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Abstract By following the common definition of forward-
dynamics simulations, i.e. predicting movement based on
(neural) muscle activity, this work describes, for the first
time, a forward-dynamics simulation framework of a mus-
culoskeletal system, in which all components are repre-
sented as continuous, three-dimensional, volumetric objects.
Within this framework, the mechanical behaviour of the
entire muscle–tendon complex is modelled as a nonlinear
hyperelastic material undergoing finite deformations. The
feasibility and the full potential of the proposed forward-
dynamics simulation framework is demonstrated on a two-
muscle, three-dimensional, continuum-mechanical model of
the upper limb. The musculoskeletal model consists of three
bones, i.e. humerus, ulna, and radius, an one-degree-of-
freedom elbow joint, and an antagonistic muscle pair, i.e.
the biceps and triceps brachii, and takes into consideration
the contact between the skeletal muscles and the humerus.
Numerical studies have shown that the proposed upper limb
model is capable of predicting realistic moment arms and
muscle forces for the entire range of activation and motion.
Within the limitations of the model, the presented sim-
ulations provide, for the first time, insights into existing
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contact forces and their influence on the muscle fibre stretch.
Based on the presented simulations, the overall change in
fibre stretch is typically less than 3%, despite the fact that
the contact forces reach up to 71% of the exerted mus-
cle force. Movement-predicting simulations are achieved by
minimising a nonlinear moment equilibrium equation. Based
on the forward-dynamics simulation approach, an iterative
solution procedures for position-driven (inverse dynamics)
and force-driven scenarios have been proposed accordingly.
Applying these methodologies to time-dependent scenarios
demonstrates that the proposed methods can be linked to
state-of-the-art control algorithmspredicting time-dependent
muscle activation levels based on principles of forward
dynamics.

Keywords Forward dynamics · Musculoskeletal system ·
Skeletal muscle modelling · Finite elasticity theory ·
Finite element method · Biomechanics

1 Introduction

State-of-the-art methods of simulating (parts of) the mus-
culoskeletal system are based on multi-body simulations.
They include lumped-parameter models of muscle–tendon
complexes for investigating the kinetics of themusculoskele-
tal system. Multi-body models use a discrete modelling
approach, where the components of the musculoskeletal sys-
tem are typically assumed to be rigid. From a mechanical
point of view, they are characterised by discrete mass points
and their respectivemoment of inertia.Hill-typemusclemod-
els have gained as lumped-parameter modelling approach
acceptance for adequacy representing the muscle–tendon
complexes (e.g. Zajac 1989; Winters 1990; Van Soest and
Bobbert 1993; Houdijk et al. 2006; Kistemaker et al. 2006;
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Siebert et al. 2008; Haeufle et al. 2014; Mörl et al. 2012;
Millard et al. 2013; Günther et al. 2007). As they have been
successfully applied for many decades, they are well vali-
dated against experiments (e.g. Günther et al. 2007; Siebert
et al. 2008; Van Soest and Bobbert 1993). Geometrically,
they are linear objects that span from the muscles’ origin
to their insertion points and can hardly represent spatially
varying features. The muscle force path can typically only
be enhanced by pre-defined wrapping surfaces or via-points
to improve muscle force path (Garner and Pandy 2000). The
resultingmodels are not capable of representing detailed het-
erogeneous material characteristics, but are popular due to
the relatively simple representation and relative low compu-
tational cost. As a consequence, such computational models
can take into account up to more than 200 muscle–tendon
units (e.g. Rupp et al. 2015; Christophy et al. 2011).

More recently, further insights into the musculoskele-
tal system have been attained by exploiting continuum-
mechanical principles in order to model skeletal muscle
mechanics. Due to a different modelling approach, one can
include, at the expense of computational costs, structural
properties and local actions. Hence, spatial quantities such as
fibre field architecture (e.g. Blemker and Delp 2005), local
activation principles (e.g. Heidlauf et al. 2013; Heidlauf
and Röhrle 2013, 2014), complex geometries (e.g. Röhrle
and Pullan 2007; Böl et al. 2011), or contact mechanics
(e.g. Fernandez andHunter 2005) canbe included in a straight
forward way. The drawbacks of continuum-mechanical-
based models are (i) the lack of experimental data for
validation, (ii) the computational costs, and (iii) an increase in
modelling complexity imposing restrictions to the usability.
For these reasons, almost all research exploiting continuum-
mechanical skeletal muscle models investigating various
aspects of skeletal muscles mechanics, for example the
mechanical behaviour/influence of tendon tissue (e.g. Lemos
et al. 2005), the effect of micro-mechanical features on the
overall mechanics (e.g.Sharafi and Blemker 2010; Sharafi
et al. 2011), or extension of continuum-mechanical model
to include chemo-electrophysiological aspects (e.g. Röhrle
et al. 2008; Röhrle 2010; Heidlauf and Röhrle 2014), use
skeletal muscle models that do not interact with its surround-
ing.

While investigating and modelling the mechanical behav-
iour of a single skeletal muscle in isolation is essential,
the ultimate goal must be the use of such continuum-
mechanical skeletal models to improve our understanding
on how the mechanical and physiological properties impact
the musculoskeletal system and, hence, our ability to move.
Continuum-mechanical skeletalmusclemodels investigating
the mechanical behaviour within a musculoskeletal setting
are rare. The musculoskeletal system is typically overdeter-
mined meaning that the number of muscle actuators acting
on a joint is higher than the degrees of freedom (DoFs) of the

respective joint. Therefore, further assumptions are needed
to solve the redundancy problem. Within simulations, this is
achieved by using either an inverse-dynamics or forward-
dynamics approach. Since these approaches are typically
based on optimising an objective function, the high com-
putational costs for modelling skeletal muscle using three-
dimensional continuum-mechanical models would increase
even more.

In inverse dynamics, the motion of bones within the
musculoskeletal system is captured experimentally and is
used as a model input. The aim is to distribute the joint
moments among the acting muscles in order to reproduce the
given motion. The most frequently used inverse-dynamics
modelling approaches for solving the muscle redundancy
problem is to introduce physiologically inspired objective
functions, e.g. objective functions that aim to minimise the
work done, (Seireg and Arvikar 1973), the joint moment
(Crowninshield and Brand 1981), or the contact force within
the joint (Seireg andArvikar 1975)while (i) relating themus-
cle force to the muscle dimension, e.g. the PSCA (Alexander
and Vernon 1975), (ii) using experimental data such as EMG
for determining muscle activation (Hof and Van Den Berg
1977), or (iii) grouping muscles into agonist and antagonist
muscle groups to reduce the number of acting muscles (Mor-
rison 1970; Schipplein and Andriacchi 1991). The solution
of the optimisation problem provides estimates of the muscle
forces at each time step. Due to the fact that each time step
can be solved independently, inverse-dynamics approaches
are numerically efficient.

In forward dynamics, the motion is the consequence of
the muscle activation. This definition of forward-dynamics
is also followed in this work. Hence, muscle forces are con-
sidered as the model input and the resulting movements as
the model output. Naturally, the muscle forces and, hence,
the recruitment strategy leading to a motion or a specific
task need to be predicted by a model. It cannot be directly
measured experimentally. Possibilities to determine muscle
forces are calculating the muscles’ activation state by (i) the
use of motor control concepts such as the equilibrium point
control (Feldman 1986; Günther and Ruder 2003; Lorussi
et al. 2006; Rupp et al. 2015; Kistemaker et al. 2006), (ii) the
use of experimental data, e.g. EMGdata, to employ activation
dynamics, so as to convert EMG signal to muscle activation
(Buchanan et al. 2004), or (iii) objective functions. The opti-
misation problems are typically solved by minimising, for
example, the necessary work to carry out a particular task
(Pandy et al. 1990; Anderson 1999; Anderson and Pandy
2001).

So far, only a few continuum-mechanical approaches have
been used to model the musculoskeletal system. In Fer-
nandez and Hunter (2005), for example, the authors use
an inverse-dynamics approach to investigate the wrapping
of muscles around the knee joint. For animation purposes,
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Lee et al. (2009) used an inverse-dynamics approach and a
linear mechanical muscle description to visualise the motion
of skin. Wu et al. (2013) were the first to prescribe muscle
activations to achieve facial expressions. The facial expres-
sions were achieved by using a finite element mapping
procedure to embed muscles within the soft tissue. The key
difference between modelling facial expressions and mod-
elling a musculoskeletal system such as the upper or lower
limb is that movement within the latter example can only
be achieved by antagonistic muscle pairs. Unlike the facial
simulations, joint moment and joint moment of momentum
equilibrium need to be taken into account in order to deter-
mine the respective motion of the system.

Forward-dynamics simulations that describe the antago-
nistic muscles as three-dimensional continuum-mechanical
objects do not exist within the literature. Thiswork describes,
for the first time, a forward-dynamics model, in which the
musculoskeletal system is modelled based on continuum-
mechanical principles. To demonstrate the potential of the
proposed methodology, a musculoskeletal system consisting
of three bones (i.e. humerus, ulna, and radius), of the elbow
joint that exhibits one DoF, and of an antagonistic muscle
pair consisting of the biceps and triceps brachii is considered.
The muscles are modelled as three-dimensional, continuum-
mechanical objects that are in contact with rigid bones.
Within this work, different solution strategies are investi-
gated to solve for the resultingmotion of thismusculoskeletal
model given different input parameters. Although this work
entirely focuses on a two-muscle system, the approach can
also be extended to more complex musculoskeletal system.
This, however, would lead to a muscle redundancy problem
that would need to be solved.

2 Methods

2.1 Finite elasticity fundamentals

As skeletal muscles undergo large deformations, the the-
ory of Finite Elasticity provides an adequate mathematical
framework to describe the deformed state of a biological sys-
tem. The following introduces the fundamentals for using a
continuum-mechanical description. The material body, B,
is a manifold of connected points P . The points on the
boundary of B define the surface Γ . Every material point
P in B has at any time t a unique position defined by the
placement function, x = χ(P, t), called the current con-
figuration. For time t0 = 0, the reference configuration is
defined by X = χ(P, t0). With these definitions, the defor-
mation gradient, F, is defined by

F := ∂χ(x, t)

∂X
= ∂x

∂X
. (1)

Further, the right Cauchy–Green deformation tensor, C , is
introduced by C = FT F. More detailed information on
the theory of finite elasticity can be found, for example, in
Holzapfel (2000) or Bonet and Wood (1997).

To investigate the kinetics of a bodyB, the linear momen-
tum is balanced. Assuming that no fast motions occur within
this work, the inertia terms are neglected. Furthermore, the
body forces are neglected since themotion of the investigated
forearm is independent of the elevation of the arm and since
one can assume that the local muscle forces are much higher
than the body forces. Hence, the balance of linearmomentum
reduces to

div T = 0, (2)

where T denotes the Cauchy stress, which is the force per
squared line element with respect to the actual area element.
The Cauchy stress tensor is related to the second Piola–
Kirchhoff stress tensor, S, by a scaled covariant push forward,
T = (det F)−1 F S FT .

2.2 Constitutive modelling

The stress tensor is derived by exploiting a constitutive
model. Like within this work, skeletal muscles are typically
considered to be hyperelastic, transversely isotropic, and,
under physiological loads, incompressible. The stress tensor
can be derived from a volume specific strain energy function
(or just strain energy function) Ψ , i.e.

S = 2
∂Ψ (I1, I2, I4)

∂C
− ∂ (pΨ (I3))

∂C

= 2
∂Ψ (I1, I2, I4)

∂C
− p C−1.

(3)

For an incompressible material behaviour, p is included
as a Lagrangian multiplier to enable the incompressible con-
dition, det F − 1 = 0 (cf., Holzapfel 2000), and can be
associated with the hydrostatic pressure. The strain energy
is formulated with respect to the invariants I1 = tr C ,
I2 = tr (cof C), I3 = det C, and I4 = tr (MC), in which the
structural tensor, M, is defined by the dyadic product of the
fibre direction in the reference configuration, cf. Holzapfel
(2000) or Spencer (1971, 1972).

Commonly, the overall strain energy or stress for skeletal
muscles is additively split into an isotropic and anisotropic
part (cf.,Oomens et al. 2003; Lemos et al. 2005; Blemker
et al. 2005; Röhrle et al. 2008). Hence, the overall strain
energy function is given by

Ψmuscle(I1, I2, I4) = Ψiso(I1, I2) + Ψaniso(I4). (4)

For the isotropic contribution, Ψiso(I1, I2), the follow-
ing incompressible Mooney–Rivlin material formulation
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(Mooney 1940; Rivlin 1948) is defined by

Ψiso(I1, I2) = c1 (I1 − 3) − c2 (I2 − 3), (5)

where c1 and c2 are two material parameters.
The anisotropic term is split into a passive and an active

contribution, where the active part is multiplied with the
muscle activation parameter, α ∈ [0, 1]. Choosing α = 0
describes the purely passive, i.e. inactivated, skeletal muscle
behaviour, where α = 1 describes the mechanical behav-
iour of a fully activated, i.e. tetanised, skeletal muscle. The
anisotropic part of the strain energy function is modelled as

Ψaniso(I4) = Ψpassive(I4) + α Ψactive(I4). (6)

The strain energy function for the passive force–length rela-
tion,Ψpassive(I4), follows a J -shapedmaterial behaviour. It is
approximated by a polynomial strain energy function intro-
duced by Markert et al. (2005). The strain energy function
meets the requirements of polyconvexity, coercivity, and a
stress-free reference state:

Ψpassive =
{

c3
c4

(
λ
c4
f − 1

)
− c3 lnλ f if λ f ≥ 1

0 else,
(7)

where c3 and c4 are material parameters and λ f = √
I4 is

the fibre stretch.
The active part of the strain energy function, Ψactive, is

governed by a so-called force–length relation. It is a product
of the maximal stress, Smax, in which a skeletal muscle can
produce at optimal length λ

opt
f and a dimensionless force–

length relation that was adopted from Hatze (1978). Hence,
the strain energy function for the active part is given by

Ψactive = − Smax

νi

(
λ
opt
f �Wi

)− 1
νi

∞∫
λ
νi
f

λ
opt
f �Wi

λ

1
νi

−1

f e−λ f dλ f ,

(8)

where νi and �Wi are two parameters influencing the steep-
ness and the width of the resulting Gaussian bell curve.

Taking the derivative with respect to the right Cauchy–
Green deformation tensor, cf., Eq. (3), the respective terms
of the second Piola–Kirchhoff tensor can be determined. The
isotropic term is given by

Siso = 2 c1

(
I − 1

3
I1 C−1

)
+2 c2

(
I1 I − C − 2

3
I2 C−1

)
(9)

and the anisotropic term by

Saniso(λ f ) = 2
∂Ψaniso

∂C
= 2

∂Ψaniso

∂λ f

∂λ f

∂ I4

∂ I4
∂C

= 1

λ f

∂Ψaniso

∂λ f
M = 1

λ f
Paniso M = 1

λ2f
σaniso M, (10)

where Paniso refers to the nominal stress acting only along
the fibre direction. Note, since the strain-energy function is
a scalar, the nominal stress P reduces to the scalar-valued
function, Paniso.

Inserting Eq. (7) into Eq. (10), the passive contribution of
S is given by

Spassive =
⎧⎨
⎩

1
λ2f

c3
(
λ
c4
f − 1

)
M if λ f ≥ 1,

0 else.
(11)

The same holds for the active contribution of S such that

Sactive =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Smax
λ2f

exp

(
−

∣∣∣∣∣
(
λ f /λ

opt
f

)
−1

�Wasc

∣∣∣∣∣
νasc

)
M, λ f ≤λ

opt
f ,

Smax
λ2f

exp

(
−

∣∣∣∣∣
(
λ f /λ

opt
f

)
−1

�Wdesc

∣∣∣∣∣
νdesc

)
M, λ f >λ

opt
f .

(12)

The resulting curve isC1 continuous. For values smaller than
the optimal fibre stretch, the first part of (12) describes the
ascending branch of the force–length relation, while the sec-
ond part of (12), i.e. values larger than the λ

opt
f , describes the

descending branch of the force–length relation. All muscle
parameters are listed in Table 1. For uniaxial constraints, the
qualitative stress contributions are depicted in Fig. 1.

The constitutive law describing the mechanical behaviour
of the skeletal muscle tissue can be extended to a general
constitutive law for the entiremuscle–tendon complex and its
surrounding fat tissue by introducing two further parameters.
The first material parameter, γ M , determines whether the
respective material point is considered to be muscle tissue
(γ M = 1) or tendon tissue (γ M = 0). The second parameter,
γ ST, allows one to distinguish between muscle or tendon
tissue (γ ST = 0) or someother isotropic soft tissue (γ ST = 1)
such as fat.

Therefore, the strain energy function for an entiremuscle–
tendon complex, including the surrounding soft tissue, is thus
defined within a single strain energy function by

ΨMTC = Ψiso +
(
Ψpassive + α γ M Ψactive

) (
1 − γ ST

)
. (13)

Based on Eq. (3), the second Piola–Kirchhoff stress for the
muscle–tendon complex, SMTC, is by

SMTC = Siso +
(
Spassive + α γ M Sactive

) (
1 − γ ST

)
. (14)
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Table 1 Material parameters for the constitutive laws of the muscle–tendon complex

Muscle parameter Contribution Triceps Biceps References

cM1 Isotropic 3.56 × 10−2 MPa 3.56 × 10−2 MPa Hawkins and Bey (1994)

cM2 3.86 × 10−3 MPa 3.86 × 10−3 MPa

cM3 Passive 4.02 × 10−7 MPa 3.57 × 10−8 MPa Zheng et al. (1999)

cM4 38.5 (–) 42.6 (–)

cT1 Isotropic 2.31 MPa 2.31 MPa Weiss and Gardiner (2001)

cT2 1.15 × 10−6 MPa 1.15 × 10−6 MPa

cT3 Passive 7.99 MPa 7.99 MPa Weiss and Gardiner (2001)

cT4 16.6 (–) 16.6 (–)

�Wasc Active 0.30 (–) 0.25 (–) Adapted from Günther et al. (2007)

�Wdesc 0.10 (–) 0.15 (–)

νasc 4.00 (–) 3.00 (–)

νdesc 4.00 (–) 4.00 (–)

λ
opt
f 1.30 (–) 1.35 (–)

Smax 0.30 MPa 0.30 MPa
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Fig. 1 The Cauchy stress contributions for the triceps’ skeletal muscle
tissue in uniaxial direction

Note, for γ ST = 1, the anisotropic part of thematerial behav-
iour vanishes. In case of γ ST > 1, the material exhibits
anisotropic behaviour. For γ ST = 0 and γ M = 1, the mate-
rial reduces to the material behaviour of the muscle tissue.
For γ ST = 0 and γ M = 0, one obtains the stress tensor for
the tendon tissue as given in Eq. (14). The different tissue
behaviour is enforced by linearly interpolating the material
parameters, i.e.

c1 = γ M cM1 +
(
1 − γ M

)
cT1 ,

c2 = γ M cM2 +
(
1 − γ M

)
cT2 ,

c3 = γ M cM3 +
(
1 − γ M

)
cT4 ,

c4 = γ M cM4 +
(
1 − γ M

)
cT4 , (15)

where the material parameters c1 to c4 are those of Eq. (5)
and (7). Superscripts M and T denote material-specific para-
meters, i.e. the material parameters for muscle (M) and
tendon tissue (T). All muscle–tendon complex-specificmate-
rial parameters usedwithin this work are given, together with
its source of origin, in Table 1.

2.3 Weak formulation and contact mechanics

The weak form of the governing equations is obtained by
multiplying Eq. (2) with a virtual displacement δu, integrat-
ingover thewhole domain, andusing thedivergence theorem.
Hereby, one obtains the weak formulation of the momentum
balance,

δW :=
∫
B

T · grad δu dv −
∫

ΓB

t · δu da,

u = ū on Γ u,

t = t̄ on Γ σ ,

(16)

where t = Tn is the traction vector with n being the unit
exterior vector normal to the boundary surface and (·̄) denote
Dirichlet and Neumann relations on the boundaries, Γ u and
Γ σ , respectively. Within this work, the displacements are
approximated in all three directions with quadratic Lagrange
basis functions and the hydrostatic pressure is approximated
with linear Lagrange basis functions.

To incorporate the interaction between different tissues
during motion, a frictionless contact formulation is incor-
porated (cf., Chung 2008; Wriggers 2002; Laursen 2002).
Since the two muscles considered within this musculoskele-
tal system, i.e. the biceps brachii and triceps brachii, do not
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interact with each other, the contact reduces to the muscle–
bone interaction. Taking into account contact mechanics
between a master BM and a slave BS , the overall virtual
work, δW coupled, is defined by

δW coupled := δWM + δWS + δWC , (17)

where δWM and δWS are the virtual work of the master
and slave defined by Eq. (16), respectively, and δWC is the
contact virtual work coupling the two bodies. Laursen (2002)
defines the contact virtual work δWC for the frictionless case
as

δWC =
∫

Γ C
BM

tN · δgN dA, (18)

where Γ C is the surface of the master at which contact may
occur at specific contact points on the face, tN is the normal
(frictionless) contact pressure, and δgN is the variation of the
gap function. Following Wriggers (2002), the gap function
gN and the variation of the gap function δgN are defined by

gN := −n ·
(
xS − xM

)
, (19)

and therefore

δgN = −n ·
(
δuS − δuM

)
, (20)

where n is the unit outward normal vector defined with
respect to the master surface and x and δu are the location
and the virtual displaced location on themaster and the slave,
respectively. Penetration occurs for positive values of gN and
δgN .

The regularisation of the frictionless contact description
(Kuhn–Tucker condition) is conducted by employing the
penalty method. The regularised contact pressure is assumed
to be

tN =
{

ε gN if gN ≥ 0

0 else,
(21)

where ε is the penalty factor. The exact solution is obtained
as ε → ∞.

The emerging partial differential equation in space,
including frictionless contact between the skeletal muscles
and the bone, is defined byEq. (17). Since the bones aremuch
stiffer than the rest of the soft tissue and since the loads con-
sidered within this study are physiological and do not exhibit
high accelerations as they might occur, for example, in acci-
dents, the bones are assumed to be rigid within this work.
Hence, the master’s virtual work is zero.

The resulting nonlinear system is linearised. The linearisa-
tion of the non-contact components is based on computing a
numerical tangent, while the frictionless contact formulation
uses for linearisation directional derivatives as introduced by
Laursen (2002), i.e.

�tN = H(gN ) ε �gN , (22)

where H(·) denotes the Heaviside function. The Galerkin
finite element method, as implemented within CMISS,1 has
been used to discretise the governing equations.

2.4 Upper limb model

The geometry of the upper limb is based on the visible human
male’s data set. The image data of the visible human male
were acquired in a supine position, while the arm was rest-
ing on the abdominal belt. The arms had an elbow flexion
angle of approximately 60◦. The origin of the chosen coordi-
nate system is the intersection between the mid-sagittal and
mid-coronal plane at the most inferior position, where the
x-axis points to the right, the y-axis anteriorly, and the z-axis
superiorly, see Spitzer et al. (1996).

The humerus, ulna, and radius form the elbow joint.
Within this work, the elbow is considered as an ideal hinge
joint. As the upper limb model does not account for supina-
tion and pronation, the ulna and the radius are united to build
the forearm. The bones of the hand are not required for inves-
tigating elbow movements and are therefore omitted.

Without involving synergistic muscle effects, at least one
single antagonistic muscle pair needs to be chosen to enable
themovement of an idealised elbow joint. Themost powerful
elbow extensor muscle is the triceps brachii. Within the pre-
sented upper limb model, the long, lateral, and medial heads
of the triceps brachii are not considered as individuals. The
two most lateral heads are combined to one strong united
head, while the most medial head is separated from the two
others. Furthermore, since the triceps’ insertion unites into
one wide tendon at the olecranon process, the triceps brachii
has been combined to one homogenised, bipennate skele-
tal muscle. To avoid numerical issue with bad aspect ratios,
the gap between the proximal muscle heads is filled by an
isotropic soft tissue material, i.e. fat.

One key physiological aspect of bipennate muscles is the
existence of an aponeurotic tissue layer (aponeurosis), which
often deeply penetrates into the muscle belly. The aponeu-
rosis is a very fine and slim tissue layer which has a strong
impact on the mechanical behaviour of the overall muscle–
tendon complex. To represent the triceps more realistically,

1 An interactive computer program for Continuum Mechanics, Image
analysis, Signal processing and System Identification (http://www.
cmiss.org).
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the aponeurotic tissue layer, which connects the proximal and
distal ends of the muscle, is modelled by assuming in (14) a
γ M = 0.99 for the centre elements of the triceps brachii, see
Fig. 2a.

Elbowflexion is achieved throughmultiple synergistically
acting muscles, where the flexion strength may additionally
depend on the orientation of the hand (supination/pronation).
Murray et al. (2000) identified the isometric moment-
generating capacity building the product of the physiological
cross-section area, the average moment arm, and the cosine
pennation angle of the muscles acting on the elbow joint.
They pointed out that biceps brachii produces the largest
moment capacity followed by brachialis, brachioradialis,
extensor carpi radialis longus, and pronator teres. Therefore,
and since the focus of this work is on developing a novel
methodology to achieve forward-dynamics simulations of
antagonistic muscle pairs within a musculoskeletal system,
only the biceps brachii has been chosen as flexor within this
upper limb model. For the triceps brachii, the geometrical
model of the biceps brachii’s two heads is combined to form
one fusiform muscle belly with two separate proximal ten-
don origins. The gap between the two tendon heads is again
filled with isotropic soft tissue, see Fig. 2b.

The material properties for the muscles have been chosen
according to the respective muscles’ anatomy. The centre
of a muscle is defined as muscle tissue, and the elements
towards the ends are defined as tendon tissue. The elements
in the tapering area form a transition zone, which is modelled
using varying γ M values.

Unlike for muscles in isolation, the choice of pre-stretch
is crucial within musculoskeletal systems as wrong pre-
stretches can completely alter the mechanical behaviour of
the system. Assuming that no physiological muscle length
shall cause any compressive force and that one cannot exper-
imentally determine the elbow angle at which the individual
muscle produce their largest muscle force, the pre-stretch
was chosen such that themuscles exhibited in a non-activated
state at its shortest muscle length no muscle force. For the
visible human male, the initial resting posture is assumed to
be θ = 60◦ an averaged fibre stretches of 1.146 and 1.071
for the biceps and triceps brachii, respectively.

The muscle’s origin and insertion define the locations for
the boundary conditions. As tendon tissue is compared to
muscle tissue relatively stiff, it undergoes only relatively
small deformations. Hence, at the tendons’ origin and inser-
tions areas are considered to be spatially fixed with respect
to the area on the bone in which the tendons insert or from
which they originate.

The mesh for all components is generated within CMISS
using the least-squarefittingmethodsdescribedbyChris et al.
(1997). The overall model is depicted in Fig. 2. The orienta-
tion of the muscles, i.e. the coordinate system, is the same as
in Spitzer et al. (1996).

Fig. 2 The muscle tissue is coloured in dark red. Tendon tissue is
shown in beige and other soft tissue in white. The transition zone from
tendon to muscle tissue is indicated by a colour between dark red and
beige. For the triceps, it can be seen that one row of elements along the
longitudinal axis exhibits an increased tendon-tissue ratio. This shall
represent the aponeurosis sheet of a bipennate muscle. Since the biceps
brachii is assumed to be a fusiform skeletal muscle, the fibre orientation
is aligned with the longitudinal axis of the muscle. In the case of the
triceps brachii, the fibre orientation is defined starting from a fusiform
orientation and rotating the muscle fibres located on the medial and
lateral side of the aponeurosis by+15◦ and−15◦, respectively. aDorsal
view of the triceps brachii. b Lateral view of the biceps brachii

2.5 Equivalent static system

To avoid a large and complex system, in which all com-
ponents are considered to be deformable and in contact,
e.g. bone–bone contact within the joint, a reduced equiv-
alent static system is introduced to investigate equilibrium
positions of the upper limb model, see Fig. 3a. It consists
of the humerus, forearm bones, a pair of antagonistic upper
arm muscles, and an external force F , which is acting at the
distal end of the forearm. The humerus is supported in all
spatial directions and the forearm rotates around the fulcrum
of the elbow joint. The forearm’s rotation matrix is defined
by an axis and an angle. The rotation angle is defined to be
the elbow flexion angle, θ , and the rotation axis is defined
by a vector product of a vector along the humerus and the
orientation of a vector from the fulcrum and to the distal end
of the forearm.

A free body diagram of the forearm is defined by the black
line in Fig. 3b. The forces acting on the forearm (Fig. 3c) are
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Fig. 3 Building the equivalent static system. a Equivalent static system. b Definition of the area of interest. c Free body diagram of the forearm.
d Defining a moment equilibrium

the muscle reaction forces of the triceps brachii, T , of the
biceps brachii, B, the elbow contact forces Eh and Ev , and a
arbitrary chosen external load F , which acts as a perturbing
force to the system. As bothmuscles insert at the forearm, the
position of the forearm defines the respective muscle length
and lever arm. Hence, the muscles’ kinematics only depends
on the elbow angle and a moment balance can be formulated
for the forearm with respect to the fulcrum of the elbow, i.e.

B(θ, αB) lB(θ) + T (θ, αT ) lT (θ) + F lF (θ) = 0, (23)

where T (θ, α) and B(θ, α) are the exerted muscle forces for
a given α and θ and l j are the lever arms for j ∈ {T, B, F}.
The contact forces between humerus and forearm Eh and
Ev do not contribute the moment balance as their lever arms
are zero. The muscle lengths are defined by the linear dis-
tance between the origin and insertion points. The origin
is fixed, whereas the location of the insertion point (at the
ulna/radius) varies depending on the elbow flexion angle.
The chosen nodes on the bone are tracked for the physi-
ologically reasonable range of motion of the forearm. The
resulting absolute muscle length is defined as change of the
distance between origin and insertion relative to the visi-
ble human male’s initial resting position at θinit = 60◦.
Then, for each of the muscle’s relative change in length,
a separate third-order polynomial has been obtained using
MATLAB’s least-squares fitting functionality. The respec-
tive relative muscle lengths are depicted in Fig. 4a, b.

The muscle lever arms are determined using the tendon-
displacement method described by An et al. (1984). This
method is widely used and the related errors are considered
to be small. Herein, the lever arms are defined by

l j = dL j

dθ
, (24)

where j ∈ {T, B, F}, L j is the length of muscle j and l j
is the distance from the joint centre to the muscle’s line of
action. The resulting muscle lever arms are given by

lT = 9.399 × 10−4 θ2 − 0.1126 θ − 22.21, (25)

lB = −1.482 × 10−3 θ2 + 0.1776 θ + 35.02, (26)

lF = − sin(θ)LF , (27)

where LF is the distance from the elbow fulcrum to the distal
end of the forearm and defined to be LF = 282.5 mm. The
result for Eqs. (25) and (26) is depicted in Fig. 4c.

2.6 Musculoskeletal system solution schemes

Equation (23) includes four DoFs: the elbow angle, θ , the
muscle activation pair, αT and αB , and the external force,
F . The muscle reaction forces are a result of the finite ele-
ment simulation and depend on the elbow angle as well as on
the level of muscle activation. The reaction forces are deter-
mined by taking the Euclidean norm after summing the nodal
residual vectors at the muscle insertion area.

Based on the four DoFs, the following scenarios are
considered: (i) an activation-driven or forward-dynamics sce-
nario, inwhich one seeks the resulting elbow angle for a set of
prescribed activation levels, (ii) a position-driven or inverse-
dynamics model, in which one seeks the level of activation
given a specific movement, or (iii) a force-driven scenario, in
which one seeks the equilibrium of the system after altering
the external force. For each scenario, convergence is deter-
mined through the resulting elbow moment, i.e. the elbow
moment is considered as the system error.

To demonstrate the feasibility of the individual solution
schemes, the non-solution variables are fixed. For example,
within the activation-driven, forward-dynamics case, all vari-
ables except for the level of activation of a muscle (input)
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Fig. 4 Relative change in length of the biceps and triceps brachii and the associated lever arms for the entire range of motion. a Relative change
in length, for triceps brachii. b Relative change in length, for biceps brachii. c Lever arms for triceps, and biceps brachii

and the elbow angle (output) are fixed and denoted with a
bar above the variable. Similar in the case of the position-
driven, inverse-dynamics scenario, all variables except for
elbow angle (input) and the level of activation of a mus-
cle (output) have been kept fixed (denoted by a bar above
the variable). For the force-driven scenario, one assumes the
external load as input and seeks the elbow angle as an output.
Other input–output variable combinations are also feasible.

Note that due to the force–length characteristic within the
skeletal muscle constitutive law, a change in elbow angle
results in a modified muscle length and hence in a mod-
ified exerted muscle force even if the level of activation
remains unchanged. The same applies if the muscle length
remains unchanged, but the level of activation is modi-
fied. Hence, for each modification, one needs to solve the
entire continuum-mechanical muscle models including the
muscle–bone contact as the contact potentially has an impact
on the muscle length and hence the exerted force.

2.6.1 Activation-driven, forward-dynamics solution
scenario

For the activation-driven, forward-dynamics solution sce-
nario, one seeks the resulting elbow angle for prescribed
activation levels and a given external force. Prescribing arbi-
trary but fixed levels of activation for the biceps brachii and
the triceps brachii, i.e. ᾱB and ᾱT , respectively, and choos-
ing an initial angle θ(1) ∈ [10◦, 150◦] 	= θ(0) := 60◦, results
in a non-equilibrium state and produces a resulting elbow
moment (unless θ(1) has accidentally be chosen such the
system would be in equilibrium). The resulting moment is
determined by

M = B(θ, ᾱB) lB(θ) + T (θ, ᾱT ) lT (θ) + F̄ lF (θ). (28)

For the solution process, in which the external force and the
muscles’ level of activation are kept constant, a Newton iter-
ation is employed to determine an improved approximation
for the elbow angle, i.e. the next iteration step for the elbow

angle, θ(i+1), is given by

θ(i+1) = θ(i) − M (i)

∂M(i)

∂θ

, i = 1, . . . n , (29)

to determine the next iterate for the elbow angle. Should
θ(i+1) be outside the physiological range, i.e. θ(i+1) < 10◦
or θ(i+1) > 150◦, then the minimal or maximal physiologi-
cal range value is prescribed. Since computing the analytical
derivative of M with respect to θ is not really feasible and
a numerical approximation, e.g. using an appropriate differ-
ence scheme, is computationally expensive, (i.e. requires the
computation of the respective muscle forces for a perturbed
θ ), theNewton’smethod is replaced by the secantmethod, i.e.
∂M(i)

∂θ
is approximated by the following differential quotient,

∂M (i)

∂θ
≈ �M (i)

�θ(i)
= M (i) − M (i−1)

θ (i) − θ(i−1)
. (30)

As mentioned above, θ(0) is chosen to be 60◦, while θ(1) 	=
θ(0) is chosen arbitrarily.

By prescribing realistic time-dependent activation levels
for the respective muscles, one needs to solve at each time
step the above equilibrium equations to obtain the activation-
induced movement in the forward-dynamics simulation. As
inertia terms were neglected, this forward-dynamics simula-
tion approach only holds for relative slow movements.

2.6.2 Position-driven scenario inverse-dynamics scheme

In case of the position-driven scenario/inverse-dynamics
scheme, a desired angle θ , and therefore the position of the
forearm, the level of activation for one muscle and the exter-
nal force F are prescribed. The goal of this scenario is to
determine the level of activation of the non-prescribed mus-
cle. Without any loss of generality, this section assumes that
the level of activation for the biceps brachii is kept con-
stant, while one seeks the level of activation for the triceps.
Choosing an initial level of activation for the non-prescribed
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muscle, e.g. αT ∈ [0, 1], results in a non-equilibrium state.
The resulting moment is determined by

M = B(θ̄ , ᾱB) lB(θ̄) + T (θ̄ , αT ) lT (θ̄) + F lF (θ̄). (31)

For the solution process, in which the external force, the
biceps’ level of activation, and the elbow angle are kept con-
stant, (29) is adapted for this scenario to

α
(i+1)
T = α

(i)
T − M (i)

∂M(i)

∂αT

, i = 1, . . . , n, (32)

where n ∈ N. Again, for practical purposes, the Newton’s
method is replaced with its differential quotient

∂M (i)

∂αT
≈ �M (i)

�α
(i)
T

= M (i) − M (i−1)

α
(i)
T − α

(i−1)
T

= T (i) − T (i−1)

α
(i)
T − α

(i−1)
T

.

(33)

To determine the differential quotient for i = 1, the muscle
activation, α(0)

T , is defined as α
(0)
T = |α(1)

T −0.01|. Note, F (0)
T

needs to be computed based on α
(0)
T .

2.6.3 Force-driven scenario

Within the force-driven scenario, one assumes that the levels
of activation for the biceps and triceps brachii remain con-
stant. Now by varying the external force applied at the distal
end of the forearm results in a change of elbow angle, i.e. an
increase in F leads to a forearm extension, while a decrease
in F leads the forearm to flex. The change of elbow angle
resulting due to such a force perturbation can be solved in
the same way as described in Sect. 2.6.1.

2.6.4 Stopping criteria

All the above-described iterations aim to find the moment
equilibrium of the system. The system is considered to be
in equilibrium, if the remaining moment of the system after
the iteration, |M (i+1)| is less than a pre-described level of
accuracy, ε, i.e.

| M (i+1)| ≤ ε. (34)

Unless otherwise stated, ε is chosen to be 10−5 Nmm.

3 Results

3.1 Full range of motion

Due to the large range of motion, which is a result of all
combinations of muscle activations and external loads, it
is essential that the numerical scheme is solving the mus-
cles’ deformation based on selected material parameters and
assumed pre-stretches. To test the upper limbmodel’s robust-
ness, the first numerical study aims to independently solve for
each activation level and elbow angle, i.e. 10◦ ≤ θ ≤ 150◦
with θ = 10◦ +k ·1◦ and k = 0, . . . , 140 and α j ∈ [0, 1] for
α j = l ·0.1, for l = 0, . . . , 10 and j ∈ {T, B}, the respective
deformation of the muscles, the exerted muscle forces, and
the resulting contact forces. Snapshots of the selectedmuscle
deformations are depicted in Fig. 5.

For the fully extended forearm, the triceps closely follows
the shape of the humerus.At the distal end of the humerus, the
gap between humerus and triceps is slightly larger. This is due
to the fact that the boundary conditions describing the inser-
tion of triceps brachii follow the circular movement of the
olecranon and due to the fact that no boundary constraints are
defined, which would pull the triceps towards the humerus,
e.g. as the skin would do. While the forearm is flexing, the
triceps stretches. Further, for the fully extended forearm, the

Fig. 5 The resulting range of motion when considering contact and fully activated muscles. a θ = 10◦. b θ = 45◦. c θ = 80◦. d θ = 115◦. e
θ = 150◦
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Fig. 6 Muscle reaction forces in the triceps (dashed blue curve) and
biceps brachii (solid red curve) for activation α = 0.1 · i with i being
an integer and i = 0, . . . , 10. The lowest curve is determined by α = 0
and the highest by α = 1

biceps is fully stretched and forms a long slender muscle.
The fully activated biceps is only in contact with the humeral
shaft, if the elbow angle θ is less than 56◦ or more than 139◦.
This contact increases the length of the biceps muscle. Flex-
ing the forearm results in a shortened biceps and the belly
of the biceps forms. Due to the applied circular movement
at the insertion, the distance between the humerus and the
biceps brachii increases and contact plays a minor role.

3.1.1 Muscle reaction forces within the overall system

Figure 6 depicts the absolute value of the muscle reaction
forces for the biceps and triceps brachii for different acti-
vation levels throughout the full range of motion. The blue
(dashed) curves denote the triceps reaction forces, while the
red (solid) curves denote those of the biceps. The highest
curves represent the resulting muscle reaction force for a
fully activated muscle (α j = 1, j ∈ {B, T }), while the low-
est curves depict the purely passive mechanical behaviour
(α j = 0, j ∈ {B, T }) of the respective muscles.

The maximum triceps reaction force is reached between
115◦ and 120◦ depending on the level of activation. For the
fully activated triceps, the maximal value is T (115◦, 1.0) =
1123N, while the maximal value for the purely passive
behaviour is T (118◦, 0.0) = 508.2N. The biceps reaction
force is monotonically decreasing and reaches its maximal
force values for B(10◦, 1.0) = 663.3Nand itsminimal value
for B(10◦, 0.0) = 340.2N. Note, the pre-stretch is chosen
such that the muscle reaction force is positive for the shortest
muscle length.

The purely active force contribution of a muscle is
obtained by subtracting the passive muscle force from the
total one (cf. Fig. 7). Depending on the level of activation, the
optimal elbow angle for the triceps brachii ranges between
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Fig. 7 Active contribution to the total muscle force for the entire range
of motion and activation levels α j = 0.1 · i with i being an integer
between 1 and 10 and j ∈ {T, B}. Again, the dashed blue line represents
the contributions of the triceps and the red solid line the ones from the
biceps
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Fig. 8 The joint moment is a product of the muscle lever arm and
the muscle reaction force. The contribution of the triceps and biceps
brachii for the entire range of motion and activation levels are depicted
in solid red and dashed blue line, respectively. The curvewith the lowest
absolute value belongs to α = 0 (passive-only response) and raises in
�α = 0.1 steps up to α = 1 (fully active) for each muscle

θ = 109◦ (for αT = 0.1 and 0.9) and θ = 123◦ (for αT =
0.8). For the biceps brachii, the optimal elbow angle ranges
between θ = 51◦ (for αT = 1.0) and θ = 72◦ (for αT = 0.1).
From Fig. 7, one clearly sees that bothmuscles mainly act for
the largest portion of the physiological range of motion on
the ascending limb of the force–length relationship, i.e. the
muscle force predominantly increases if the muscle is being
stretched. Based on these force values, the resulting muscle
moments are computed and plotted in Fig. 8.

The blue (dashed) curves represent the moments for the
triceps brachii, and the red (solid) curves those for the biceps
brachii. As the two muscles are agonist and antagonist, the
resulting moments in Fig. 8 have the opposite sign. The
resulting lever arm is dominated by the resultingmuscle reac-
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Fig. 9 Normalised exerted muscle forces versus contact forces for the
entire range of motion assuming fully activated muscles. The muscle
reaction force are normalised by the muscle’s maximum muscle force
and the contact force is normalised with the exerted muscle force at the
corresponding elbow angle

tion force because the lever arm is minimally changing for
both muscles. For the triceps brachii, a maximal moment of
−26.1Nm is obtained for θ = 103◦ and αT = 1, while
a minimal moment of −0.88Nm is obtained for θ = 10◦
and αT = 0. The biceps generates its maximal moment
(25.8Nm) at an elbow angle of θ = 15◦ and αT = 1, while
its minimalmoment is close to zero and obtained at θ = 150◦
and αT = 0.

3.1.2 Contact forces developing within the overall system

Depending on the elbowangle, the contact forces between the
muscles and the bone can be significant. Figure 9 depicts the
normalised exerted muscle forces of the biceps and triceps
brachii and its contact forces with the bone. For better com-
parison, the exertedmuscle forces have been normalisedwith
respect to the maximal exerted muscle force of the respective
muscle. Further, the contact forces, depicted in Fig. 9, have
been normalised with respect to the exerted muscle force at
the corresponding elbow angle.

In general, the contact forces increase with increasing
elbow angle. For the fully activated triceps brachii, the con-
tact force reaches its maximal value at an elbow angle of
150◦. At this angle, the contact force is 70.4% of the exerted
muscle force that is equivalent to a contact force of 710N.
At θ = 115◦, which is the elbow angle at which the triceps
brachii generates under fully activated conditions its highest
force, the contact force is still 23.3% of the exerted muscle
force.

Since no surrounding tissue was considered within this
work, one would expect higher contact forces between the
biceps brachii and the bone if further muscles or other sur-
rounding tissue would also be considered. Nevertheless, at
small and large elbow angles, i.e. at 10◦ and at 150◦, the

contact force is still 41.6 and 11.0% of the respective exerted
muscle force.

3.2 Local impact of muscle–bone interaction on fibre
distribution

Asexisting forward-dynamicalmodels almost entirely appeal
to Hill-type skeletal muscle models that cannot take into
account the heterogeneity of the fibre direction within a
muscle and the contact between muscles and bone, little
is known about the impact of muscle–bone interactions on
these quantities. A suitable possibility to visualise the impact
of muscle–bone contact on the muscle fibres is to compare
the magnitude of the fibre stretches resulting from simula-
tions that consider contact with those that do not consider
contact. To compare the two scenarios with each other, the
fibre stretch is determined in each element at each of the 27
integration points of the respective Gauss–Legendre quadra-
ture scheme with 3 Gauss points in each element coordinate
direction. Figure 10a–d depicts the differences between the
computedfibre stretches, i.e. the differences between thefibre
stretches obtained from simulations considering contact and
from those that did not include any contact formulation. The
aim of Fig. 10 is to provide a spatially distributed view on the
impact of the contact formulation on the muscle mechanics.

The impact of muscle–bone contact is most significant
when the muscles are fully stretched, i.e. when the triceps
and biceps are in the fully flexed or fully extended position.
One can observe that the influence of the muscle–bone con-
tact increases with an increase in the level of activation. To
prevent penetration of the muscles through the bone, the con-
tact acts as a force boundary condition pushing the muscles
outward. Hence, the medial fibres are restrained and the lat-
eral ones are stretched. As a result, the differences in fibre
stretches tend to be positive in the lateral region, while they
are negative in the medial region.

Figure 10a, b depicts the influence of contact on the fibre
stretch for the fully extended arm. In this position, the contact
force between the triceps and the bone is less than 5% of the
respective muscle reaction force. Therefore, the influence of
contact on the fibre stretches of the triceps is minimal. This
is not true for the biceps. In the proposed model, the biceps
exhibits its strongest contact forces in the fully extended posi-
tion. Therefore, the influence of contact on the biceps’ fibre
stretch is more pronounced. This causes the fibre stretch to
decrease in regions far from the bone and to shorten in regions
close to the bone/contact.As stated above, the effect increases
with increasing activation levels (cf., Fig. 10b).

Figure 10c, d depicts the case in which the triceps is fully
stretched and the contact forces between the triceps and bone
are at its maximum. The triceps needs to bend around the
distal head of the humerus. This bending causes an increase in
muscle length. Most effected by this change in length are the
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Fig. 10 The differences in fibre stretch at each integration point
obtained from simulations considering contact and from such simu-
lations that did not include any contact formulation. a Fully extended,

θ = 10◦, and α = 0. b Fully extended, θ = 10◦, and α = 1. c Fully
flexed, θ = 150◦, and α = 0. d Fully flexed, θ = 150◦, and α = 1

regions far from the bone. In these regions, the fibre stretch
increases if compared to the fibre stretches resulting from
simulations not including contact. In regions close to the
bone, the fibre stretch decreases.

3.3 Convergence studies

While the previous sections focused on the mechanical
behaviour of the involved muscles for a large range of mus-
cle activities and elbow angles, the next sections focus in
determining equilibrium (cf. Sect. 2.6). For this purpose, the
equilibrium solution for a particular set of activation para-
meters αT and αB , initial angle θ , and applied force F is
determined. This equilibrium solution shall serve as refer-
ence solution throughout this work. To do so, three of the
four DoFs are prescribed in order to solve for the remaining
one, i.e. by choosing θ = θ̄ , αT = ᾱT , and αB = ᾱB , one
can easily solve for the external force by

F̄(θ̄) = − B(θ̄ , ᾱB) lB(θ̄) + T (θ̄ , ᾱT ) lT (θ̄)

lF (θ̄)
. (35)

By choosing ᾱT = 0.29, ᾱB = 0.8858, and θ̄ = 70.0◦,
one obtains exerted muscle forces for the biceps and triceps
brachii of B(θ̄ , ᾱB) = 451.9N and T (θ̄ , ᾱT ) = 483.3N,
respectively. Based on these computed muscle force values
and the respective moment arms, i.e. lT (θ̄) = −25.5mm,
lB(θ̄) = 40.2mm, and lF (θ̄) = 265.5mm, one obtains for
the static equilibrium an external force F̄ = 22.0N (cf. Eq.
35). Remember, the four DoFs marked with (·̄) build the
reference solution for the subsequent simulations.

Table 2 Results for the individual iterations necessary for achieving
equilibrium after perturbing αT from 0.29 to 0.20 and keeping the
remaining DoFs, i.e. F̄ = 22 N, ᾱB = 0.8858, θ̄ = 70◦, and ε = 10−5

Nmm, fixed

i αT FT FB M (i+1) �M
�αT

1 0.2000 4.293e+02 4.518e+02 −1.375e+03 4.297e+05

2 0.2032 4.313e+02 4.518e+02 −1.326e+03 1.545e+04

3 0.2890 4.828e+02 4.518e+02 −1.438e+01 1.528e+04

4 0.2900 4.833e+02 4.518e+02 −1.673e−01 1.510e+04

5 0.2900 4.833e+02 4.518e+02 −2.267e−05 1.510e+04

6 0.2900 4.833e+02 4.518e+02 −2.169e−05 6.525e+02

7 0.2900 4.833e+02 4.518e+02 −2.401e−10 6.525e+02

The results of the level of activation are truncated after three digits

3.3.1 Perturbations to the reference solution

The first numerical tests aim to solve for equilibrium after
perturbing individual values. In the first case, the level of
activation for the triceps is perturbed, while the other DoFs
maintain its initial values, i.e. θ̄ , ᾱB , and F̄ . Note, any pertur-
bation from the reference solution leads to a nonzero resulting
moment. The first numerical test investigates the behaviour
of the iteration procedure proposed in Sect. 2.6.2. The aim
is to iterate from the perturbed level of activation of the tri-
ceps to its level of activation of the initial elbow position,
i.e. the position, in which the musculoskeletal system is in
equilibrium.

To do so, αT is (randomly) chosen to be 0.20 (instead
of αT = 0.29, which would provide equilibrium as pre-
computed for the reference solution). The results of the
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Table 3 Results for the individual iterations necessary for achieving
equilibrium after perturbing αB from 0.8858 to 0.56 and keeping the
remaining DoFs, i.e. F̄ = 22 N, ᾱT = 0.29, θ̄ = 70◦, and ε = 10−5

Nmm, fixed

i αB FT FB M (i+1) �M
�αB

1 0.5600 4.833e+02 3.517e+02 4.023e+03 3.650e+05

2 0.5490 4.833e+02 3.481e+02 4.167e+03 −1.312e+04

3 0.8664 4.833e+02 4.462e+02 2.259e+02 −1.241e+04

4 0.8846 4.833e+02 4.515e+02 1.339e+01 −1.168e+04

5 0.8858 4.833e+02 4.518e+02 4.498e−02 −1.164e+04

6 0.8858 4.833e+02 4.518e+02 8.880e−06 −1.163e+04

The results of the level of activation are truncated after three digits

iteration process as proposed in Sect. 2.6.2 are shown in
Table 2. This particular perturbation (i.e. the perturbation
of αT from 0.29 to 0.20) results in an initial residual moment
of −1375Nmm. After only two iterations, the level of acti-
vation of the triceps brachii deviates by less than 1% from its
ground truth. After four iteration steps, the resulting moment
has decreased to M = 0.17Nmm. The stopping criteria,
ε = 10−5 Nmm in Eq. (34), are reached after seven iteration
steps. The system is considered to be in equilibrium. Note,
since the elbow position and the level of activation of the
biceps have not been changed, the exerted biceps force does
remain constant.

In the second scenario, the activation level of the biceps
brachii has been perturbed from ᾱB = 0.8858 to αB = 0.56.
The remaining DoFs are kept fixed, and the iteration process
for a position-driven scenario (cf. Sect. 2.6.2) is employed.
The results are shown in Table 3. Within this test case, there
exists an initial resulting moment of 4.023Nmm. After five
iteration steps, the absolute value of the resulting moment is
less than 0.05 Nmm and the level of activation deviates from
its exact solution by less than 0.2%. After six iteration steps,
the convergence requirement is met. This test case requires
one iteration step less than the previous one. However, the
relative perturbation of the second test case, �αB = 0.3258,
has been much larger than the relative change of the first test
case, �αt = 0.09.

Similar results are observed, for only perturbing the initial
angle and fixing the levels of activation, αT and αB , and
the external force, F . To demonstrate this, the angle θ is
perturbed from θ̄ = 70◦ to θ = 61◦, while the remaining
DoFs remain as in the reference solution. The results for
employing the iterative procedure described in Sect. 2.6.1
are presented in Table 4.

After perturbing the elbow angle, the resulting moment
is −3.784Nmm. After the first iteration, the angle deviates
from the reference solution already by far less than 1◦. While
the absolute difference of the angle θ between the second
iteration and the exact solution is approximately 0.122◦, the

Table 4 Results for the individual iterations necessary for achieving
equilibrium after perturbing θ from θ̄ to θ = 61◦ and keeping the
remaining DoFs, i.e. F̄ = 22N, ᾱT = 0.29, ᾱB = 0.89, and ε = 10−5

Nmm, fixed

i θ FT FB M �M
�θ

1 61.000 4.205e+02 4.952e+02 −3.784e+03 4.149e+02

2 70.122 4.842e+02 4.512e+02 5.107e+01 4.205e+02

3 70.000 4.833e+02 4.518e+02 −2.526e−02 4.207e+02

4 70.000 4.833e+02 4.518e+02 4.623e−06 4.207e+02

The results of the level of activation are truncated after three digits

Fig. 11 Three arbitrarily chosen time incidents (t1, t2, and t3) of an
arbitrarily chosen activation dynamics αB(t) versus time, t

stopping criteria based on themoment (|M (i)| < 10−5 Nmm)
are reached completing the fourth iteration. As the exerted
muscle force of bothmuscles depends on the elbow angle and
the contact between the muscle and bone, the muscle forces
for both muscles need to be re-computed at every iteration
step.

3.3.2 Time-dependent activation levels

In the following, the input to the proposed upper limb model
is a time-dependent activation level for the biceps brachii,
αB(t). While the level of activation for the biceps brachii can
change with time, the triceps brachii’s level of activation and
the external force remain constant: they are ᾱT (t) ≡ 0.09 and
F̄(t) ≡ 44N, respectively. To demonstrate the capability of
producing activation-driven movements, three distinct levels
of activation for the biceps brachii are chosen as input to the
activation-driven approach. Within this section, one assumes
that evaluating αB(t) at t1, t2, and t3 (with t1 < t2 < t3)
results in αB(t1) = 0.8858, αB(t2) = 0.32, and αB(t3) =
0.65, see Fig. 11. The initial elbow angle was chosen to be
θ = 60◦. The results of this simulation are presented in
Table 5. Note that the converged result of one time step is
used as the initial step for the iteration procedure of the next
time step.

In this example, a maximum of 7 iterations per time
instance were needed to satisfy the stopping criteria, i.e. Eq.
(34) with ε = 10−5 Nmm. For the initial biceps’ level of
activation, αB(t1) = 0.8858, only 4 iterations were neces-
sary to achieve convergence. The resulting elbow angle was
θ = 57.469◦. For the second and third time instance, t2 and
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Table 5 Results for the
individual iterations by
prescribing a time-dependent
activation level for the biceps
brachii

i θ FT FB M �M
�θ

Assuming αB(t1) = 0.8858 at time step t1

1 61.000 4.205493e+02 4.952903e+02 1.651043e+03 4.683228e+02

2 57.475 3.963275e+02 5.111468e+02 2.551636e+00 4.675991e+02

3 57.469 3.962904e+02 5.111708e+02 7.932453e−03 4.661454e+02

4 57.469 3.962902e+02 5.111708e+02 4.417234e−08 4.661428e+02

Assuming αB(t2) = 0.32 at time step t2

1 57.469 3.962902e+02 3.100290e+02 8.111941e+03 3.873484e+04

2 57.260 3.948658e+02 3.106847e+02 8.024662e+03 4.167603e+02

3 38.005 2.742716e+02 3.699139e+02 −1.124676e+02 4.226013e+02

4 38.271 2.757791e+02 3.691146e+02 −8.383779e−01 4.194511e+02

5 38.273 2.757904e+02 3.691086e+02 −1.083532e−03 4.189090e+02

6 38.273 2.757904e+02 3.691086e+02 −1.049557e−09 4.189086e+02

Assuming αB(t3) = 0.65 at time step t3

1 38.273 2.757904e+02 4.933647e+02 −4.926016e+03 −2.888999e+11

2 38.273 2.757904e+02 4.933647e+02 −4.926017e+03 3.438221e+04

3 38.416 2.766038e+02 4.929828e+02 −4.868961e+03 3.982336e+02

4 50.643 3.509245e+02 4.557021e+02 2.355931e+02 4.175028e+02

5 50.078 3.472831e+02 4.576026e+02 −7.989611e+00 4.316615e+02

6 50.097 3.474023e+02 4.575406e+02 −8.848240e−03 4.311834e+02

7 50.097 3.474024e+02 4.575405e+02 3.368368e−07 4.311998e+02

The levels of activation for the triceps, ᾱT (t) ≡ 0.09, and the external force, F̄(t) ≡ 44N, are assumed to
remain constant. Convergence was achieved, if the absolute value of the moment was less than
ε = 10−5 Nmm
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Fig. 12 Convergence history for the time-dependent activation case.
The chosen level of accuracy, ε = 10−5 Nmm, with respect to the
residual moment is indicated by the horizontal red line

t3, convergence was achieved after 6 and 7 iterations, respec-
tively. The resulting elbow angles were θ = 38.273◦ and
θ = 50.097◦.

Figure 12 depicts the residualmoments on the left ordinate
(semi-log) and the elbow angle (normal) for each iteration
step of the above-described test case.

4 Discussion

So far, continuum-mechanical investigations of parts of
the musculoskeletal system have predominantly focused on
investigating bone mechanics or on the mechanical behav-
iour of skeletal muscles in isolation. Continuum-mechanical
models of musculoskeletal systems have been hardly con-
sidered due to the significant increase in computational cost
and increased model complexity. The proposed framework
is the first one that provides the basis for simulations of
musculoskeletal systems, in particular for forward-dynamics
simulations of musculoskeletal systems, in which all com-
ponents are represented as volumetric objects and in which
the mechanical behaviour of the muscle–tendon complex
is modelled using principles of three-dimensional contin-
uum mechanics. This work demonstrates the feasibility
of using three-dimensional skeletal muscle models and
considering tissue–tissue interaction. This new modelling
approach provides the basis for a better understanding of joint
loading and, hence, for biomechanically informed implant
designs or prosthesis. However, further research is needed to
achieve forward-dynamics simulation of multi-muscle mus-
culoskeletal systems. In particular, the ability to couple the
proposed framework to other forward-dynamics methodolo-
gies capable of predicting time-dependent individual muscle
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activation levels, e.g. by using state-of-the-art control algo-
rithms, will be needed.

4.1 Pre-stretch, optimal fibre length, and moment arms

4.1.1 Pre-stretch and its influence on optimal fibre length

When using skeletal muscle models in isolation, the pre-
stretch, and, hence, the true reference configuration, plays a
minor role. For example, the overall conclusion drawn from
studies investigating the influence of anatomical or phys-
iological parameters on the mechanical behaviour of the
muscles, such as revealing the causes of non-uniform strains
in the biceps brachii (Blemker et al. 2005), investigating
the muscle–aponeurosis interaction (Chi et al. 2010), explor-
ing micro-mechanical effects of fibre and fascicle geometry
(Sharafi and Blemker 2010), or determining the influence
of compartmentalisations within skeletal muscles (Heidlauf
and Röhrle 2014), would still hold if these studies would
have made different assumptions on the pre-stretch. This is
no longer the case within models predicting the mechanical
loading of musculoskeletal systems. Within a musculoskele-
tal system, the evaluation of the muscle reaction force does
not only depend on the strongly nonlinear skeletal muscle
constitutive law, but also on the choice of the initial config-
uration of the skeletal muscles.

This is due to the well-known force–length relationship
of skeletal muscles, which was introduced in Eq. (12). By
modifying the initial pre-stretch of one of the muscles, the
respective muscle would produce a different force for a
particular joint position. This in turn results in a different
equilibrium position and would alter the muscle length(s) of
the other muscle(s). Hence, modifying the pre-stretch of one
muscle leads to an elbow position and ultimately to a differ-
ent motion. As a consequence of altering the pre-stretch, one
might not even be able to achieve the full range of motion for
physiological loads. It should be mentioned that a simpler
constitutive law for the skeletal muscle tissue, i.e. a neo-
Hookean model for the passive part and a quadratic function
for the force–length relationship, would have suffice for this
study.

For in silico studies, it is essential to appropriately describe
the reference configuration of the respective muscles within
the musculoskeletal system. One might think that the refer-
ence configuration can be deduced from the state at which
the musculoskeletal system’s acts in an ”optimal” mechan-
ical sense. However, to the authors’ knowledge, there is no
unique definition for describing the state in which a mus-
cle acts on a joint maximally. The muscle’s optimum can be
either defined when the muscle reaction force is maximal,
when the active contribution of the muscle reaction force is
maximal, when the moment of one muscle acting on a joint

is maximal, or when the moment of all muscles acting on a
joint is maximal.

4.1.2 Moment arm interpretation and calculation

As far as the entire musculoskeletal system is concerned,
there exist experimental studies that aim to determine the
mechanical behaviour of the entire system. For the upper
limb, there exist studies that aim to experimentally deter-
mine the elbow angle at which the elbow torques are at its
maximum. However, there is quite a large spread. Amis et al.
(1980), for example, report an elbow angle of 60◦, while
Buchanan et al. (1998) report an angle of 100◦. Moreover,
knowing the maximal elbow torque still does not provide any
information on the muscles. Computational models, which
might be at times subject to quite restrictive assumptions,
need to be employed in order to determine muscle-specific
properties, albeit for the knee, Lloyd and Besier (2003) use,
for example, a Biodex Medical Systems (2006) dynamome-
ter and an EMG-driven musculoskeletal model to determine
muscle-specific properties and moment arms.

For theproposed continuum-mechanical upper limbmodel,
the extracted lumped parameters are in good agreement with
the literature data. For example, the resulting muscle forces
obtained for the full range of motion and for the full range
activity levels (cf. Fig. 6) agree well with the data published
by Murray et al. (2000). Further, the range of operation for
the biceps and triceps brachii is similar. The optimal elbow
joint angle for which each of the muscles produces its max-
imal force is always towards the longest muscle length. For
the triceps, this is the case when the forearm is fully flexed
and for the biceps when the forearm is fully extended. The
presented data also agree well with the in silico studies of
Buchanan et al. (1986, 2004) and Manal and Buchanan
(2003). Although not a rigorous validation, this compari-
son provides computational justification that the developed
model and the presumed pre-stretches are reasonable.

In addition to determining the optimal fascicle/muscle
lengths, the calculation of the muscle lever arms has a strong
impact on the resulting muscle moment. This work bases
the calculation of the lever arms on the tendon-displacement
method published by An et al. (1984). This method is widely
used and the resulting lever arms are generally accepted and
the lever arms computed based on the proposed continuum-
mechanical upper limbmodel within this work compare well
with the literature (An et al. 1989; Murray et al. 1995). The
main drawback of the tendon-displacement method, how-
ever, is that it cannot take into account dynamically changing
mechanical behaviour such as the orientation of the muscle
reaction force or the contact-induced alterations of the mus-
cle’s point of action. Since a continuum-mechanical approach
provides such data in a natural way, one could have used
within the proposed model a more accurate mathematical
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description of the muscle lever arms. However, by choosing
a different lever arm method, one would have unnecessarily
complicated the comparison between the proposed model
and existing literature data. Moreover, one would have had
to carry out a detailed analysis on the impact of using a differ-
ent muscle lever arm method than the tendon-displacement
method. Thiswould have been beyond the scope of this work.

Next to the constitutive laws, lever arms, and a muscle’s
pre-stretch and optimal fibre length, the fact that only one
antagonistic muscle pair has been considered within this
workprobably influences themaximal elbow torque themost.
Clearly, the maximal elbow torque is due to the interplay of
several muscles acting at the same time. Hence, the use of
a two-muscle system limits the ability to (rigorously) verify
the proposed model with respect to experimentally measured
maximal elbow torques.

4.2 Contact

In comparison with a multi-body-dynamics simulation,
the proposed continuum-mechanical approach has multiple
advantages. One of the major advantages is that contact
betweenmuscle and bone is naturally considered. In case that
the consideredmusculoskeletalmusclemodelwould not only
consist of an agonist–antagonist muscle pair, e.g. if the pro-
posed upper limb model would be extended by including the
brachialis, one could additionally study the influence of the
contact between the muscles. The same would apply, if one
would extend the upper limb model by considering the other
upper limb muscles, the fatty tissue, and the skin. Since this
study only considers the biceps muscle, significant contact
forces are only obtained for the fully activatedmuscle and for
elbow angles θ < 30◦. This result is not further surprising
since the biceps is a superficial muscle and no other muscles
than the biceps and triceps brachii have been considered. For
the triceps brachii, which is considered to be the only exten-
sor muscle, the area, in which the triceps brachii is in contact
with the humerus, is considerable. This is particularly true
for the area nearby the olecranon. The olecranon acts as a
(dynamic) pulley and contact forces reach up to 750N.

It is obvious that the contact between the muscle and the
bone influences the deformation of the respective muscles.
As depicted in Fig. 10, the contact causes spatial changes in
the muscle fibre stretches. Since the fibre stretch directly
influences the force-generating capabilities of the muscle
through the force–length relationship, the resulting muscle
forces change due to the contact. Although this effect is not
deniable (Siebert et al. 2014), the error introduced by assum-
ing a phenomenological constitutive law is most likely more
significant.

The influence of the contact probably influences more the
muscle force direction than the actual magnitude of the mus-
cle force. This is due to the geometry of the system and

due to the muscle attachment areas. The dynamics of chang-
ing muscle force directions due to geometrical constraints
cannot be captured within multi-body simulations, straight-
forwardly. The deviations in the muscle force direction can
only be taken into account through pulleys.

Another aspect, not yet discussed, is the influence of
transversal muscle forces on the joint forces. Through
muscle–bone contact, the muscle forces, mainly acting along
the bones in longitudinal direction, introduce transversal
forces at contact region. This transversal force has the poten-
tial to compress adjacent joints, which are crossed by the
respective muscles. With that effect, it is plausible that joint
stiffness is not only dependent on the longitudinal forces act-
ing over themuscles’ and ligaments’ lever arms on both sides
of the joint, but also depend on the transversal force origi-
nating from the muscle–bone contact. The proposed model
described in this contribution can take that effect into account
and is therefore better in representing the biological situation.

4.3 Limitations and opportunities of the upper limb
model

4.3.1 The constitutive description

The resulting contact forces depend of course also on the
continuum-mechanical descriptions of the involved tissues.
The bone is considered to be rigid. Given the difference in
the stiffness between the involved tissues, this is certainly a
reasonable assumption. One would only expect small errors
due to this assumption.

The constitutive law for the muscle tissue is state of the
art. Unfortunately, there is hardly any experimental data on
whole muscles that would provide a better basis for fitting
the material parameters of the proposed constitutive laws,
i.e. for a continuum-mechanical model of a skeletal mus-
cle that consists of a tendinous regions, of a tendon–muscle
transition zone, and of actively contracting muscle tissue.
The major advantage of the proposed constitutive law is that
only two more parameters (γ M and γ ST) are introduced to
describe the mechanical behaviour of the muscle, tendon,
muscle-tendon transition zone as well as other soft tissue,
i.e. fat. While the material parameters have been individu-
ally fitted to experimental data, the geometrical demarcation
of these three zones is rather abrupt and based on experience
rather than imaging data. More research needs to be carried
out to improve the overall mechanical descriptions of such
models. However, since this work focuses on developing the
framework for forward-dynamics simulations, and since the
resulting muscle forces are reasonable, no further investi-
gations in improving the constitutive laws have been made
within this work.
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4.3.2 Modelling muscle recruitment

A similar argument applies to modelling the muscles’ acti-
vation. It is presumed to be homogeneous throughout the
muscle tissue. Skeletal muscle recruitment, however, is quite
complex and heterogeneous. Nevertheless, the framework
is set up in such a way that more complex and realistic
musculoskeletal muscle models could also be employed.
For example, the purely continuum-mechanical model could
be replaced with a more detailed chemo-electromechanical
model as, for example, proposed by Röhrle et al. (2012) or
Heidlauf and Röhrle (2013, 2014). The same also applies,
if one would aim to substitute the pre-described levels of
activation by biophysical recruitment models (e.g. Heid-
lauf et al. 2013). One of the key advantages of employing
chemo-electromechanical models within such a framework
would be the fact that one could predict (surface) EMG in
a straight forward fashion (Mordhorst et al. 2015). Since
surface EMG can be easily collected and recorded on the
biceps, the computed virtual surface EMG data could be
used to either validate the (recruitment) model or to drive
the model.

4.3.3 Computational cost

Using such detailed multi-scale models to determine the
exertedmuscle forcewould significantly increase the compu-
tational costs. Onewouldmost likely need a significant-sized
high-performance computing cluster in order to obtain solu-
tions in acceptable times. The additional computing cost
is, however, mainly due to an increase in model complex-
ity for computing the respective muscle reaction forces and
not necessarily for determining the equilibrium position. The
number of Newton iteration steps per equilibrium is expected
to remain similarly.

The overall number of Newton iterations could be signif-
icantly reduced by adjusting the level of accuracy. Consid-
ering the presented moments within the system, a moment
threshold of ε = 10−5 Nmm could be considered as too
excessive. A threshold of ε = 1 Nmm should suffice without
introducing too much error within the system.

4.4 Model validation

Model validation will be a very challenging objective for the
proposed musculoskeletal system simulations. Just like for
multi-body simulations, experimentally measuring mechan-
ical data during motion that could be used to (indirectly)
validate the mechanical behaviour of the muscles within
a musculoskeletal system hardly exist. However, if the
presented continuum-mechanical skeletal muscle model is
replaced by an chemo-electromechanical model and if realis-
tic recruitment patterns could be determined (either through

motor unit decomposition of high-density EMG signals or
through biophysical motor neuron models), one could poten-
tially achieve some validation of the proposed work by
linking in silico EMG signals with measured EMG data
and arm motion. This, however, would come with a sig-
nificant increase in computational time. Depending on the
number of considered fibres, the chemo-electromechanical
models would require significant computational time for a
single muscle force calculation. Since the proposed solution
strategies, e.g. Sect. 2.6.1, requires for each time step several
skeletal muscle force solves, the computational time would
significantly increase.

A further possibility of validating such a framework could
include a change of musculoskeletal system. If one consid-
ers instead of a normal subject a subject with an amputation,
new possibilities for validation arise. This is due to the fact
that the amputation leads, from a mechanical point of view,
to a non-constrained joint at its distal end. Since the bone
is no longer constrained, measuring contact pressure, deter-
mining the EMG signal and tracking the bone and overall
limb movement, could potentially provide an unique set of
data to validate a musculoskeletal system model similar to
the proposed one. This, however, is beyond the scope of the
current work.

Furthermore, since this framework appeals to a three-
dimensional framework, potential means of validation could
also be by means of cine DENSE dynamic magnetic reso-
nance imaging (MRI) [cf. Fiorentino et al. (2012)], which
provides means to determine the strain by means of MRI.
However, to the best knowledge of the authors, such data do
currently not exist for dynamic movements.

4.5 Outlook and summary

The focus of this work was on establishing an extendable
framework that initially focused on a one DoF hinge joint,
an antagonistic muscle pair, and a simplified moment equi-
librium equation. This setup was chosen such that no muscle
redundancy problem needed to be solved. The forward-
dynamics simulations are achieved through prescribing time-
dependent input variables. To solve the muscle redundancy
problem, the proposed framework needs to be coupled to
other frameworks that are currently capable of solving the
redundancy problem, e.g. rigid-body simulations. Coupling
the proposed continuum-mechanical framework with rigid-
body simulations can be seen as a predictor–correctormethod
(Röhrle et al. 2013). In this sense, the multi-body simula-
tions would provide a prediction of the muscle activation and
movement, while the continuum-mechanical model would
provide the correction due to the geometrical constraints
of the model, i.e. the contact between muscle and bone.
Moreover, the continuum-mechanical model could provide
improved lines of action to the rigid-body simulations in

123



A two-muscle, continuum-mechanical forward simulation of the upper limb 761

order to improve theirmodel validity.Moreover, the proposed
framework has great potential for investigating and hypoth-
esis testing of the mechanical behaviour of different skeletal
muscle properties. For example, each phenomena that has
so far been studied only skeletal muscles in isolation (essen-
tially all research that has been utilising three-dimensional
continuum-mechanical FE skeletal muscle model to inves-
tigate mechanical behaviour of skeletal muscles) can now
be tested in what-if scenarios within a musculoskeletal sys-
tem.
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