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Abstract Bone loss is a serious health problem. In vivo
studies have found that mechanical stimulation may inhibit
bone loss as elevated strain in bone induces osteogenesis,
i.e. new bone formation. However, the exact relationship
between mechanical environment and osteogenesis is less
clear. Normal strain is considered as a prime stimulus of
osteogenic activity; however, there are some instances in the
literature where osteogenesis is observed in the vicinity of
minimal normal strain, specifically near the neutral axis of
bending in long bones. It suggests that osteogenesis may also
be induced by other or secondary components of mechanical
environment such as shear strain or canalicular fluid flow. As
it is evident from the literature, shear strain and fluid flow
can be potent stimuli of osteogenesis. This study presents a
computational model to investigate the roles of these stimuli
in bone adaptation. The model assumes that bone formation
rate is roughly proportional to the normal, shear and fluid
shear strain energy density above their osteogenic thresh-
olds. In vivo osteogenesis due to cyclic cantilever bending
of a murine tibia has been simulated. The model predicts
results close to experimental findings when normal strain,
and shear strain or fluid shearwere combined. This study also
gives a new perspective on the relation between osteogenic
potential of micro-level fluid shear and that of macro-level
bending shear. Attempts to establish such relations among
the components of mechanical environment and correspond-
ing osteogenesis may ultimately aid in the development of
effective approaches to mitigating bone loss.
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List of symbols

εi normal strain at surface coordinate ‘i’
M bending moment
yi distance from the neutral axis to surface

coordinate ‘i’
E Young’s modulus of the bone
I area moment of inertia
γi shear strain at surface coordinate ‘i’
V vertical shear force
Qi first moment of area
ti width of the section at point ‘i’
Psteady steady-state response of the pore pressure
B relative compressibility constant orSkemp-

ton coefficient
υu Poisson’s ratio of the solid bone matrix

under undrained conditions
a thickness of the cortex
y∗ dimensionless length parameter
t∗ dimensionless time parameter
Ω dimensionless frequency parameter
t time
c diffusion coefficient
ω angular frequency (=2 π f )
υ Poisson’s ratio of the bone
H dimensionless stress coefficient
Si fluid shear stress at surface coordinate ‘i’
bo radius of the canaliculus
ao radius of the cell process
λ dimensionless length ratio (=bo/

√
kp)

kp Darcy’s law permeability constant
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Io modified Bessel function of the first kind
Ko modified Bessel function of the third kind
q the ratio of the radius of the canalicu-

lus, bo, to the radius of the cell process,
ao,(=bo/ao)

U ε
i ,U γ

i ,Us
i strain energy density (SED) due to the nor-

mal strain, the shear strain and the fluid
shear, respectively, at surface coordinate ‘i’

U ε
re f ,U

γ

re f ,U
s
re f reference SED for normal strain, shear

strain and fluid shear, respectively.
C bone’s surface remodelling rate coefficient
G shear modulus of the bone
Gosc shear modulus of the osteocyte
	i natural bone growth rate at surface coordi-

nate ‘i’

1 Introduction

Metabolic bone disorders such as osteoporosis or bone/
muscle disuse cause bone loss which ultimately leads to
severe fractures in weight-bearing bones (Dirschl et al. 1997;
Maimoun et al. 2006; Lau and Guo 2011; Vico et al. 2000).
Several in vivo studies have shown that a dynamic loading
on bone may effectively inhibit bone resorption as it encour-
ages new bone formation at the sites of peak strainmagnitude
(Rubin and Lanyon 1985; Hillam and Skerry 1995; Inman
et al. 1999; Rubin et al. 2003; Shackelford 2004). Normal
strain is believed to act as a principal stimulus of osteo-
genesis (Turner et al. 1994; Kotha et al. 2004; De Souza
et al. 2005; Sample et al. 2010; Moustafa et al. 2012). How-
ever, based on a site-specific comparative analysis between
the new bone distribution reported in several in vivo studies
(such as Gross et al. 1997; Judex et al. 1997; Mosley et al.
1997; Srinivasan et al. 2002; LaMothe 2004; Zhang 2006;
Kuruvilla et al. 2008; Matsumoto et al. 2008; Roberts et al.
2009; Lynch et al. 2011; Sakai et al. 2011; Weatherholt et al.
2013;Wallace et al. 2014; Birkhold et al. 2014) and the corre-
sponding strain distribution, especially the position of neutral
axis, reported in the same (Judex et al. 1997; Mosley et al.
1997; Zhang 2006; Matsumoto et al. 2008; Wallace et al.
2014) or other studies (Akhter et al. 1992; Srinivasan and
Gross 1999; Srinivasan et al. 2013; Willie et al. 2013; Wag-
ner et al. 2013; Patel et al. 2014; Yang et al. 2014; Razi et al.
2015), we find several instances where new bone formation
occurs even in the absence of normal strain, specifically near
neutral axis of bending in long bones. For example, an in vivo
study on murine tibiae of female C57Bl/6J mice (10 weeks
old) subjected to cantilever bending of 0.5 N for 500 loading
cycles at 1 Hz led to osteogenesis away from as well as near
the neutral axis; thus, the normal strain alone was unable to
explain the site-specificity of newbone formation (Srinivasan
et al. 2002). In that study, it can also be seen that new bone

formation in the case of 0.5N loading ismore than that in 0.25
N loading group, site-specifically near the neutral axis at the
endocortical surface, and it was also reported that no signifi-
cant difference in new bone distribution was noticed between
the control and 0.25 N loading groups. Hence, osteogenesis
is mostly due to mechanical loading although natural growth
is slightly present at endocortical surface (compare Fig. 1c
with Fig. 3a). As such, the mid-diaphyseal histological sec-
tion reported in Srinivasan et al. (2002) represents a typical
new bone distribution for cantilever loading case which can
be observed in several similar in vivo studies (Srinivasan
2003; LaMothe 2004; Srinivasan et al. 2010). Osteogenesis
was similarly enhanced significantly in loaded limb as com-
pared to natural bone growth in intact limb, in most of the
above-cited studies. These studies were done on 10- to 16-
week-old mice, which are equivalent to 18.4- to 24-year-old
humans. This age group has been widely considered suit-
able in the literature to study bone’s adaptation as the active
bone growth decreases by the age of 16 weeks (Beamer et al.
1996; Sheng et al. 1999; Lee et al. 2002; Ferguson et al.
2003; Somerville et al. 2004; Wergedal et al. 2005; Flurkey
et al. 2007; Main et al. 2010; Sakai et al. 2011). New bone
formation near minimal strain sites has also been observed
in fully adult mice (Srinivasan et al. 2002, 2010), growing
rats (Mosley et al. 1997), juvenile sheep (Wallace et al. 2014)
and adult turkey (Judex et al. 1997).

This work presents a computational study that attempts
to investigate and explain new bone formation at minimal
strain sites. A number of computational models are already
available in the literature which can predict and/or simu-
late site-specific new bone formation (Huiskes et al. 1987;
Brown et al. 1990; Fridez et al. 1998; Levenston et al. 1998;
Taylor et al. 2003; Ausk et al. 2006; Martínez and Cerro-
laza 2006; Chennimalai Kumar et al. 2009; Florio and Narh
2012). These models assume normal strain as a sole primary
stimulus for osteogenesis and hence fall short to simulate
those experiments where osteogenic activities are observed
aroundminimal strain magnitude. Lack of spatial correlation
between locations of new bone formation and that of elevated
normal strain proposes that osteogenesis may be driven by
secondary components of induced mechanical environment
such as bending-induced shear stresses and canalicular fluid
flow, which may be potent stimuli of osteogenesis near mini-
mal strain sites (Thompson 1942; Srinivasan andGross 2000;
Burr et al. 2002). In fact, several in vivo and in vitro studies
have explained the role of shear strain (De Margerie et al.
2005; Skedros et al. 2003; Taylor et al. 2009) and fluid shear
(Lu et al. 2012; Turner and Pavalko 1998) in new bone forma-
tion. Skedros et al. (2003) have shown that sites experiencing
shear strain had increased cortical thickness and lacunae den-
sity in turkey ulna mid-shaft, namely near the neutral axis.
Srinivasan andGross (2000) have also reportedmaximal fluid
flow at these sites. Thus, shear strain may indirectly influ-
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Computer modelling of bone’s adaptation: the role of normal strain, shear strain and fluid flow 397

Fig. 1 a Loading configuration of murine tibia and b the idealized geometry of tibial cross section at section a–a′. The neutral axis (N.A.) is shown
as a solid straight line. c Natural bone growth on control section (adapted from Fig. 3a of Srinivasan et al. 2002)

ence the fluid flow and thus the new bone formation. Carter
et al. (1998) have also suggested that tissue level shear strain
may induce distortional strain at cellular level and change
cell shape. It disrupts the cell–extracellularmatrix interaction
and may initiate integrin-mediated bone remodelling activi-
ties (Marie 2013). Accordingly, osteogenesis as a function of
shear strain versus as a function of fluid shear has been stud-
ied here, using a computational model based on algorithms
proposed inprevious studies (Cowin et al. 1985;Huiskes et al.
1987; Chennimalai Kumar et al. 2009). The model simulates
loading-induced osteogenesis noticed in the in vivo study of
Srinivasan et al. (2002). In the current approach, bone for-
mation rate is assumed roughly proportional to strain energy
densities (SED) due to primary as well as secondary stim-
uli in excess of their osteogenic thresholds. The osteogenic
potentials of these stimuli are individually investigated. Sub-
sequently, the effect of bending shear strain or fluid shear
stress is combined with normal strain to predict osteogene-
sis. The combinations, viz. normal strainwith shear strain and
normal strain with fluid shear, predict results close to experi-
mental values. This computational studymay help to identify
a simple and computationally easy relationship between site-

specific osteogenesis and components of loading-induced
mechanical environment, which may, in turn, prove useful in
the development of therapeutic biomechanical interventions
(such as physical exercises) for the prevention and treatment
of bone loss.

2 Methods

2.1 Estimation of normal and shear strains

In the present study, we model osteogenesis for a case where
tibia of a 10-week-old female C57Bl/6J mouse was sub-
jected to a continuous cyclic cantilever loading of 0.5 N
for 500 cycles at 1 Hz. This loading has been referred to
as ‘high-magnitude regimen’ in Srinivasan et al. (2002). A
mid-diaphyseal cross section located at 1.8mm proximal to
the tibia–fibula junction of the murine tibia has been ide-
alized using 120 surface coordinates as shown in Fig. 1a,
b. Geometric properties such as centroid, cortical area and
area moment of inertia are estimated assuming the cross sec-
tion is enclosed by linear piecewise curves. The neutral axis
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Table 1 Values of the
parameters used in the computer
simulation

Parameters, symbol, units Value

Young’s modulus of the bone, E (GPA) 20a

Poisson’s ratio of the bone, υ 0.3b

Shear modulus, G (=E/(2(1 + υ))) (GPA) 7.69a,b

Young’s modulus of the osteocyte, Eosc (kPa) 4.47c

Poisson’s ratio of the osteocyte, υosc 0.3c

Shear modulus of the osteocyte, Gosc (=Eosc/(2(1 + υosc))) (kPa) 1.72b,c

Relative compressibility coefficient or Skempton pore pressure
coefficient, B

0.53d

Diffusion coefficient, c(m2/s) 5.1 × 10−7e

Poisson’s ratio of the solid bone matrix under ‘undrained conditions’, υu 0.33d

Radius of canaliculus, bo(μm) 0.2d

Radius of the cell process, ao(μm) 0.1d

Local or small scale permeability constant, kp(m2) d,h4.49 × 10−18

Surface remodelling rate coefficients, C(unit4/timestep-Joule) C
εp
i = Cεc

i = 1 × 10−8

C
γp
i = Cγc

i = 1 × 10−6

C
sp
i = Csc

i = 1

Reference SED, Uref (Joule/m3) U
εp
re f = U εc

re f = 6400f,g

U
γp
re f = Uγc

re f = 195a

U
γp
re f = Uγc

re f = c1 × 10−4

a Prasad et al. (2010)
b Popov and Balan (1998)
c Verbruggen et al. (2012)
d Weinbaum et al. (1994)
e Cowin 1999
f Fritton et al. (2005)
g Srinivasan et al. (2007)
h Lemaire et al. (2012)

is assumed to be passing through the centroid. Its orienta-
tion has been adapted from the literature (Prasad et al. 2010;
Srinivasan et al. 2013), where it was computed using finite
element method (Fig. 1). Tibia is idealized as a linearly elas-
tic, homogeneous, isotropic cantilever beam with Young’s
and shear moduli of 20 and 7.69GPa, respectively, and is
subjected to a load of 0.5 N at the free distal end (Fig. 1a).
The loading waveform is taken similar to that given in Srini-
vasan et al. (2002). The beam theory was used to estimate
normal and shear strains in the cortex, especially at periosteal
and endocortical surfaces (Popov and Balan 1998):

εi = M · yi
E · I (1)

γi = V · Qi

G · I · ti (2)

where εi and γi are normal and shear strains, respectively,
at any surface coordinate i (i = 1–120); M is the bending
moment at the cross section; yi is perpendicular distance
between the surface coordinate and neutral axis; I is the sec-
ond moment of area; V is the vertical shear force (0.5 N); Qi

is the first moment of the area lying above an axis passing

through the point i and parallel to the neutral axis; ti is the
width of the section along an axis passing through point i and
parallel to the neutral axis; E and G are Young’s modulus
and shear modulus, respectively (Table 1). The initial corti-
cal area and area moment of inertia were 0.5042mm2 and
0.06mm4, respectively. Maximum normal strain calculated
in the model was approximately 1311με which is close to
the in vivo strain values, i.e. 1330 ± 50με.

2.2 Estimation of fluid shear

Osteocyte-level canalicular fluid flow parameters such as
pore pressure and fluid shear stress induced due to bend-
ing has been estimated based on Weinbaum et al. (1994);
Kameo et al. (2009), with an assumption that osteocytes are
located close to surface coordinates and sense fluid shear to
initiate osteoblastic activity on surfaces. Only steady-state
response of fluid flow has been considered as the transient
response attains steady state within a few seconds of loading
(Srinivasan and Gross 2000).

The in vivo study considered here was subjected to a
bending of trapezoidal waveform, which can be closely
approximated as a Fourier series of sinusoidal waves (Srini-
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vasan andGross 2000). For numerical simplicity, a sinusoidal
waveform is assumed. The periosteal and endocortical sur-
faces are assumed to be permeable to the fluid flow. The pore
pressure due to a sinusoidal bending moment of frequency
ω and amplitude M has been calculated as follows (Kameo
et al. 2009):

Psteady(y
∗, t) = BM(1 + vu)

2a2
×

{

y∗ sin
t∗ − Im

[{
i
H sinh

√
i
y∗ + 3y∗(sinh

√
i
 − √

i
 cosh
√
i
)

i
H sinh
√
i
 + 3(sinh

√
i
 − √

i
 cosh
√
i
)

}

ei
t

]}

(3)

where Psteady is the steady-state component of pore pressure
induced due to bending; B is relative compressibility con-
stant or Skempton coefficient; c is diffusion coefficient; M
is the amplitude of bending moment; υu is Poisson’s ratio
of solid bone matrix under undrained conditions; i is the
imaginary unit; a is the thickness of the cortex; y∗,Ω, t∗
and H are non-dimensional parameters and are defined
as:

y∗ = yi
a

, t∗ = ct

a2
, 
 = a2ω

c
, H = 1 − ν

νu − ν

where t is the time and ω is angular frequency of the applied
load.

Fluid shear stress developed in canaliculi has been esti-
mated based on the literature (Zeng et al. 1994; Weinbaum
et al. 1994) as follows:

Si = bo
λ

∂Psteady
∂y∗ [A1 I1(λ/q) − B1K1(λ/q)] (4)

which implies

Si = bo
λ

BM(1 + vu)

2a2
×

{

sin
t∗ − Im

[{
3
√
i
H cos

√
i
y∗ + 3(sinh

√
i
 − √

i
 cosh
√
i
)

i
H sinh
√
i
 + 3(sinh

√
i
 − √

i
 cosh
√
i
)

}

ei
t

]}

× [A1 I1(λ/q) − B1K1(λ/q)] (5)

where Si is fluid shear stress at surface coordinate i ; bo is
the radius of canaliculus; the resultant fluid flow or shear is
oriented perpendicular to the neutral axis of bending towards
direction ‘y’, i.e. directed from compression side to tensile
side of the section; and

A1 = KO(λ) − KO(λ/q)

IO(λ/q)KO(λ) − IO(γ )KO(λ/q)
(6)

B1 = IO(λ/q) − IO(λ)

IO(λ/q)KO(λ) − IO(λ)KO(λ/q)
(7)

where Ko and Io are the modified Bessel functions of the
third and the first kind, respectively; q is a ratio of the radius
of canaliculus (bo) to the radius of cell process (ao); λ =
bo/

√
kp is a dimensionless length ratio, where kp is Darcy

law permeability constant.

2.3 Computation of strain energy density (SED) and
evolution of surface

The model computes normal and shear SED (U ε
i and U γ

i )
along with the fluid shear SED (Us

i ) at periosteal and endo-
cortical surfaces as follows:

U ε
i = 1

2
E .ε2i (8)

Uγ

i = 1

2
G.γ 2

i (9)

Us
i = S2i

2Gosc
(10)

where Gosc is the shear modulus of osteocyte. The model
uses SED as a stimulus for new bone formation. In the liter-
ature (Fritton et al. 2005; Srinivasan et al. 2007; Weinbaum
et al. 1994), normal strain of magnitude 800μ ε and fluid
shear of 6 dyne/cm2(0.6 Pa) are considered sufficient to initi-
ate bone remodelling activities at cellular level. Accordingly,
reference SEDs (Uref ) have been computed corresponding
to these values of osteogenic thresholds of each stimulus and

are listed in Table 1. The difference between estimated and
reference SED is assumed to govern osteogenesis (Cowin
1993). The growth law is applied to simulate new bone for-
mation and is similar to that proposed byChennimalaiKumar
et al. (2009):

∂ci
∂t

=
{
C(Ui −Uref ), i f Ui > Uref

0, otherwise
(11)

where ∂ci
∂t represents the bone formation rate and C is the

bone’s surface remodelling rate coefficient.
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The following assumptions have been made based on
Carter et al. (1998); Burr et al. (2002); Carpenter (2006);
Carpenter and Carter (2008); Feldman et al. (2007):

• The osteogenic response may depend on the nature of
normal strain (viz. compressive vs. tensile).

• The osteogenic response may be different for different
components of mechanical milieu (viz. normal strain vs.
shear strain vs. fluid flow-induced shear stress).

• The osteogenic response of periosteal and endocorti-
cal surfaces may differ from each other according to
their mechano-biological environment as endocortical
surface has been reported to bemoremechano-responsive
than periosteal surface due to additional recruitment of
osteoblasts from bone marrow osteoprogenitors (Birk-
hold et al. 2016; Turner et al. 1998).

Based on the above assumptions, different thresholds were
considered for different surfaces (periosteal vs. endocortical)
and different components of mechanical environment (nor-
mal strain vs. shear strain vs. fluid shear stress). We have
incorporated the natural growth in the model based on new
bone distribution noticed in 0.25 N loading group (Fig. 1c)
which has been treated as control due to unavailability of
original control’s site-specific data and similarity in bone
formation rate to control group. The growth law is modified
accordingly as follows:

Normal strain as the stimulus for periosteal and endocor-
tical surfaces, respectively:

∂c
εp
i

∂t
=

{
C

εp
i (U

εp
i −U

εp
re f ) + 	i , i f U

εp
i > U

εp
re f

	i , otherwise
(12)

and

∂cεc
i

∂t
=

{
Cεc
i (U εc

i −U εc
re f ) + 	i , i f U εc

i > U εc
re f

	i , otherwise
(13)

Shear strain as the stimulus for periosteal and endocortical
surfaces, respectively:

∂c
γp
i

∂t
=

{
C

γp
i (U

γp
i −U

γp
re f ) + 	i , i f U

γp
i > U

γp
re f

	i , otherwise
(14)

and

∂cγc
i

∂t
=

{
Cγc
i (U γc

i −U γc
re f ) + 	i , i f U γc

i > U γc
re f

	i , otherwise
(15)

Fluid shear stress as the stimulus for periosteal and endocor-
tical surfaces, respectively:

∂c
sp
i

∂t
=

{
C
sp
i (U

sp
i −U

sp
re f ) + 	i , i f U

sp
i > U

sp
re f

	i , otherwise
(16)

and

∂csci
∂t

=
{
Csc
i (Usc

i −Usc
re f ) + 	i , i f Usc

i > Usc
re f

	i , otherwise
(17)

where parameters with superscripts εp and εc correspond to
normal strain at periosteal and endocortical surfaces, respec-
tively; similarly, γp and γc represent shear strains, whereas
sp and sc correspond to the fluid shear stress at the respec-
tive surfaces.	i is the parameter representing natural growth
rate at surface coordinate ‘i’, which is zero for the periosteal
surface since growth is nearly absent in the referred in vivo
study (Srinivasan et al. 2002), whereas for the endocortical
surface, it has been estimated at each surface coordinate ‘i’
by dividing new bone thickness on control section (Fig. 1c)
by total loading time period. A biologically consistent value
of remodelling rate coefficient, C , has been calculated based
on the mineral apposition rate (MAR) found from earlier in
vivo studies by curve-fitting the corresponding bone growth
law to the experimental results (Cowin et al. 1985; Srinivasan
et al. 2002; Chennimalai Kumar et al. 2009). The baseline
values of reference SED (Uref ) for different components
and surfaces are decided based on osteogenic fluid shear and
physiological strains (Weinbaum et al. 1994; Srinivasan et al.
2007; Prasad et al. 2010; Verbruggen et al. 2012), which are
given in Table 1.

If at any instance, the SED (Ui ) at surface coordinates ‘i’
reaches value above threshold, the coordinate shifts in the
normal direction to the bone surface to incorporate osteoge-
nesis. The model updates the geometry of the cross section
according to the following time stepping scheme:

Xi (t + dt) = Xi (t) + ∂ci
∂t

dt cos θ (18)

Yi (t + dt) = Yi (t) + ∂ci
∂t

dt sin θ (19)

where Xi (t + dt) and Yi (t + dt) are the new coordinates at
time t + dt , while Xi (t) and Yi (t) are the old coordinates at
time t and dt is the time step size (increment). θ is the angle
that the unit vector perpendicular to the surface at the point
in considerationmakes with X-direction. The algorithm used
for the present study is shown in Fig. 2. The model uses a
time step of 1 second and iterates for a total time period of
500s, which corresponds to number of loading cycles.
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Fig. 2 Fundamental algorithm used for the simulation of osteogenesis

Table 2 Combinations of mechanical stimuli used to test the model

S. No. Mechanical Stimuli

1 Normal strain (compressive and tensile)

2 Shear strain

3 Normal strain plus shear strain

4 Tensile normal strain plus shear strain

5 Interstitial fluid shear stress

6 Normal strain plus fluid shear stress

3 Results

Themodel simulates osteogenesis considering three different
components ofmechanical environment: normal strain, shear
strain andfluidflow-induced shear stress, individually aswell
as in their combinations, viz. normal strain with shear strain
or with fluid shear (Table 2). To measure site-specific osteo-
genesis, the circumference of the cross section is dividedwith
36 radial lines, each 10o apart from the neighbouring lines

and passing through the centroid of the cross section. These
lines intersect periosteal and endocortical circumferences at
the points numbered in counterclockwise direction as 1–36
at periosteal surface and as 1′ to 36′ at endocortical surface
(see Fig. 3a). The newbone thickness thusmeasured has been
compared with experimental new bone thickness obtained
from histological cross section (Srinivasan et al. 2002, 0.5 N
loading case), along these radial lines. Simulation results are
described in the following subsections.

3.1 Normal strain

Osteogenic potential of normal strain has been investigated
by considering (i) normal strains (i.e., compressive and ten-
sile strain) alone to be osteogenic and (ii) only tensile normal
strain to be osteogenic. When normal strain is considered,
new bone is formed away from neutral axis, namely at
periosteal points 1–10 and 17–27, out of which points 1–
10 only have osteogenesis in accordance with the in vivo
study (Fig. 3b). When only tensile normal strain is consid-
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Fig. 3 Computational versus experimental results: a in vivo new bone
formation (green) in murine tibia (adapted from Fig. 3b of Srinivasan
et al. 2002); and computational prediction of osteogenesis (red) due to:
b normal strain only, c tensile normal strain only and d shear strain

only. The cross section has been divided into 36 sectors in order to
compare site-specific osteogenesis. The overlap of experimental and
computational osteogenesis is shown in red-green mixture

ered, the model predicts new bone formation away from the
neutral axis along periosteal points 1–10 and endocortical
points 3′–9′ and 16′–23′ similar to experimental observa-
tion (Fig. 3c), whereas it fails around the neutral axis along
endocortical points 26′–35′ and 10′–14′ (Fig. 3c). If com-
pressive normal strain were considered alone, new bone
would be formed along posterior-medial sites in contrast
with the experimental observation. The above findings con-

firm that normal strain may not be the sole stimulus for
osteogenesis.

3.2 Shear strain

Shear strain as a sole stimulus in themodel predicts new bone
formation near the neutral axis along periosteal points 11–
18 and 30–35, and endocortical points 10′–23′ and 27′–36′,
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Fig. 4 Computational prediction of osteogenesis, when: a normal and shear strains are combined, b tensile normal strain and shear strain are
combined, c fluid shear is considered alone, d fluid shear is considered along with tensile normal strain

amongwhich points 27′–36′ and 19′–23′ only have new bone
formed in the experimental study (Fig. 3d). Thus, shear strain
as a stimulus fails to completely model osteogenesis.

3.3 Normal plus shear strain

When the effects of normal strains (both tensile and com-
pressive) and solid shear strains are added, the site-specific
new bone formation at endocortical surface was found close

to experimental observation (Fig. 4a); however, the model
falsely predicts osteogenesis at periosteal points 12–17, 19–
26 and 29–35 (Fig. 4a). Thus, this combination also fails to
accurately model osteogenesis.

3.4 Tensile normal strain plus shear strain

The results improve when tensile strain is considered in
combination with shear strain with an assumption that endo-
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cortical surface is more mechano-responsive as compared to
periosteal surface (Carter et al. 1998; Carpenter 2006; Feld-
man et al. 2007; Birkhold et al. 2016) (Fig. 4b). The sites of
new bone formation predicted by the model are close to that
noticed during the in vivo study (Fig. 4b) except for only 5
endocortical sites 13′–17′ (out of total 36 points compared)
where the model overestimates new bone formation.

3.5 Interstitial fluid shear stress

Canalicular fluid flows from compression to tension side
when bones are subjected to mechanical loading (Turner and
Pavalko 1998; Tate et al. 2000). In vitro studies on the bone
cells (such as osteoblasts and osteocytes) have found that the
fluid flow is a stimulus to osteogenic activities (Huo et al.
2008; Lu et al. 2012). Accordingly, when the interstitial fluid
flow is considered osteogenic, the model predicts new bone
formation near neutral axis along periosteal points 12-17 and
29-35 and endocortical points 10′-17′, 20′-23′ and 27′-35′,
which is similar to that obtained due to solid shear strain
(Fig. 4c). The model, however, fails to fit the experimen-
tal new bone distribution along the periosteal points 1–10
(Fig. 4c).

Themodel predicts the peak fluid velocity and shear stress
as 18μm/s and 10 dyne/cm2 respectively, which are close to
20.37μm/s and 18 dyne/cm2, respectively, calculated from
empirical relations reported in several in vivo studies (Price
et al. 2011;Wang et al. 2013; Jing et al. 2014). The difference
in fluid shear magnitude may be attributed to the difference
in loading condition; nevertheless, it is in the range of shear
stress required to induce calcium signaling and new bone
formation (Weinbaum et al. 1994). Moreover, the model’s
prediction of maximal flow near minimal strain sites aligns
with the findings of several in silico studies (Steck et al. 2000;
Tate et al. 2000; Hamilton et al. 2004).

3.6 Normal strain plus interstitial fluid shear stress

Fluid flow-induced shear stress combined with tensile nor-
mal strain predicts site-specific new bone formation similar
to the in vivo experiment (Fig. 4d). It may support the idea
that (i) fluid shear acts as a secondary stimulus of osteogenic
activity along with normal strain and (ii) different compo-
nents of loading-induced mechanical environment may act
collectively to adapt bone.

The experimental new bone thickness has been compared
site-specifically with model’s predictions for (i) tensile strain
plus solid shear strain and (ii) tensile strain plus fluid shear
stress in Fig. 5. The three cases have approximately sim-
ilar new bone distribution, except for a few endocortical
points. The computational model predicts an overall increase
in cortical area approximately by 6.7% (from 0.5042 to
0.538 mm2) for the above two cases, which is close to that

of 4.75% found during the in vivo study. The error between
computational and experimental new bone thickness shows
that the model only underestimates or overestimates the new
bone formation at periosteal points 10–11 and endocorti-
cal points 12′-16′, respectively (Fig. 5c, d). The osteogenic
potentials of shear strain and fluid flow-induced shear strain
are also site-specifically compared at periosteal and endocor-
tical surfaces (Fig. 6a, b). Both showed similar site-specific
osteogenic response in terms of new bone thickness.

4 Discussion and conclusions

This study suggests that shear strain or fluid shear stress may
be responsible for osteogenesis near the sites of minimal
normal strain; however, two or more stimuli (e.g., normal
strain with shear strain or fluid shear) may be required to
accurately model osteogenesis. This is in contrast to most
of the previous in silico studies (Martínez and Cerrolaza
2006; Chennimalai Kumar et al. 2010), where a single stim-
ulus such as normal strain energy density was typically
used. These models had limitations to fit those experiments
where new bone formation was present near minimal strain
sites. The current study fills this gap. The comparison of
shear strain and fluid shear stress in terms of new bone
thickness suggests that they are equivalent in terms of their
osteogenic potentials. Studies done by Skedros et al. (2003);
Srinivasan and Gross (2000) also confirm the same. It pro-
vides a new perspective that macro-level shear strain can
be used to estimate osteogenic potential of micro-level fluid
shear, thus reducing computational and analytical complex-
ities of the bone remodelling models. For example, Fig. 7
shows new bone distribution on tibial cross section (adapted
from various in vivo studies) corresponding to different load-
ing conditions. In all cases, osteogenesis can be seen away
from as well as near the neutral axis, which may be mod-
elled incorporating normal as well as shear components of
mechanical environment. The present model would be help-
ful to model such experiments; however, it may fail in case
of four-point bending, as there is no solid shear strain and
new bone formation is still present around the neutral axis
at periosteal surface. Incorporation of fluid flow may be
required in that case to closely model osteogenesis. More-
over, as the loading frequency, number of cycles, time period
and rest-inserted loading also affect the fluid flow and hence
osteogenesis (Pereira et al. 2015; Malachanne et al. 2011),
consideration of fluid flow in addition to mechanical com-
ponents may improve the computational model (Pereira and
Shefelbine 2014). Past research efforts have shown that dif-
ferent mechanical stimuli may opt different mechanisms of
mechano-transduction to initiate remodelling activity at cel-
lular level. For example, normal strain can be directly sensed
by mechano-receptors located at osteoblast cell membrane
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Fig. 5 Experimental versus computational new bone thickness when the tensile normal strain is considered along with the shear strain or the fluid
shear at: a periosteal and b endocortical surfaces. The error (experimental–computational) in new bone thickness is shown at: c periosteal and d
endocortical surfaces

Fig. 6 Computationally obtained new bone thickness due to the shear strain as compared to that due to the fluid shear at: a periosteal and b
endocortical surfaces

which may increase the calcium signaling and in turn the
new bone formation. Strain also restructures the cytoskele-
ton of bone cell to regulate bone remodelling activities. In
addition, tissue deformation/strain allows the interstitial fluid
to flow through the osteocyte network. This fluid flow imparts
shear stress on cell membrane of osteocytes which releases

different signaling molecules such as prostaglandin (PGE2)
and NO in order to communicate with osteoblasts to initiate
new bone formation (Turner and Pavalko 1998). Thus, incor-
poration of normal strain and fluid flow in the model may be
useful in capturing the characteristics of cellular modelling
activities.
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Fig. 7 Schematic representation of the new bone formation noticed
during in vivo studies in response to different loading conditions such
as a four-point bending (adapted fromRoberts et al. 2009);b three-point
bending (adapted fromSakai et al. 2011); c three-point bending (adapted

fromMatsumoto et al. 2008); d cantilever bending (adapted from Srini-
vasan et al. 2002); e cantilever bending (adapted from LaMothe 2004);
f axial compression (adapted from Sugiyama et al. 2010)

The model predicts osteogenesis also at those sites where
mechanical integrity is least challenged, e.g. around the neu-
tral axis. Previous studies have explained that asymmetric
bone morphology allows the bone to be bent in a predictable
direction, i.e. about the neutral axis of bending during loco-
motion, and thus bone sacrifices its strength for predictable
strain environment (Bertram and Biewener 1988). It permits
the bone to adjust its morphology against any long-lasting
stimulus (Main 2007). The new bone addition near neutral
axis will not affect overall strain distribution; rather, it will
fortify the environment to ensure that bones are loaded in a
predictable fashion (Judex et al. 1997). This can be consid-
ered as a compromise between maintaining optimum strain
level while ensuring that bone upholds a sufficient safety
factor to withstand atypical loading (Wallace et al. 2014).
Osteogenesis may, thus, have potential to align with the bone
’s neutral axis. This aspect was ignored in previous models.

A few in vivo studies noticed that peak circumferential
strain gradient (an indirect measure of maximal fluid flow)

closely correlates with new bone formation near the neutral
axis (Gross et al. 1997; Judex et al. 1997). In the present study,
maximum osteogenic response due to fluid flow has indeed
been observed near the neutral axis and thus the model’s
findings are in agreementwith aforementioned studies. These
findingsmay be useful in designingweight-bearing exercises
where induced neutral axis will align with the sites requiring
enhanced structural strength.

It has been noticed that fluid shear stress on osteocytic cell
processes and fluid drag force on pericellular matrix fibres
(i.e. tethering elements between cell transmembrane proteins
and proteins in the extracellular matrix which accommodate
the space between the cell body and the lacunae wall) both
can potentially induce new bone formation (Pereira et al.
2015). Based on some previous work (You et al. 2001), how-
ever, canalicular fluid shear stress/force may be assumed to
be proportional to pericellular drag force and flow velocity.
The canalicular fluid stress has therefore been solely consid-
ered in the present model.
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One limitation of this study is that only one histologi-
cal cross section from a single animal has been used as
a baseline to be compared with model output. As individ-
ual animals may have slightly different bone geometry and
osteogenic, biological environment, there may be difference
in site-specific new bone formation. The robustness of the
model may, therefore, be improved by incorporating data
from a group of animals, rather than a single animal currently
used. Nevertheless, the baseline histological cross section
used for the current model represents a typical new bone dis-
tribution near minimal strain sites/neutral axis observed in
other in vivo studies where tibia of C57Bl/6J mice of dif-
ferent age groups was given cantilever bending (LaMothe
et al. 2004; Srinivasan et al. 2003; Srinivasan et al. 2010;
and Srinivasan et al. 2002). In addition, the presence of new
bone formation near the minimal strain sites/neutral axis has
been observed in several other in vivo studies (Wallace et al.
2014; Judex et al. 1997; Gross et al. 1997; Mosley et al.
1997). The model’s accuracy may also be tested in future to
predict osteogenesis at different sites along tibial length as
these sites will experience different strain patterns.

The model does not incorporate possible bone resorption
at several locations which might have been occurred as a
result of, for example, damage imparted by high-magnitude
strain. The model assumes that osteocytes positioned in the
vicinity of tibial surfaces receive and integrate the signals
from the other osteocytes in the network and communicate
with lining cells/surface osteoblasts to initiate remodelling
activity. Thus, the local effect of the fluid flow has been con-
sidered in the model (Pereira et al. 2015) although the flow
should ideally be estimated across the osteocyte network. The
model overlooks this effect not only to make the simulation
computationally easy but also to remain consistent with other
stimuli such as normal and shear strains, which have been
considered at the endocortical and periosteal surfaces only.
Incorporation of network’s effect has been taken as a future
work. Moreover, signaling molecules such as prostaglandins
(PGE2), nitric oxide (NO), sclerostin and ATP diffuse
through extracellular fluid and communicatewith neighbour-
ing osteoblasts/osteocytes and, thus, are considered as poten-
tial regulators of new bone formation (Robling et al. 2006;
Lu et al. 2012; Klein-Nulend et al. 2012). This paracrine
mechanism has not been considered in the current model to
reduce complexity and has, however, been taken as a future
work.
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