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Abstract The narrow slit between endothelial cells that
line the microvessel wall is the principal pathway for tumor
cell extravasation to the surrounding tissue. To understand
this crucial step for tumor hematogenousmetastasis, we used
dissipative particle dynamics method to investigate an indi-
vidual cell passing through a narrow slit numerically. The cell
membrane was simulated by a spring-based network model
which can separate the internal cytoplasm and surrounding
fluid. The effects of the cell elasticity, cell shape, nucleus
and slit size on the cell transmigration through the slit were
investigated. Under a fixed driving force, the cell with higher
elasticity can be elongated more and pass faster through the
slit. When the slit width decreases to 2/3 of the cell diame-
ter, the spherical cell becomes jammed despite reducing its
elasticity modulus by 10 times. However, transforming the
cell from a spherical to ellipsoidal shape and increasing the
cell surface area by merely 9.3% can enable the cell to pass
through the narrow slit. Therefore, the cell shape and sur-
face area increase play a more important role than the cell
elasticity in cell passing through the narrow slit. In addition,
the simulation results indicate that the cell migration veloc-
ity decreases during entrance but increases during exit of the
slit, which is qualitatively in agreementwith the experimental
observation.
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1 Introduction

Most cancer-related deaths are due to metastasis. Metastasis
is a complex, multistep processes including the detachment
of cancer cells from the primary tumor and the migration to
distant targeted organs through blood and/or lymphatic cir-
culations. During hematogenous metastasis (through blood),
the emigration of tumor cells from the blood stream through
the vascular wall into the tissue involves arrest in the
microvasculature, or adhesion to the endothelial cells form-
ing the microvessel wall and transmigration to the tissue
through the endothelial barrier termed as extravasation (Rey-
mond et al. 2013; Strell and Entschladen 2008; Wirtz et al.
2011). Cell adhesion to vesselwall has been investigated both
computationally and experimentally (Rejniak2012;Yanet al.
2012). However, little is known about how adherent tumor
cells physically penetrate the vascular wall.

Microvessel walls mainly consist of endothelial cells.
There are four primary pathways observed in the microves-
sel wall by using electron microscopy: intercellular clefts,
transcellular pores, vesicles and fenestrae (Sugihara-Seki
and Fu 2005). The inter-endothelial cleft is not only widely
believed to be the main pathway for water and hydrophilic
solute transport under normal physiological conditions but
also suggested to be the pathway for the transport of tumor
cell across microvessel walls in disease. Endothelial cells of
some tumor vessels overlap one another, have luminal pro-
jections, and give rise to abluminal sprouts. The size of the
intercellular openings is less than 2µm in diameter (McDon-
ald and Baluk 2002). For a tumor cell transmigration of the
endothelial monolayer, it was observed clearly that there are
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Fig. 1 Schematic diagram of tumor cell extravasation including three states: adhesion, transmigrating and transmigrated. EC represents endothelial
cell and TC represents tumor cell (revised from Fan and Fu 2015)

three states it has to experience: adhesion, transmigrating
and transmigrated, as shown in Fig. 1 (Fan and Fu 2015).
By using confocal microscopy (Fan and Fu 2015), we have
observed the transmigration of a malignant breast tumor cell
through the endothelial monolayers, as shown in Fig. 2. In
this observation, the transmigration occurs at the bi-joint
between endothelial cells. From the biochemical and mole-
cular biological investigations, an endothelial retraction is
currently a favorable model for tumor cell transendothelial
migration (Miles et al. 2008; Voura et al. 1998). Next, tumor
cells undergo dramatic shape changes, driven by a significant
rearrangement of the cell cytoskeleton (Sugihara-Seki and Fu
2005). Also, invasive cancer cells can disrupt the endothelial
barrier through regulating the biomechanical properties of
endothelial cells (Mierke 2011, 2012). In addition, it is found
that metastatic cancer cells are softer than their normal or
benign counterparts,whichmay facilitate cancer cell extrava-
sation from the blood stream (Cross et al. 2007; Suresh 2007).
To understand how tumor cells undergo large elastic defor-
mation during penetrating the vascular wall, it is necessary
to analyze this process from the mechanical point of view.

The passage of cell through a narrow channel, slit or small
pore has attractedmuch attention since 1980s. Freund (2013)
numerically investigated the flow of red blood cells (RBCs)
through a narrow slit and observed that the cells infold in
the slit due to high velocity or high cytosol viscosity, which
might provide amechanism for jamming. Omori et al. (2014)
revealed that the transit time increases nonlinearly with the
viscosity ratio when RBCs pass through a thin micropore.
Wu and Feng (2013) explored malaria-infected RBCs transit
through microchannel in terms of the cell deformability. Li
et al. (2014) and Quinn et al. (2011) simulated a single RBC
flowing through a narrow cuboid channel using dissipative
particle dynamics and found that the cell deformation and
transit time depend on cross-sectional geometry and cell size.
These studies on RBC passage through a confined geometry
provide important insights into a tumor cell’s journey through

Fig. 2 Tumor cell (red, labeled “T”) transmigration through the junc-
tion between two endothelial cells (labeled “E”). The green lines are
the EC borders. Blues are cell nuclei. (From Fan and Fu 2015, with
permission)

the inter-endothelial cleft. As for the studies on tumor cell
transmigration, cell deformation inmicrofluidic device offers
effective measurement means to quantify cell mechanical
properties in vitro (Chaw et al. 2007; Leong et al. 2011). It is
found that the surface area of cancer cells increases by more
than 3 fold during the cell deformation through 10µmmicro-
gap (Chaw et al. 2007).Moreover, high-resolution time-lapse
microscopy was employed to investigate the dynamic nature
of tumor cell extravasation in an in vitro microvascular net-
work platform. The findings showed that the tumor cell
extrudes firstly through the formation of a small opening
(∼1–2µm) between endothelial cells and the opening grows
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to form a pore ∼8–10µm in diameter to allow for nuclear
transmigration (Chen et al. 2013). Finally, the numerical
study on the circulating tumor cells passing through a 3D
micro-filtering channel shed lights on the importanceof chan-
nel geometry on deformability-based cancer cell separation
(Zhang et al. 2014).

Since cell deformability plays an important role in passing
through the slit, we are particularly interested in the effects
of changes in the cell elasticity and cell surface area on the
behavior of cell passing through narrow slit in this study. We
firstly described the spring-based network cell model and
briefly introduced the numerical method—dissipative parti-
cle dynamics (DPD). Then we reported the deformation of a
cell through a narrow slit and presented results for cell pass-
ing through the slit with different sizes. The effects of cell
elasticity, cell shape, slit size and cell nucleus on cell tran-
sit were discussed. Lastly, the conclusions drawn from this
work were made.

2 Physical model and numerical method

2.1 Cell membrane model

A spring-based network model was first proposed and fur-
ther developed as discrete description of RBCs at the spectrin
protein level by Boey et al. (1998) and Li et al. (2005). On
the basis of this, Pivkin and Karniadakis (2008) developed
a systematic coarse-graining procedure to reduce the num-
ber of degrees of freedom dramatically. This coarse-grained
model was improved by Fedosov et al. (2010), yielding accu-
rate mechanical response. This spring-based network model
has been employed to simulate the deformation and mar-
gination of white blood cells (Fedosov and Gompper 2014),
which have similar process of extravasation as tumor cells.
The total energy of the network is defined as

E({ri }) = Ein-plane + Ebending + Earea + Evolume (1)

where ri represents the vertex coordinates and the in-plane
elastic energy is given by

Ein-plane =
∑

alledges

EWLC +
∑

alledges

Ep (2)

Each edge in the network is a spring consisting of two
potentials—a worm-like model with elastic energy EWLC

and a power function potential with energy EP, as follows:

EWLC = kBT lmax

4p

3x2l − 2x3l
1 − xl

(3)

EP = kp
(m − 1)lm−1 (4)

where xl = l/ lmax ∈ (0, 1), l is the instantaneous spring
length, lmax is the maximum spring extension, which is equal
to 2.2 times (Fedosov et al. 2010) equilibrium spring length
for the WLC model, p is the persistence length, kB is Boltz-
mann constant and T is temperature of the system, which is
equal to 310K. kp is a spring constant and m is a specified
exponent, here we set it to 2 (Fedosov et al. 2010).

The bending energy is given by

Ebending =
∑

all triangle adjacents

kbend
[
1 − cos(θαβ − θ0)

]
(5)

where kbend is a bending modulus; θαβ is the instantaneous
angle formed between the outer normal vectors of two adja-
cent triangles α, β sharing the common edge; θ0 is the
spontaneous angle.

The area and volume conservation constraints are

Earea = ktotarea(A
tot − Atot

0 )2

2Atot
0

+
∑

all triangles

karea(A − A0)
2

2A0

(6)

Evolume = kvolume(V − V tot
0 )2

2V tot
0

(7)

where ktotarea, karea and kvolume are constraint constants for
global area, local area, and volume; Atot and V are the instan-
taneous membrane area and the cell volume; Atot

0 and V tot
0

are their respective specified total area and volume values.
A, A0 are the instantaneous and initial local areas.

Nodal forces are derived from the total energy as follows:

Fmembrane
i = −∂E{(ri )}/∂ri (8)

2.2 Cell mechanical properties

The elasticity of the network is based on the linear analysis
of a two-dimensional sheet of springs built with equilateral
triangles (Dao et al. 2006). The linear shear modulus of the
WLC-POW model is

μ0 =
√
3kBT

4plmaxx0

(
x0

2(1 − x0)3
− 1

4(1 − x0)2
+ 1

4

)

+
√
3kp(m + 1)

4lm+1
0

, x0 = l0/ lmax (9)

where l0 is the equilibrium length of the spring.
The linear area-compression modulus (Fedosov et al.

2010) is defined as

K = 2μ0 + ktotarea + karea (10)

The Young’s modulus Y for the two-dimensional sheet can
be expressed through the shear and area-compressionmoduli
as follows
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Table 1 DPD parameters used in the simulations

Interaction a γ rc

So–So, So–W 20.0 18 1.0

Si–Si 20.0 54 1.0

C–Si , C–So, C–W 20.0 54 1.0

Y = 4Kμ0

K + μ0
(11)

The Poisson’s ratio ν is given by

ν = K − μ0

K + μ0
(12)

Based on the incompressibility assumption, we set ktotarea +
karea >> μ0, so Y → 4μ0 and ν → 1. The dimensionless
parameters GD = K/μ0 = 1000 and GV = kvolume/μ0 =
1000 ensure that membrane area and cell volume variation
within 1% (Ye et al. 2014) during the cell deformation,
respectively.

The relationship between bending modulus kbend and the
macroscopic membrane bending rigidity kc is derived for
the case of a spherical shell in the Helfrich bending energy
(Helfrich 1973), as follows:

kbend = 2√
3
kc (13)

2.3 Dissipative particle dynamics (DPD) method

DPD as a mesoscopic simulation technique has been used
widely for computing the flow of complex fluids (Fan et al.
2006; Soares et al. 2013; Warren 2003). Introductions to
DPD method have been presented in detail in previous stud-
ies (Espanol 1995; Groot and Warren 1997; Hoogerbrugge
and Koelman 1992). In brief, each DPD particle i represents
a soft lump of atoms and interacts with surrounding particles,
denoted by j with three simple pairwise additive forces: con-
servative (repulsive) force, FC

i j , dissipative (friction) force,

FD
i j , and random (Brownian) force, FR

i j .

FC
i j = FC

i j (ri j )r̂i j ,

FD
i j = −γωD(ri j )(vi j · r̂i j )r̂i j ,

FR
i j = −σωR(ri j ) · ξi j√

dt
· r̂i j , (14)

where r̂i j = ri j/ri j , ri j = ri − r j and vi j = vi − v j . The
coefficients γ andσ define the strength of dissipative and ran-
dom forces, respectively. In addition, ωD and ωR are weight
functions, and ξi j is a normally distributed random variable
with zero mean, unit variance, and ξi j = ξ j i . All forces

are truncated beyond the cutoff radius rc, which defines the
length scale in the DPD system. The conservative force is
given by

FC
i j (ri j ) =

{
ai j (1 − ri j/rc) for ri j ≤ rc
0 for ri j > rc

(15)

where ai j is the conservative force coefficient between par-
ticles i and j .

The random and dissipative forces form a thermostat and
must satisfy the fluctuation-dissipation theorem in order for
the DPD system tomaintain equilibrium temperature T . This
leads to:

ωD(ri j ) =
[
ωR(ri j )

]2
, σ 2 = 2γ kBT (16)

The choice for the weight functions is as follows

ωR(ri j ) =
{

(1 − ri j/rc)1/4 f or ri j ≤ rc
0 f or ri j > rc

(17)

where the value of exponent affects the viscosity of the DPD
fluid, lower values typically result in a higher viscosity (Fan
et al. 2006).

The conservative force reflects the compressibility of the
fluid, the dissipative forcemainly captures the viscosity of the
fluid and the random force ensures that the fluid temperature
remains constant.

When the cell model is immersed into the DPD fluid, the
total force exerted on a membrane particle is given by

Fi = Fmembrane
i +

∑

j �=i

FC
i j + FD

i j + FR
i j (18)

While for a fluid particle, the total force is expressed by

Fi =
∑

j �=i

FC
i j + FD

i j + FR
i j + fxex (19)

where fx is the value of body force along x direction. The
mass of the individual particle is set to 1 and particle motion
is governed by Newton’s equations of motion:

dri = vidt

dvi = Fidt (20)

The above equations of motion were integrated using the
modified velocity-Verlet algorithm (Espanol 1995;Groot and
Warren 1997; Hoogerbrugge and Koelman 1992)

ri (t + �t) = ri (t) + �tvi (t) + 1

2
(�t)2Fi (t)

ṽi (t + �t) = vi (t) + λ�tFi (t)
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Fi (t + �t) = Fi (ri (t + �t), ṽi (t + �t))

vi (t + �t) = vi (t) + 1

2
�t[Fi (t) + Fi (t + �t)] (21)

where ṽi (t+�t) is the prediction of the velocity at time t+�t
andλ is an empirically introduced parameter, which accounts
for the additional effects of the stochastic interactions, and is
set to 0.65. The velocity is first predicted to obtain the force
and then corrected in the last step.

DPD parameters used in the simulations of interactions
among particles representing inner fluid (Si), external fluid
(So), cell vertices (C) and walls (W ) are shown in Table 1.

2.4 Model and physical units scaling

The scaling procedure has been presented (Fedosov et al.
2010), which relates the model’s non-dimensional units to
physical units. In order to keep the simulation system con-
sistent with the real system, the physical properties should
be mapped onto the dimensionless properties in the model.
The length scale is adapted:

LS = DP
0

DM
0

(22)

where the superscript M and P denote “model” and “physi-
cal”. The energy scale is provided as follows

ES = Y P

YM

(
DP
0

DM
0

)2

(23)

The force scale is defined by

NS = Y P

YM

DP
0

DM
0

(24)

The scaling between model and physical times is defined as
follows

τS = YM

Y P

DP
0

DM
0

ηP

ηM
(25)

where ηP is the physical fluid viscosity, the surrounding fluid
and cytoplasm are considered as incompressible Newtonian
fluid.

The scaling between model and physical body force is
expressed

f S = Y P

YM

(
DM
0

DP
0

)2
n

ρ
(26)

where n is the number of density in the simulation system,
in this study we set n = 6. The density of the surrounding

fluid,ρ, is set to be 103 kg/m3. Simulation (inDPDunits) and
physical (in SI units) parameters for fluid and cell membrane
are shown in Table 2.

3 Results and discussion

3.1 Model geometry and parameter values

The geometry of the model slit is schematically depicted
in Fig. 3. The slit has a rectangular cross section of width
wc, length of 2 µm and height of 14µm. The spherical cell
with diameter of 9µm is located at x = −5.6µm initially.
The computational domain is triply periodic as labeled, and
the origin of the coordinate is located in the center of the
slit. The vessel walls are regarded as rigid bodies, and the
cell nuclei are not taken into consideration for simplicity. In
order to simulate a pressure-driven flow through the slit, a
uniform body force is applied to the fluid particles located at
x ≥ 15µm. The pressure gradient in the region around the
slit is not constant, which voids the validity of application
of the uniform body force in that area. In order to control
the density fluctuations of the fluid near the wall boundaries,
an adaptive boundary condition is adopted, which has been
applied on the measurement of red blood cell large deforma-
tion in a microfluidic system (Li et al. 2014). To prevent
the particles from penetrating into the solid wall and the
cell membrane and ensure no-slip condition, bounce-back
reflection is enforced on them. It should be pointed out that
due to the soft potential in DPD, the body force driven flow
passing through obstacle usually results in a vacuum area in
the downstream. The conservative force deriving from this
soft potential tries to capture the effects of the “pressure”
between different particles. Because of the soft interaction
between fluid particles, the “speed of sound” in theDPDfluid
is low (Pan et al. 2013) and consequently the Mach number
is very high even at very low Reynolds number, resulting in
a significant compressibility effect. The “speed of sound” in
DPD fluid at constant temperature (Espanol 1995) has been
derived as c2 = ∂p/∂ρ = kBT + πanr4c/15. An alternative
approach to avoid the density rarefaction after the cell is to
employ a large conservative coefficient (Ye et al. 2014), thus
the “speed of sound” can be enhanced to ensure the Mach
number less than 0.3. The fluid particles in Fig. 4 are found
to be distributed uniformly.

An important non-dimensional parameter, the capillary
number is introduced, which represents the ratio between
the flow viscous traction force and the elastic resistance of
the membrane. A local capillary number can be defined as

Ca = ηoU

Y
(27)
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Table 2 Simulation (in DPD
units) and physical (in SI units)
parameters

Parameters Simulations Physical

Cell diameter (D) 9.0 9.0 × 10−6 m

Young’s modulus (Y ) 8.073–80.073 0.416–4.16µN/m (Cross et al. 2007)

Bending rigidity (kc) 0.47–47 2.1×10−20–2.1 × 10−18 J (Fedosov et al. 2010)

Temperature (T ) 0.0828 310K

External fluid viscosity (ηo) 20 1 × 10−3Pa s (Fushimi and Verkman 1991)

Cytoplasma viscosity (ηi ) 60 3 × 10−3 Pa s

Density (ρ) 6 1 × 103 kg/m3

Body force ( fx ) 0.286 88.29m/s2

Fig. 3 Schematic illustration of a spherical cell near a slit at initial time from the front view (a) and the left side view (b)

where η0 is the viscosity of the plasm, a characteristic veloc-
ityU = ρ fxw2

c/8η0. In the following results to be presented,
a fixed body force fx = 88.29m/s2 is applied to drive the
flow.According to the optical measurements of cell deforma-
bility by a microfluidic optical stretcher, cancer cells were
found to stretch approximately five times more than nor-
mal cells, and metastatic cells were found to stretch about
twice as much as non-metastatic cancer cells (Lincoln 2004).
The elasticity modulus of tumor cells from cancer patients
was measured and yielded average value of about 0.5kPa
(Cross et al. 2007). The atomic force microscopy indentation
study found that the average Young’s modulus for malignant
breast cells ranged from 300 to 600Pa at different loading
rates (Li et al. 2008). As the cell membrane is only about
7–9nm thick, which is much smaller than the diameter of the
cell, the Young’s modulus for two-dimensional sheet-based
cell membrane model was approximately by the average cell
stiffness multiplied by the membrane thickness (Hou et al.
2009). So Young’s modulus ranges from 2.1 to 5.4µN/m
and Ca lies between 0.123 and 0.336. The Reynolds num-

ber Re = ρUwc/η0 varies from 0.002384 between 0.00565,
and the Mach number computed by Ma = U/c lies between
0.077 and 0.137 in current study.

Figure 4 visualizes the cell deformation during passing
through the narrow slit. Since initially a cell has a diameter
of 9µm, which is larger than the slit width, the cell would
experience compression deformation. As the cell enters the
slit, the front end of the cell membrane is gradually stretched
along the flow direction, while the rear side maintains its
sphericity, as shown in Fig. 4a. When the cell reaches the
center of the slit, it is elongated to the longest, as can be seen
in Fig. 4b. During exiting from the slit, the cell gradually
recovers its initial spherical shape, see Fig. 4d.

To investigate the numerical convergence with respect
to spatial resolution, cell passage through the narrow slit
wc = 8µm) for three resolutions, n = 3, 6, 9 have been com-
pared. As shown in Fig. 5a, the cell centroid trajectories for
n = 6 and n = 9 agree with each other very well, but there
is a large discrepancy for n = 3. We have further checked
the cell elongation index, which is defined in the follow-
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Fig. 4 Cross section of a deformed spherical cell passing through the
slit (wc = 8µm) for body force fx = 88.29m/s2 exerted on the fluid
particles located on x > 15µm and x < −15µm. a t = 7.275ms,

b t = 16.975ms, c t = 26.675ms, d t = 38.315ms. The model consists
of four types of particles: wall particles (black), fluid particles (blue),
membrane particles (red), and cytoplasm particles (green)
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Fig. 5 a Cell centroid trajectories and b the elongation indexes for three resolutions, n=3, 6, 9 during passing through the narrow slit (wc = 8µm)

ing section, and the difference between n = 6 and n = 9
are not very large. Therefore, n=6 is chosen for all calcula-
tions.

3.2 Effects of the cell membrane elasticity

In this section, the effect of Young’s modulus as an impor-
tant factor to the elasticity of a cell is examined, with values
varying from 0.416 to 4.16µN/m which enclose the values
from themeasurement (Hou et al. 2009). Figure 6a shows the
distance between the cell front, rear end and their respective
initial positions. It can be seen that the cells with different
elasticity experience the same trend of motion. As the cell
enters into the slit, the line chart begins with a steep slope in
the displacement of front end and this gradually decreases,
which is qualitatively in agreement with experiment (Lincoln

2004). Also, the dashed line represents the distance between
the exit and the initial position of cell rear end in Fig. 6a.
Once the displacement of the rear end exceeds the dashed
line, it means that the cell passes the slit completely and the
time spent is defined by the transit time. The displacement of
the front end is slightly greater than that of rear end initially,
but then it is exceeded by the latter, which means the cell is
stretched first and then shrinks. Obviously, with the decrease
of modulus, it takes less time for the cell to pass through
the slit, which can be seen in Fig. 6a. The malignant breast
cancer cells was found to have a Young’s modulus which
is 1/1.8–1/1.4 that of their non-malignant counterparts (Lin-
coln 2004). The study on the deformability of breast cancer
cells has shown that the non-malignant cells have longer entry
time than the malignant counterparts through the microchan-
nel, where the entry time is defined as the time taken for the
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Fig. 6 Cell displacement along flow direction (a) and the elongation index (b) during passing through the narrow slit (wc = 8µm) at different
values of the Young’s modulus

cell to deform and enter completely into the microchannel
(Lincoln 2004). In order to characterize the deformation of
the cell, elongation index is introduced. It is the ratio of the
cell elongated length (Lx ) in the flow direction to its initial
diameter (D). In Fig. 6b, the cell elongates first and then
shrinks gradually, which is corresponding to the displace-
ments of rear end and front end. Apparently, it is faster to
recover its original sphere shape and easier to deform for a
softer cell.

A bending modulus for the breast cancer cell membrane
was calculated to be 1.35 × 10−19 J (Guo 2004), which
is in the same order as that for the red blood cell mem-
brane. Based on the investigation on the transit of cells with
different bending rigidities through the slit, it takes longer
time for the stiffer cell to transit through the slit, but there
is almost no difference in the trajectories of cell centroid
when the bending rigidity reduces by an order magnitude,
as can be seen in Fig. 7. So the bending rigidity has little
effect on the cell transit time. Based on the ratio between
the bending forces to membrane spring forces expressed by
ξ = kbend/Y R2, where R is the cell radius, it reaches the
order of 10−3 so that the deformation due to bending forces
is negligible compared to the deformation caused by elastic
force.

Overall, under the condition of cell surface area-preser-
ving, Young’s modulus is only related to shear modulus
determined by the wormlike chain spring forces and plays
a key role in the membrane elasticity.

3.3 Cell entry into the narrow slits with decreasing size

With the decrease in the slit size, the cell enters more slowly
and protrudes less and less into the slit, then it becomes
blocked, just as shown in Fig. 8, the two dash lines indicate
the positions of cell centroid entry and exit. Compared with
the entry into the slit with a width of wc = 6µm, the cell in

0 15 30 45 60 75

0

-2

-4

-6
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4

6

entryX
c(

μm
)

t(ms)

kc = 2.1× 10 −20J

kc = 2.1 × 10 −19J

kc = 2.1 × 10 −18J

exit

Fig. 7 Centroid trajectories of cells passing through the narrow slit
(wc = 8µm) at different values of bending rigidities with Y =
4.16µN/m

the slit with wc = 7µm moves faster and produces a longer
protrusion. In fact, for a fixed pressure drop, the narrower the
slit is, the lower the Ca. The supplied body force is not large
enough to produce sufficient viscous traction force to deform
the cell in face of the resistance from the confinement of the
narrower slit.

As the elasticity affects largely the cell deformability, cells
with different values of the Young’s modulus squeezing into
the slit of 6µmwidth are compared in Fig. 9. It illustrates the
steady-state shape of the cell after obstruction. The length of
protrusion is indicated by lt , the distance between the cell
front end and the entry of the slit. As seen from Fig. 9,
reducing the elasticity modulus by 10 times can double the
protrusion length, but still does not enable the cell to pass the
narrow slit.
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Fig. 9 The protrusion length comparison for blocked cells in the slit
(wc = 6µm) at different values of Young’s modulus

3.4 Effects of the cell shape

The cell surface-to-volume ratio is a determinant of the static
deformability of the cells. Cancer cells exhibit various kind
of shapes, including round, oval elongated and clusters (Park
et al. 2014). The shape transformation from sphere to flat
ellipsoid largely increases the surface-to-volume ratio. In this
subsection, spherical and ellipsoidal cell with the same vol-
ume and mechanical properties passing through the narrow
slit (wc = 6µm) are compared in terms of the deforma-
tion. The effects of initial orientation of ellipsoidal cell on
its transit through the slit are investigated. Information about
different cell shapes is listed in Table 3.

In order to characterize the cell deformation, the expres-
sion of local strain has been introduced in the previous study

(Chen et al. 2013).Based on this definition, the average defor-
mation γi for themembrane particle i is expressed as follows:

γi =

√√√√
∑Ni

j=1

(
li j
li j,0

− 1
)2

Ni
(28)

where Ni represents the number of springs which is con-
nected by particle i , li j and li j,0 are the instantaneous and
spontaneous lengths of springs, respectively. The local defor-
mation contour for each membrane particle is plotted in
Fig. 10.When the spherical cell protrudes the slit, its forefront
suffers large deformation but the rear end does not nearly
deform. The middle part of the cell located in the slit retains
to be stretched with local γ reaching 80 % after blockage, as
shown in Fig. 10a. But for an ellipsoidal cell, the deforma-
tion depends on its initial orientation. When its seminor axis
is parallel to y axis at initial time, the cell can pass through
the slit easily, which can be seen in Fig. 10b, as the length of
seminor axis is comparable to the slit. When the cell enters
the slit, its front end is stretched initially. With the increase
in protrusion length, the extruded part of cell expands and
middle part maintains to be stretched, while the rear end
almost keeps its original shape. After exiting from the slit,
the forefront of the cell is stretched largely, while the rear
end is compressed. But if the cell rotates 90◦ around z or x
axis at initial time, the size of cell is nearly double the slit
width. Therefore, the cell should compress itself when tra-
versing the narrow slit, which produces large deformation.
As its centroid reaches the center of the slit, the extruded
part expands largely and local γ can attain 70%, while the
exposed part has not been squeezed into the slit shrinks and
even some wrinkles appear on the membrane, as can be seen
in Fig. 10c, d. When the cell exits from the slit, it enfolds
within the slit. After passing through the slit, the expanding
part gradually shrinks and the shrinking one expands slowly.

In fact, before transmigrating through the slit between two
endothelial cells, a tumor cell has to adhere to the endothe-
lium. Then, the adherent spherical cell would spread out into
a flat shape before extravasation (Albelda et al. 1994; Dewitt
and Hallett 2007; Stoletov et al. 2010; Zhu et al. 2000).
This shape change enables tumor cells transmigrate through
a much narrower slit. Next, effect of initial orientation on
ellipsoidal cell transit time is investigated. Firstly, the transit
time, entry time and exit time are defined as

�t = tout,�tentry = txc=0,�texit = tout − txc=0, (29)

where tout = t (minx∈s x = 1) and txc=0 is the time when
the cell centroid approaches the middle of the slit. Figure. 11
compares the cell transit time, entry time and exit time for
three different orientations. For all cases, the entry time is
longer than the time spent on exit from the slit. It takes less
time to pass through the slit for the cell with initial seminor
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Table 3 Geometrical properties
about different shapes of cells

Case

V (µm3) 381.5 381.5

R(µm) Rx = Ry = Rz = 4.5 Rx = 2.835, Ry = Rz = 5.67

A(µm2) 254.34 278

�A/A0 0 9.3%

A/V (1/µm) 0.667 0.730

axis parallel to flowdirection. Thismaybecause that the cross
section of the cell perpendicular to theflowdirection is largest
compared to the other two cases. The initial layout that the
seminor axis is parallel to z axis has the longest transit time
and enlarges the difference between entry time and exit time,
due to the fact that the cell needs longer time to deform itself
to adapt to the slit when entering into the slit. To conclude,
initial orientation plays an important role in the ellipsoidal
cell transit through the narrow slit

Aquantitative observationof tumor cell deformationusing
microfluidic device pointed out that during the transition
through the microgap, the cancer cell (15–18µm) deformed
from a spherical to ellipsoidal shape and the cell’s surface
area increased by 8.8- and 3.7-fold across the 3µmand 10µm
gaps, respectively (Chaw et al. 2007, 2006). The cell mem-
brane would confront with the resulting increase in surface
tension as it deforms across a narrower slit and its deforma-
bility affects its survivability. In addition, for undeformed
leukocytes, there are many folds and wrinkles on the mem-
brane, which provide more than 80% excess surface area
(Dewitt and Hallett 2007; Schmidschonbein et al. 1980).
Likewise, a physically unrestrained circulating cancer cell is
assumed to have a pleated surface and themembrane unpleat-
ing could occur and the cell surface area would increase
largelywhen cells enter capillaries (Weiss et al. 1988). There-
fore, transformation from spherical to flat ellipsoidal shape
can increase cell deformability largely and facilitates the can-
cer cell extravasation.

3.5 Effect of nucleus on cell transit across the slit

The above-mentioned results are based on the deformation of
cell without nucleus. In this subsection the ellipsoidal cells
with and without nucleus passing through the narrow slit
(wc = 4µm) are investigated. The seminor axis of cell is par-
allel to the y axis initially. The nucleus is assumed to have a
spheroidal shape with diameter of 3µm and Young’s modu-
lus 41.6µN/m. In order to enable the cell to pass through the
narrower slit, the external body force increases three times.

Figure 12 plots the trajectories of the ellipsoidal cells
with and without nucleus. Admittedly, under the same
condition, the cell without nucleus can completely pass
through the slit while having the nucleus blocks the con-
traction. The nucleus with weaker deformability indirectly
constrains the membrane deformation when cell enters into
the slit, which further leads to the cell blockage. There-
fore, to a certain extent, the presence of nucleus reduces the
deformability of the cell when its size is comparable to the
slit.

4 Conclusion

In this study, a cell passing through a narrow slit was numeri-
cally investigated using dissipative particle dynamics (DPD)
combined with a spring-based network model for the cell
membrane. The effects of the cell elasticity, cell shape as
well as the slit size on the cell passage through the slit were
discussed. It was found that although the elasticity as an
important factor to deformability affects cell transit across
the slit, reducing the elasticity modulus by 10 times cannot
enable a spherical cell to pass the slit with the width 2/3 of
its diameter. However, transforming the cell from a spher-
ical into ellipsoidal shape, with the surface area increased
only by 9.3%, the cell can pass the slit. Also, the effect of
initial orientation of ellipsoidal cell on its passage through
the slit including cell deformation and transit time has been
investigated. The findings showed that it takes less time for
the cell with larger cross-sectional perpendicular to the flow
direction. Furthermore, the effect of nucleus on cell transit
through the slit with 4µm in width was examined. It demon-
strated that when the cell nucleus is comparable with the
slit size, it would slow down the cell passage and even lead
to cell blockage. In conclusion, the cell shape and surface
area increase plays a more vital role than the cell elastic-
ity in improving cell deformability, which facilitates the cell
to pass through the narrower slit. Moreover, the nucleus
indirectly reduces the deformability of cell during cell pas-
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Fig. 10 Snapshots of the cell deformation for different relaxed shapes
through the narrow slit (wc = 6µm) from the front view (the upper
row) and the top view (the lower row) separately. A/V is 0.667 in a,

0.730 in b, c and d. b, c and d represent that the seminor axis of the
cell is parallel to y, x and z axis, respectively
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sage through the slit when its size is comparable to the
slit.

Nevertheless, several limitations of themodel in this study
should be mentioned. Firstly, tumor transmigration is a com-
plex process including the interaction between endothelial
cells, blood cells and tumor cell, which has not been consid-
ered in this study. Secondly, the slit geometry is simple, while
in reality the inter-endothelial cleft is irregular and flexible,
which has a great effect on tumor cell transmigration. Finally,
for simplicity, the blood vessel wall is regard as rigid. The
effect of vessel wall elasticity on the cell transit across the
slit should be investigated in the future research.
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