
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Fig. 5 For the first benchmark test (a), we compare numerical results
to the analytical solution for a rectangular (20 × 25 unit length) block,
centered at the origin, growingwithout constraints. Plot (c) shows agree-
ment between the analytical and numerical results for x-displacement,
where displacement ux is plotted with respect to initial position x ; Plot
(d) shows agreement between the analytical and numerical results for
y-displacement, where displacement uy is plotted with respect to initial

position y. For the second benchmark test (b), we compare numerical
results to the analytical solution for a beam where bending is driven
by differential growth between layers. Plot (e) shows curvature ρ with
respect to lower layer growth g2.Here, the numerical results only deviate
from the analytical solution when the beam is subject to large deforma-
tion

respectively, where ux and uy are displacement, and x and y
are coordinates in the reference coordinates (Madenci and
Oterkus 2014). Excellent agreement between the numeri-
cal and analytical solutions is shown in Fig. 5. The second
benchmark problem is illustrated in Fig. 5 where change in
curvature is induced by homogeneous quasi-static growth of
the bottom half of a beam. Beam curvature ρ is computed
as

ρ = 2h

3g2
(48)

where h is the beam depth illustrated in Fig. 5b and g2
is the isotropic growth of the bottom half of the beam.
This equation was derived for a bimetal thermostat under-
going uniform temperature change where the upper and
lower layers have different coefficients of thermal expansion
(Timoshenko 1925). In our version of the analytical equa-
tion, g2 replaces the term α2ΔT . Curvature with respect
to growth is plotted in Fig. 5e where there is agreement
between the numerical and analytical solutions until the
large deformation regime is reached and some deviation is
observed.

5.2 Isotropic and anisotropic growth as emergent
properties of division angle

One major benefit of the framework presented in this paper
is that the influence of cell division angle can be studied.
To do this, we consider a simple problem where homoge-
neous growth is applied to a block of material. When the cell
division mechanism described in Sect. 4.1 is implemented,
growth at a node exceeding a threshold, defined as double

the initial area, will trigger division along some axis defined
by angle φ. At one extreme, φ may be equal to a constant
value, which would produce highly anisotropic macroscopic
growth, while at the other extreme φ may be uniformly ran-
dom and produce, in an average sense, isotropic growth.

In order to quantify the influence of the division angle, we
compute an approximate deformation measure F by track-
ing the position of the nodes in our simulation. Because our
block of material is growing homogeneously without any
constraint, a single “best-fit” growth induced deformation
measure Fg can be identified to quantify the results of a sin-
gle simulation. As illustrated in Fig. 6a, we define λ0 as the
set of m vectors connecting adjacent nodes at the start of the
simulation and λ as the set of m vectors connecting the iden-
tical nodes at the step of the simulation in question. Then,
we construct matrices Λ0 and Λ as

Λ0 = [λ10 λ20 λ30...λ
m
0 ] Λ = [λ1 λ2 λ3...λm] (49)

and solve for the approximate version of Fg using the expres-
sion

FgΛ0 = Λ (50)

solved through the normal equation

Fg = ΛΛT
0 (Λ0Λ

T
0 )−1 . (51)

Including a randomcomponent in division angleφmeans that
simulation results will be stochastic; therefore, it is necessary
to conduct tens to hundreds of simulations to get ameaningful
picture of the results.
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(a)

(b) (c)

Fig. 6 We compute the growth induced deformation measure Fg by
tracking the change in position of initial particles and computing the
best-fit value for Fg using Eq. (51). Schematic (a) shows stretch vectors
at the initial position λ0 defined by relative position of each node, (a-i)
shows λ when growth has occurred without division, while Schematic
(a-ii) shows λ constructed by tracking the position of only the nodes
present at the start of the simulation, the nodes with gray area are
added when division occurs. The hexagonal initial configuration in (a)
is convenient because the stretch vectors are all the same length and
distributed isotropically.When division angle is a uniform random vari-

able,φ = U (− π
2 , π

2 ), the average deformation over several simulations
is isotropic. Plot (b) shows a histogram and an approximate probability
density function for Fg

xx and Fg
yy computed from 500 simulations with

61 hexagonally arranged initial nodes and three division events; Plot
(c) compares the average percent difference between Fg

xx and Fg
yy for

500 simulations with a different initial number of nodes, therefore a
different initial number of stretch vectors, and a different number of
division events. As the initial number of nodes increases and/or more
division events occur, the difference between Fg

xx and Fg
yy decreases

The first analysis that we conduct is designed to demon-
strate that uniformly random division, defined as φ =
U (−π

2 , π
2 ), produces an isotropic deformation measure Fg ,

where we define isotropic deformation as Fg
xx = Fg

yy with
Fg
xy = Fg

yx = 0. The results of this analysis, concisely sum-
marizing 6000 simulations, with 500 simulations with initial
node numbers of 7, 19, 37, and 61 and either one, two or
three division events each, are shown in Fig. 6b, c. Every
simulation has a hexagonal initial configuration like the con-
figurations plotted in Fig. 7. The plot in Fig. 6b is a histogram
of Fg

xx and Fg
yy over 500 simulations with 61 initial nodes,

3 division events, and A = 9A0 at the end of the simula-
tions. Although results vary from simulation to simulation, it
is clear that on average Fg

xx = Fg
yy . The plot in Fig. 6c shows

that the average percentage difference between the two terms
is small and decreases as both the initial node number and
the number of division events increase. This indicates that
for both large populations and populations that divide multi-
ple times the average Fg converges toward isotropy. Overall,
these results verify that φ = U (−π

2 , π
2 ) produces isotropic

growth in an average sense.
Next, we examined the influence of a division angle with

the form φ = α + U (−β, β) where α is some fixed value,
and φ is a function of α and some random variable scaled by
β. In Fig. 7, we look at the ratio Fg

xx/F
g
yy as radial growth g

progresses for different values of β. In-between cell division
events, Fg

xx/F
g
yy is constant. Every time cell division occurs,

Fg
xx/F

g
yy steps to a value influenced by β. From the quanti-

tative plot and the qualitative illustrations of nodal position,
it is clear that β controls the degree of anisotropy. A lower
value of β will correspond to a higher value of Fg

xx/F
g
yy .

Overall, Fig. 7 verifies that anisotropic growth is the result
of division on a fixed angle.

5.3 Cell division as a factor in morphogenesis

As a toy example of how cell divisionmay influencemorpho-
genesis, we define a growth law as a function of y-coordinate
with the expression

f (y) =

⎧⎪⎨
⎪⎩
0 if y < yL
y/(yU − yL) if yL ≤ y ≤ yU
1 if yU < y

(52)

where the increment of growth applied at each node at each
time step gt is modified as gt := gt f (y). In this example,
we set the lower bound yL at the base of the simulated block
of material and the upper bound yU just above the top of
the simulated block with h/(yU − yL) = √

3/2 where h is
initial block height. The differential growth caused by this
variation in growth rate causes the block to curve, as illus-
trated in Fig. 8. In the upper rowof the figure, the resultswhen
no cell division is occurring are illustrated. It is interesting
to qualitatively compare the results with random division,
vertical division, and horizontal division to the case where
no division occurs. Qualitatively, two major differences can
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(a) (b)

Fig. 7 Our simulations show that anisotropic growth is an emer-
gent property of oriented cell division. We define division angle φ

as a function of scaling parameter β and a uniform random variable:
φ = 0.0+U (−β, β). Then, we compare simulation results for different
values of β. Plot (a) shows the ratio Fg

xx/F
g
yy with respect to growth g

for 10 simulations at each value of β. The thick lines are the average

results from 10 simulations. The vertical lines highlight each of three
division events that occur during the simulation. The simulation results
(b) illustrate node position between each division event for β = 0,
β = π

4 and β = π
2 . When β = π

2 , growth is, in an average sense,
isotropic with Fg

xx/F
g
yy = 1

(a)

(b)

(c)

(d)

Fig. 8 The orientation of cell division may also play a part in mor-
phogenesis. In these simulations, growth g is prescribed as a function
of vertical displacement defined in Eq. (52). In the upper row (a), no
cell division occurs; in the second row (b) cell division is random with
φ = U (− π

2 , π
2 ); In the third row (c) φ = π

2 or vertically oriented; in

the lower row (d) φ = 0.0 corresponding to a horizontal orientation.
Qualitatively, different cell division rules yield different curvature ρ

and different levels of “fingering” or roughness, illustrated by a dashed
line, on the upper layer of cells. A quantitative comparison of average
curvature in the lower layer is made in Fig. 9

be observed across these four cases. First, including the cell
division mechanism leads to an uneven upper surface. In par-
ticular, the case where cell division occurs in the vertical
direction seems to be exhibiting some form of “fingering”
where certain parts of the surface protrude outward (Cristini

et al. 2002; Cristini 2005). Although this simple example
is not particularly physical, it does lead to further questions
because fingering and rough edges are correlated with inva-
sive behavior and nutrient concentration gradients may cause
gradients in growth rate similar to the one tested here. The
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Fig. 9 Average curvature of the bottom layer of nodes ρ is used as a
metric to compare multiple simulations. In the left plot, a histogram of
curvature for 500 different simulations shows that mean curvature μρ

is only 0.05% different from curvature computed when there is no divi-
sion. By this metric, isotropic division and no division are equivalent.
This plot also shows that when division is always horizontal, ρ is sig-
nificantly lower than the no division case and when division is always
vertical ρ is slightly higher than the no division case

flexibility provided by the framework in this paper is a good
fit for studying problemswheremechanically driven instabil-
ity and nutrient concentration gradient driven instability may
be coupled. Second, the radius of curvature of the block ρ

(measured reproducibly using the nodes on the lower layer)
appears to be influenced by the cell division mechanism. The
influence of the division mechanism on ρ is presented quan-
titatively in Fig. 9.

In Fig. 9, the average radius of curvature ρ of the bot-
tom layer of nodes in each simulation is used as a metric
to compare multiple simulations. We plot a histogram of ρ

with results from500 simulationswith randomdivision angle
which shows a relatively large spread. A notable result is that
the mean value of ρ from all the simulations is only 0.05%
different from the value of ρ that corresponds to the case
with no cell division, indicating that by this metric the two
scenarios are, on average, equivalent. We also note that a
horizontal division angle will significantly lower ρ, while
a vertical division angle will slightly raise it. These quanti-
tative metrics are in line with the qualitative results, where
Fig. 8 clearly shows a relatively large change in curvature
corresponding to the horizontal division angle.

6 Conclusion

In this paper, we present a methodology for implement-
ing biological growth and a cell division mechanism with
peridynamics. We begin in Sect. 2 with a background on

dual-horizon peridynamics, we introduce growth into the
dual-horizon peridynamics framework in Sect. 3, and we
describe a method for implementing cellular scale growth
mechanisms such as cell division in Sect. 4. In Sect. 5, we
show numerical results that validate our approach, show
how isotropic and anisotropic growth can be captured in
our framework, and present a simple problem to show that
considering cell division can be an important factor in mor-
phogenesis.

Given these results, it is also interesting to attempt to phe-
nomenologically categorize the cell division mechanism. In
our initial framework, cell division is triggered by applied
growth and occurs in part via cell reorganization. A more
complex trigger of cell division, for example, if cell divi-
sion was induced by local tension, could be interpreted as
a way for cells to reorganize to relieve stress phenomeno-
logically similar to plasticity. A benefit of the peridynamic
framework presented here is that the cell divisionmechanism
does not required a formal phenomenological classification
to be implemented.

As stated in Sect. 1, the physical interpretation of the dis-
cretization can view nodes as either individual cells or as
a collection of cells. When nodes are viewed as individual
cells, this framework can be used to interpret experiments
performed on small colonies of cells.When nodes are viewed
as simply ameans to discretize a block of tissue, this method-
ology is suitable for understandingmacroscale tumor growth.
The main purpose of peridynamics, to unify the mechan-
ics of continuous and discontinuous media, can be taken
advantage of to create multi-scale models with high levels
of discretization at areas of activity and change and low lev-
els of discretization in necrotic zones where a continuous
representation is acceptable.

The work presented here is only the beginning of what
can be done with this framework. Moving forward, it will
be interesting to implement and study different constitutive
laws, particularly a viscoelastic constitutive law (Linder et al.
2011), the influence of nutrient concentration or cell-signal
driven growth rates, the influence of stress during growth
(Helmlinger et al. 1997), the influence of boundary con-
ditions, additional cellular scale mechanisms, fracture and
reattachment of tumor cells, particularly as it may relate to
cancer metastasis, coupling between cellular scale mecha-
nisms and geometric instability (Lejeune et al. 2016a, b, c),
and numerical implementation techniques that can take
advantage of regions of cell necrosis to increase computa-
tional efficiency. And, further advances in the theoretical
aspects and numerical implementation of peridynamics can
be translated to improvements in our techniques (Foster
et al. 2009). Fundamentally, we believe that this method is a
promising way to bridge scales in the study of tumor growth
by allowing a convenient way to realize cellular scale mech-
anisms on the tissue scale.
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