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Abstract Most mathematical models of the growth and
remodeling of load-bearing soft tissues are based on one
of two major approaches: a kinematic theory that speci-
fies an evolution equation for the stress-free configuration
of the tissue as a whole or a constrained mixture theory that
specifies rates of mass production and removal of individ-
ual constituents within stressed configurations. The former
is popular because of its conceptual simplicity, but relies
largely on heuristic definitions of growth; the latter is based
on biologically motivated micromechanical models, but suf-
fers from higher computational costs due to the need to
track all past configurations. In this paper, we present a
temporally homogenized constrained mixture model that
combines advantages of both classical approaches, namely a
biologically motivated micromechanical foundation, a sim-
ple computational implementation, and low computational
cost. As illustrative examples, we show that this approach
describeswell both cell-mediated remodeling of tissue equiv-
alents in vitro and the growth and remodeling of aneurysms
in vivo. We also show that this homogenized constrained
mixture model suggests an intimate relationship between
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models of growth and remodeling and viscoelasticity. That
is, important aspects of tissue adaptation can be understood
in terms of a simple mechanical analog model, a Maxwell
fluid (i.e., spring and dashpot in series) in parallel with a
“motor element” that represents cell-mediated mechanoreg-
ulation of extracellular matrix. This analogy allows a simple
implementation of homogenized constrainedmixturemodels
within commercially available simulation codes by exploit-
ing available models of viscoelasticity.

Keywords Adaptation · Viscoelasticity · Tissue
equivalents · Aneurysm · Computational modeling

1 Introduction

Computational modeling of the growth and remodeling
(G&R) of soft tissues has attracted considerable attention
over the past two decades. In the mid-1990s, it was sug-
gested that one can capture gross consequences of growth
via constitutive equations for the evolution of the stress-free
configuration at the tissue level. Importantly, the associated
growth was incorporated within a multiplicative decompo-
sition of the total deformation gradient into an elastic and
inelastic part (Rodriguez et al. 1994), not unlike certain
models of finite strain plasticity. Because of its conceptual
simplicity, this “kinematic growth theory” continues to be
used widely (see Ambrosi et al. 2011; Menzel and Kuhl
2012 and references therein). Beginning in the late 1990s,
however, it was recognized that soft tissue G&R necessarily
occurs via mass turnover, including the continuous depo-
sition and degradation of different constituents that form
the extracellular matrix (Humphrey and Rajagopal 2002).
Again, the associated deformations were considered in terms
of a multiplicative decomposition, albeit one that included
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the deposition of individually prestressed constituents within
the tissue while it is deformed elastically by external loads.
This understanding gave rise to a second major class of
G&R models based on multi-network theory and known
as constrained mixture models since it was assumed, for
simplicity, that the individual constituents deform with the
tissue as a whole (see Ateshian and Humphrey 2012; Valen-
tín and Holzapfel 2012; Cyron and Humphrey 2016 and
references therein). Compared with the conceptually sim-
pler kinematic growth models, constrained mixture models
are computationally more expensive for they require one to
track the history of prior configurations for each of the indi-
vidually evolving constituents. The advantage of this more
complex theory, however, is that cell-mediated mass pro-
duction and removal can be related more closely with the
actual mechanobiology. Indeed, it is because of its closer
relationship with the biology that the constrained mixture
approach has yielded several important theoretical insights,
including that of the driving role of mass turnover in patholo-
gies such as aneurysmal enlargement (Kroon and Holzapfel
2009), the necessity of prestress in living tissue (Cyron
and Humphrey 2014), and the concept of mechanobiolog-
ical stability as a governing principle in physiological and
pathological G&R (Cyron and Humphrey 2014; Cyron et al.
2014).

In this paper, we seek a computationally less expensive
approach that yet preserves some of the salient features of
the constrained mixture theory. Specifically, we use an infor-
mal temporal averaging to derive a new class of models,
which we refer to as homogenized constrained mixture mod-
els. This new class of models is shown to agree well with
in vitro data for tissue equivalents and to be equivalent to
classical constrained mixture models in the linear regime
as well as, via one illustrative example, to yield similar
results in the nonlinear regime. Unlike classical constrained
mixture models, homogenized constrained mixture models
do not deal with myriad evolving configurations; rather,
they refer to a single time-independent reference configu-
ration and, at each point and for each material species, a
time-dependent inelastic local deformation (as in viscoelas-
tic fluids). Interpreted in this way, G&R can be considered
as a special type of nonlinear viscoelasticity, represented by
a mechanical analog model consisting of a Maxwell fluid
in parallel with a motor element that models cell-mediated
mechanoregulation of matrix. In summary, the proposed new
class of homogenized constrained mixture models combines
the conceptual simplicity and computational efficiency of
kinematic growth models (Rodriguez et al. 1994) with the
well-defined micromechanical foundation of classical con-
strained mixture models (Humphrey and Rajagopal 2002)
and thus provides a promising new approach for multiscale
simulations of problems of soft tissue growth and remodel-
ing.

2 Homogenized constrained mixture models

2.1 Basic kinematics

Let a body with initial (not necessarily stress-free) refer-
ence configuration κ(0) be deformed at G&R time s into
a current configuration κ(s) so that reference volume ele-
ments dV are mapped into current volume elements dv via
dv = det(F)dV , where F denotes the usual deformation
gradient. Within this standard setting of nonlinear contin-
uum mechanics, we illustrate in Fig. 1 both the kinematic
growth theory (Rodriguez et al. 1994) and the classical con-
strained mixture model (Humphrey and Rajagopal 2002).
In the former, one typically assumes a stress-free refer-
ence configuration κ(0). Growth is imagined as a process
whereby each infinitesimal volume expands inelastically by
the addition of mass. This expansion (which does not stress
the volume element) is captured by an inelastic deforma-
tion gradient Fg that makes neighboring volume elements in
general overlap, that is, it leads to geometrically incompati-
ble configurations. Hence, at each time an additional elastic
deformation Fa is required to assemble the individual vol-
ume elements elastically into a contiguous body. This elastic
deformation combines multiplicatively with a subsequent
elastic deformation due to external loads FE to produce a
total elastic deformation Fe = FEFa, whereby the total
deformation at each G&R time s is

F(s) = FE(s)Fa(s)Fg(s) = Fe(s)Fg(s) (1)

and leads to a configuration of the whole tissue inmechanical
equilibrium that satisfies the constraint of geometric compat-
ibility. This kinematic growth theory is conceptually simple,
but it does not account for the simultaneous presence of
different constituents in the body that can have different refer-
ence configurations.Moreover, it does not explicitly consider
mass turnover of individual constituents, including the con-
tinuous deposition and degradation that happens in living
tissue even in the absence of growth (i.e., changes in tissue
mass).

To overcome these limitations, constrained mixture mod-
els of G&R (Humphrey and Rajagopal 2002) assume that
each volume element comprises a constrained mixture of n
material constituents (e.g., elastin, families of locally parallel
collagen fibers, or smoothmuscle)whose respectivemechan-
ical quantities are denoted by superscript i ∈ (1, . . . , n)

and which deform together so that different constituents
deposited at the samematerial point X have the same position
x1(X, s) = · · · = xn(X, s) = x(X, s) ∈ κ(s) in the current
configuration. Note, however, that different constituents may
exhibit different levels of elastic stretch in κ(s) depending
on the portions of their total deformation that are elastic ver-
sus inelastic. In this way, constrained mixture models allow
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Fig. 1 A body in a reference configuration κ(0) is deformed over time
into current configurations κ(τ) and κ(s) by external loading and simul-
taneous growth and remodeling (G&R). In the kinematic growth theory
(Rodriguez et al. 1994), a stress-free reference configuration κ(0) is
assumed, and the total deformation is split into an inelastic growth
deformation Fg and an elastic deformation Fe that ensures mechanical
equilibrium and geometric compatibility. The inelastic growth deforma-
tion Fg alone does not necessarily render a geometrically compatible
deformation field but may rather lead to a fictitious intermediate con-
figuration where the body is composed of a (in general infinite) number
of patches that may overlap or also form gaps. In contrast, constrained

mixture models (Humphrey and Rajagopal 2002) model deformations
of individual constituents, with mass added to current configurations at
G&R time τ via constituents having a “prestretch” Fi

pre(τ ) relative to

their respective natural (stress-free) configurations κ i
n(τ ). Thus, in each

volume element there exists simultaneously a mixture of mass incre-
ments from n constituents while each constituent itself is a mixture
of infinitesimal mass increments deposited during nt past infinitesimal
time intervals (where nt is infinite in the limit of continuous deformation
and G&R). Each of the nnt mass increments has, in general, a different
natural (stress-free) configuration that must be tracked

different stress-free configurations for different constituents;
they can even treat each of the n constituents as consisting of
an infinite number of infinitesimalmass increments deposited
at each prior time. For example, at G&R time τ ∈ [0, s],
infinitesimal mass increments of each of the n constituents
can be deposited into the body in configuration κ(τ) with
some elastic prestretch Fi

pre(τ ), i = 1, . . . , n. Once these
increments have been added, they all deform together, with
all previously added increments for all constituents, by some
Fτ (s) = F(s)F−1(τ ) [cf. into the configuraiton at time s
Figure 1 and Eq. (2) in Figueroa et al. (2009)]. Thus, at time
s the elastic deformation of each mass increment added at
time τ is, for the ith constituent,

Fi(τ )
e (s) = F(s)F−1(τ )Fi

pre(τ ). (2)

Importantly, Fτ (s) can be computed regardless of the ref-
erence configuration chosen. We can also conceptualize the
deformation similar to that in the kinematic growth theory
by a decomposition into elastic and inelastic deformation

F(s) = Fi(τ )
e (s)Fi(τ )

gr (s), (3)

with the inelastic G&R deformation

Fi(τ )
gr (s) =

[
Fi(τ )
e (s)

]−1
F(s) =

[
Fi
pre(τ )

]−1
F(τ ). (4)
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That is, the constrained mixture model also enables a multi-
plicative split into elastic and inelastic deformations, though
both quantities generally differ for different mass increments
deposited at different times (noting, for example, the depen-
dence of Fi(τ )

e (s) on τ via F−1(τ ) in (2)) for different
constituents. It is for this reason that the classical constrained
mixturemodel (Humphrey andRajagopal 2002) requires one
to track n different natural configurations for the n con-
stituents at each G&R time of deposition τ ∈ [0, s]. In a
discrete setting, nt evaluation times are considered within
the time interval [0, s], with nt � n, and the computational
complexity arises mainly from the different references con-
figurations defined at different times.

The motivation for this paper, therefore, is to define an
effective, temporally homogenized elastic deformation gra-
dient Fi

e(s) and inelastic deformation gradient Fi
gr(s) for

each constituent at each G&R time of interest. These homog-
enized quantities are chosen such that one obtains a similar
(and in certain limit cases identical) mechanical behavior for
the ith constituent if one assumes that the whole mass of the
ith constituent exhibits these homogenized elastic and inelas-
tic deformations compared to the case where one thinks of
the ith constituent as composed of a multitude of mass incre-
ments deposited at myriad times τ ≤ s, each with a different
elastic and inelastic stretch Fi(τ )

e (s) and Fi(τ )
gr (s), respec-

tively.
Given any reference configuration κ(0) and external load-

ing on the body, as well as the temporally homogenized
inelastic stretch Fi

gr(s), the homogenized elastic deforma-

tion Fi
e(s) can be computed immediately from the condition

of mechanical equilibrium and geometric compatibility (cf.
Rodriguez et al. 1994). Thus, given the elastic and inelastic
deformations in the initial configuration, all that is required to
use homogenized quantities Fi

e(s) and Fi
gr(s) is a temporal

evolution equation for Fi
gr (s). Derivation of this evolu-

tion equation is the core of this paper. Note, therefore, that
inelastic deformations may result from two processes in a
constrained mixture model. First, growth (i.e., a change in
mass) leads to an inelastic deformation Fi

g of the reference
volume elements in which the mass increases or decreases.
Second, an additional inelastic deformation Fi

r may result
in a constrained mixture simply from the replacement of old
mass increments by new mass increments having a, in gen-
eral, different reference configuration. Such remodeling (i.e.,
mass exchange) can change the effective traction-free con-
figuration of the i th constituent without changing its total
mass. The total (homogenized) inelastic deformation of the
i th species can thus be written as composition of these two
processes, namely

Fi
gr = Fi

rF
i
g. (5)

Thus, the total deformation in a homogenized constrained
mixture model is

F = Fi
eF

i
gr = Fi

eF
i
rF

i
g. (6)

Deriving an evolution equation for Fi
gr requires an evolution

equation for both the growth Fi
g and the exchange-related

remodeling Fi
r . The evolution of F

i
g, which is a rotation-free

stretch tensor, is determined by the amount and orientation
of the constituent mass deposited and can thus be defined
by standard mechanobiological growth equations (such as
the ones used in kinematic or constrained mixture growth
models). Thus, only the evolution of the inelastic deformation
Fi
r is developed here. Note that the similarity between (1) and

(6) implies that homogenized constrainedmixturemodels are
as simple to apply as kinematic growth models (Rodriguez
et al. 1994),while they still rely on the samemicromechanical
ideas as classical constrained mixture models (Humphrey
and Rajagopal 2002).

2.2 Inelastic deformation by mass turnover

We first introduce appropriate quantities to define mass
turnover. Let the total current mass of each constituent per
volume element dV in the reference configuration κ(0) be
called reference mass density �i

0(s); clearly, this quantity
changes via mass deposition and degradation. Let �̇i

0+(s) be
the rate at which constituent mass is deposited per volume
dV . As in current constrained mixture models, we assume
that each new mass increment �̇i

0+(τ )dτ > 0 deposited over
the time interval dτ , at time τ , is subsequently degraded such
that at time s > τ only the fraction 0 ≤ qi (s, τ ) ≤ 1 survives,
with qi (s = τ, τ ) = 1. Herein we assume mass removal by
a Poisson process, that is

q̇i (s, τ ) = − 1

T i
qi (s, τ ) (7)

with some characteristic decay time T i . Although we allow
inhomogeneous Poisson processes, that is, T i that vary in
time, we restrict these variations to depend on physical state
variables that are common for the whole species (e.g., local
pH, temperature, or average stress) and do not to depend
explicitly on time τ . In the simplest case of a constant T i ,
(7) leads to an exponential survival function that is consistent
with a first order decay, namely

qi (s, τ ) = exp
[
− (s − τ) /T i

]
. (8)

While (7) appears to be a reasonable model in view of known
experimental observations and is key to the homogenization
approach developed herein, we emphasize that it necessarily
limits the modeling as discussed in Appendix 3.
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Next, let the rate of mass removal (e.g., degradation) be
denoted by �̇i

0− whereby from (7) we have

�̇i
0−(s) = −�i

0(s)

T i
. (9)

The total rate of change in reference mass density is thus

�̇i
0(s) = �̇i

0+(s) + �̇i
0−(s) (10)

which effectively determines the net volume that has to be
allocated by Fi

g. Hence, all continuum mechanical growth

models have to define �̇i
0(s), either directly or indirectly (e.g.,

via det (Fi
g)). The abovemodel ofmass turnover has only one

additional free parameter per constituent, the decay time T i ,
that is not required in kinematic growth models (Rodriguez
et al. 1994). This parameter is well known from constrained
mixture models (Humphrey and Rajagopal 2002).

Homogenizing temporally, we seek mechanical parame-
ters and state variables that represent the large number of
different mass increments of a constituent deposited over
time with, in general, individual natural configurations via a
homogeneous material having a single equivalent stress-free
configuration and strain energy function. There are various
ways to perform such a homogenization, a full review and
analysis of which is beyond the scope of this paper. Herein,
we pursue a simple temporal homogenization by assuming
that mass turnover does not change the general mechanical
behavior of a constituent (i.e., its strain energy function), only
its average stress-free configuration. To quantify this effect,
let new mass of the ith constituent be deposited with some
deposition Cauchy stress σ i

pre(s). In a constrained mixture
of mass increments having the same density (such as the one
formed by the myriad mass increments of the ith constituent
deposited over time), the Cauchy stress σ i (s) of the mix-
ture becomes the mass-averaged Cauchy stress of all mass
increments forming the mixture. Therefore, degrading extant
mass with (average) Cauchy stress σ i (s) at a rate �̇i

0−(s) and
depositing new mass with prestress σ i

pre(s) at a rate �̇i
0+(s)

induces in a given volume element, if the total deformation
F and growth deformation Fi

g are kept constant, in the time
interval ds a change in the Cauchy stress

σ̇ i
r(s)ds = σ i

pre(s)�̇
i
0+(s)ds + σ i (s)

[
�i
0(s) + �̇i

0−(s)ds
]

�i
0(s) + �̇i

0(s)ds

−σ i (s) (11)

where the first term on the right-hand side is the mass-
averaged Cauchy stress at time s +ds and the second term is
the one at time s. Neglecting higher-order terms, (11) gives,
with (9) and (10),

σ̇ i
r(s) = −

�̇i
0+

[
σ i (s) − σ i

pre(s)
]

�i
0(s)

= −
[

�̇i
0(s)

�i
0(s)

+ 1

T i

] [
σ i (s) − σ i

pre(s)
]
. (12)

The stress rate σ̇ i
r(s) by mass turnover only (i.e., deposition

and degradation of mass increments at a different stress level
in a constant geometric configuration) can be expressed, for a
given strain energy function, by an equivalent rate of change

in the elastic deformation (gradient) Ḟ
i
e, that is,

σ̇ i
r =

[
∂σ i

∂Fi
e

: Ḟi
e

]

F,Fi
g=const

, (13)

while recalling that for (12) we had assumed constant
total and growth deformations (i.e., F, Fi

g = const). This

assumption leads via its implication Fi
eF

i
r = const , with

(6), to

Ḟ
i
e = −Fi

e Ḟ
i
r

(
Fi
r

)−1
. (14)

With (14) we can rewrite (13) as

σ̇ i
r = −

[
∂σ i

∂Fi
e

]

F,Fg=const

:
[
Fi
e Ḟ

i
r

(
Fi
r

)−1
]

. (15)

Defining the inelastic remodeling related velocity gradient
[cf. Eq. (9) in Himpel et al. (2005)]

Li
r = Ḟ

i
r

(
Fi
r

)−1
, (16)

we arrive (cf. Appendix 1) at

[
�̇i
0(s)

�i
0(s)

+ 1

T i

] [
Si − Sipre

]

=
[

∂Si

∂C i
e

:
[
C i
eL

i
r +

(
Li
r

)T
C i
e

]]

F,Fg=const

(17)

with the elastic right Cauchy–Green deformation tensor

C i
e = (

Fi
e

)T
Fi
e, and the second Piola–Kirchhoff stresses

Si and prestresses Sipre = det (F) F−1σ i
preF

−T . As pointed

out in Appendix 1, Ḟ
i
r can be computed in m dimensions

from (16) and (17) by solving a systemofm (m + 1) /2 linear
equations. Then, we can compute with the initial condition
Fi
r = I (with identity tensor I) the temporally homogenized

inelastic deformation induced by mass turnover at any time.
Note that all quantities in (16) and (17) are objective, and

hence Ḟ
i
r is an objective rate.
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Fig. 2 Heaviside perturbation in deformation (left) and resulting
instantaneous stress response and “active stress recovery” (center) in
a material subject to mass turnover for two different cases: increased
deformation or loading (top) and decreased deformation or unloading
(bottom). Note that stress does not relax toward zero as in typical vis-
coelastic materials, but instead toward a prestress, which is exactly the

behavior of the mechanical analog model on the right: a motor ele-
ment exerting the stress σ̄ i

pre in parallel with a Maxwell material (i.e., a

dashpot with time constant �̇i
0(s)/�

i
0(s)+1/T i in series with a (in gen-

eral nonlinear) spring with some stiffness Ci that relates deformation
increments �F and immediate, elastic stress increments �σ i )

2.3 Physical interpretation

The inelastic stress rate by mass turnover described in (12)
and (17) can be interpreted in the context of the theory of
viscoelastic fluids. To see this, we first introduce the mass-
averaged mean prestress of all mass increments forming the
ith species

σ̄ i
pre(s) =

∫ s

−∞
σ i
pre(τ )

qi (s, τ )�̇i
0+(τ )

�i
0(s)

dτ, (18)

whose time derivative is, with (7),

∂

∂s
σ̄ i
pre(s)=

[
qi (s, τ )�̇i

0+(τ )

�i
0(s)

σ i
pre(τ )

]

s=τ

−
[

�̇i
0(s)

�i
0(s)

+ 1

T i

]

×
∫ s

−∞
qi (s, τ )�̇i

0+(τ )

�i
0(s)

σ i
pre(τ )dτ. (19)

Using qi (s, s) = 1 and, from (9) and (10), �̇i
0+(s)/�i

0(s) =
�̇i
0(s)/�

i
0(s) + 1/T i , we can write (19) as

∂

∂s
σ̄ i
pre(s) =

[
�̇i
0(s)

�i
0(s)

+ 1

T i

]
σ pre(s)

−
[

�̇i
0(s)

�i
0(s)

+ 1

T i

]
σ̄ i
pre(s). (20)

With this preliminary remark, imagine a body in an initial
state with σ i (s) = σ i

pre(s) so that turnover does not alter

stress over time (cf. (12)). Moreover, assume no change in

volumeby growth (i.e., Ḟ
i
g = I), that is, focus on the effect of

mass turnover only, and consider a uniform Heaviside defor-
mation �F on the whole body at time ŝ. The stress response
will be an immediate �σ i = σ i

(
ŝ+) − σ̄ i

pre. Subsequently,
the system is, by definition, not subject to any further dis-
placement so that evolution of stress is determined by mass
turnover alone. The stress rate is thus

∂

∂s
σ i (s) = σ̇ i

r(s)

= −
[

�̇i
0(s)

�i
0(s)

+ 1

T i

] [
σ i (s) − σ i

pre(s)
]
. (21)

Subtracting (20) from (21) gives the stress evolution equation

∂

∂s

[
σ i − σ̄ i

pre

]
= −

[
�̇i
0(s)

�i
0(s)

+ 1

T i

] [
σ i − σ̄ i

pre

]
,

(22)

which implies, for constant prestress, an exponential “active
stress recovery”with characteristic time �̇i

0(s)/�
i
0(s)+1/T i .

This stress recovery can be understood as the stress relaxation
of aMaxwell fluid (i.e., a spring and dashpot in series) with a
parallel “motor element” (cf. Fig. 2), which can thus be con-
sidered a mechanical analog model for materials subjected
to mass turnover as considered herein.

In Appendix 2, we provide an alternative derivation of
(22) for the special case of linear elasticity starting from
a classical (non-homogenized) constrained mixture model.
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This derivation demonstrates the close similarity (and equiv-
alence in the linear regime) of the mechanical behavior of
classical and temporally homogenized constrained mixture
models, and thus the conceptual utility of themechanical ana-
log model in Fig. 2 to both. We also examine in Appendix
2 the relation between this mechanical analog model and
the Volterra equations and kernel functions of the theory
of linear viscoelasticity. In Appendix 3, we discuss math-
ematical differences between classical and homogenized
constrainedmixturemodels for G&R using the idea of “simi-
lar sets” introduced in Rajagopal and Srinivasa (1998). These
discussions allow us to review relationships between a “vis-
coelasticity” induced by mass turnover in living tissue (cf.
Fig. 2) and classical viscoelasticity of engineering materials.

It is instructive to discuss physical properties of the
mechanical analogmodel in Fig. 2.Maxwell bodies are inher-
ently unable to support loads in a static state. Themechanical
analog model in Fig. 2 can do so only by the motor element
in parallel, which models the generation and maintenance
of a (average) tissue prestress σ̄ i

pre(s). This confirms the
key role of prestress in living tissue suggested in the pre-
stress corollary in Cyron and Humphrey (2014). The analog
model in Fig. 2 thus provides an intuitive explanation for the
presence of prestress in living tissue—it is a mathematically
necessary property of a tissue subject to continuous mass
turnover that yet seeks tomaintain a static geometry, that is, to
establish a so-calledmechanobiological equilibrium (Cyron
and Humphrey 2014). Extracellular matrix homeostasis thus
depends on a cell-mediatedmechanoregulation that necessar-
ily includes the incorporation under stress of newconstituents
within extant matrix (Humphrey et al. 2014).

3 Illustrative examples

3.1 Active stress recovery by remodeling in tissue
equivalents

Quantitative validation of mathematical models of G&R is
difficult in vivo, but in vitro studies using tissue equivalents
can provide the requisite longitudinal mechanical data (e.g.,
Bai et al. 2014). Indeed, it is sometimes possible to delin-
eate in vitro the separate contributions of growth (changes
in mass) and remodeling (changes in microstructure). In this
section, we compare the homogenized constrained mixture
model developed herein with experimental observations in
uniaxial fibroblast-seeded collagen gels (Brown et al. 1998;
Ezra et al. 2010). Noting the short time scale of these exper-
iments, growth was likely negligible and stress evolution
was assumed to be determined solely by load-induced elastic
deformations and remodeling according to (12).

Like other cell types, dermal fibroblasts seek to establish a
homeostatic level of stress in initially nearly stress-free col-

lagen gels and collagen–GAG sponges (Brown et al. 1998).
Perturbation of stress from this homeostatic target induced
by a step increase in stretch at time sP elicits an immedi-
ate increase in stress and a subsequent slow recovery of
the homeostatic value [see the tension-time data reported
in Figure 2a of Brown et al. (1998)]. A host of subse-
quent papers has examined this phenomenon (see Simon
and Humphrey 2014 for a review) and identified fibroblast-
driven remodeling of the collagen network as the underlying
mechanism. The elasticity of collagen gels results from dif-
ferent filament–filament interactions mediated by different
load-bearing structures within the tissue, such as physical
entanglements, secondary bonds, or covalent cross-links.We
may imagine remodeling in collagen gels as a continuous
degradationof extant load-bearing tissue structures anddepo-
sition of new tissue structures representing the remodeled
constituents. To capture this turnover with, in general, differ-
ent half-lives of the different load-bearing tissue structures in
fibroblast-driven remodeling, we modeled the gel as a con-
strained mixture of n collagen fiber families having different
decay time constants T i (cf. (7)). Motivated by the probably
nearly constant net heightened stress of the cytoskeleton of
the fibroblasts during remodeling, and the assumed intrinsic
relation between this stress and the prestress associated with
microstructural remodeling, we assumed the same and con-
stant prestress σ i

pre(s) = σc for all fiber families (note: we
use regular instead of bold symbols to emphasize that stresses
in this (uniaxial) example are scalars). Recovery of the total
Cauchy stress in the gel is thus expected to be the sum of
stress relaxations according to (22) for all fiber families, that
is, for s > sP

σ(s) − σc =
n∑

i=1

ϕi exp
[
− (s − sP) /T i

] [
σ

(
s+
p

)
− σc

]
,

(23)

whereϕi represents the volume fractionof the ithfiber family,∑n
i=1 ϕi = 1 and σ

(
s+
p

)
is the stress immediately after the

perturbation at remodeling time sP. Fitting the experimental
data from Figure 2a in Brown et al. (1998), we found for n =
1 parameters ϕ1 = 1.0, T 1 = 11 h with a relative L2-error
of 10% and for n = 2 parameters ϕ1 = 0.11, ϕ2 = 0.89,
T 1 = 1.0 h, T 2 = 100 h with a relative L2-error of 1%, thus
suggesting two dominant time scales separated by about two
orders of magnitude (cf. Fig. 3).

Ezra et al. (2010) compared the recovery of tensional
homeostasis in a collagen gel after perturbation for tarsal
plate fibroblasts without and with floppy eyelid syndrome.
We digitized the experimental data from their Figure 4A sep-
arately for each of the perturbations between 8h and 13.5h
after initiation of the experiment, and we normalized the
related stress–time curve with respect to the initial deviation
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Fig. 3 Best fit of (23) to experimental data from Figure 2a in Brown et al. (1998) for n = 1 (left) and n = 2 (right)

Fig. 4 Best fit of (23) to experimental data from Figure 4A in Ezra et al. (2010) for n = 1 (left) and n = 2 (right) for tarsal plate fibroblasts without
(top) and with (bottom) floppy eyelid syndrome

from the homeostatic value of stress and the respective per-
turbation time sP. Data analysis revealed that the first curve
in each and the seventh curve in the floppy eyelid syndrome
group were outliers, which were omitted. Analysis of the
remaining (superimposed) data revealed that each individual
active stress recovery curve could be fit well with a sum of
only n = 2 exponentials (with an average relative L2-error
of 1.4%). Fitting the data with n = 2 yielded ϕ1 = 0.18,
ϕ2 = 0.82, T 1 = 0.05 h, T 2 = 3.51 h for the 8 curves
with floppy eyelid syndrome and ϕ1 = 0.41, ϕ2 = 0.59,
T 1 = 0.05 h, T 2 = 1.01 h for the 10 curves without floppy
eyelid syndrome (Fig. 4).

These results suggest [for data from both Brown et al.
(1998) and Ezra et al. (2010)] that active stress recovery
in collagen gels toward a homeostatic value is governed by
two dominant time constants. The good agreement between
experimental observations in tissue equivalents and our
model supports the idea of an intrinsic relationship between
remodeling by turnover of mechanical structures and vis-
coelasticity, which was suggested by the theoretical analysis
and model developed herein. An interesting result of our
analysis is the presence of two relaxation time constants
that differ by about two orders of magnitude in both data
sets examined, which suggests two independent remodeling
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Fig. 5 Left axisymmetric model aorta before and 15years after intro-
ducing a focal loss of elastin in the central region shown as a function
of the gain parameter kσ for collagen deposition (note that one can
similarly parameterize these simulations in terms of a stability mar-
gin mG&R, which is introduced in Cyron and Humphrey (2014); right
evolution of the maximal radius R(s) over time s for the same six simu-
lations shown to the left but comparing the classical (dashed lines) and

the new homogenized (solid lines) constrained mixture model predic-
tions; note: formG&R > 0, the aorta is mechanobiologically stable, that
is, the initial defect in elastin does not result in unbounded enlargement
of aneurysm, but rather stabilization in a new (typically only slightly
dilated) equilibrium (cf. Cyron andHumphrey 2014; Cyron et al. 2014))

mechanisms in tissue equivalents. Experimental investiga-
tion into the physical foundations of these two mechanisms
may be a useful avenue of future research. Note, too, that
the absolute difference between the time constants observed
in the data of Brown et al. (1998) and Ezra et al. (2010),
which is nearly two orders of magnitude, may be understood
easily from micromechanical considerations. The remodel-
ing time constant of a specific turnover process is nearly
directly proportional to the density (or activity) of driving
cellular agents in the material. Therefore, time constants in
Brown et al. (1998) and Ezra et al. (2010) might be under-
stood in the sense that in both systems the same two types
of turnover processes dominate, but that cellular density or
activity in Ezra et al. (2010) is about two orders of magni-
tude higher. Finally, the good agreement between our model
and experimental data for constant prestress supports this
assumption, which has been suggested before (Cyron and
Humphrey 2014; Cyron et al. 2014).

3.2 Active enlargement of abdominal aortic aneurysms

In this section, we revisit G&R of a model aorta that was
examined previously (Cyron et al. 2014). Hence, consider
an axisymmetric cylindrical membrane whose wall is repre-
sented by a constrained mixture of n = 6 constituents: an
isotropic elastin matrix, circumferentially oriented smooth
muscle, and four collagen fiber families (axial, circumferen-
tial, and diagonal at ±45◦ relative to axial direction). Elastin
was modeled as an incompressible neo-Hookean matrix,
whereas smooth muscle and collagen fibers were modeled as
uniaxial (incompressible) fiber families with Fung exponen-
tial strain energy functions 	 i . The time constant for mass

turnover of collagen and smooth muscle was set to T = 70d,
and growth was governed by

�̇i
0 = �i

0(s)kσ

σ i (s) − σ i
pre

σ i
pre

(24)

where kσ is a gain-type parameter and σ i and σ i
pre are the

(scalar) Cauchy stress and (constant) prestress in direction of
the fiber families. For ease of comparison, all parameter val-
ues were identical to the ones used in section 3.4.1 in Cyron
et al. (2014). The evolution of stress by growth and remodel-
ing was modeled separately for each species following (17).
Because smooth muscle and collagen were modeled as uni-
axial fiber families, the associated deformation gradient was
given by their rotation and (scalar) stretch λi = λieλ

i
r , which

comprises an elastic stretch λie and an inelastic stretch λir that
arises because of the mass turnover. Thus (17) becomes (cf.
Appendix 1)

λ̇ir =
[

�̇i
0(s)

�i
0(s)

+ 1

T

]
λi(
λie

)2
[
∂	 i

∂λie
+ λie

∂2	 i

∂2λie

]−1

×
[
σ i (s) − σ i

pre

]
. (25)

In Fig. 5, we compare, for different values of kσ in
(24), results for the classical constrained mixture model
(Humphrey and Rajagopal 2002), as implemented in Cyron
et al. (2014), directly with those of the temporally homog-
enized constrained mixture approach introduced herein for
the enlargement of an aneurysm following a focal loss of
elastin in the central region of the vessel. As expected
from the discussion in Appendix 2, the results of both
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approaches are (nearly) identical in the linear regime (i.e.,
for moderate deformations from the initial state). Percepti-
ble (although still moderate) differences are observed only
far away from the linear regime (in our example, only for
the two fastest growing aneurysms after ∼10years of sim-
ulated time). Recall again that for the classical constrained
mixtures models, the reference configurations for each mass
increment deposited at each time have to be tracked in the
finite element evaluation. We compared in MATLAB the
computational cost of the present homogenized constrained
mixture approach with the classical one (for which mass
increments and their reference configurations were taken
into account until degraded by 98%). For a time step size
�s = 10d = T/7, the former surpassed the latter in compu-
tational efficiency by around one order of magnitude. This
speedup canbeunderstood from thedominant cost of element
evaluation (compared to equation solution) in the problem
considered here and the effect of temporal homogenization,
which reduces in constrained mixture models the number of
operations for element evaluation by around one order of
magnitude. As expected, the homogenized constrained mix-
ture model developed herein enabled simulations of G&R
at a cost comparable to simulations of standard viscoelas-
tic fluids and well below the one of classical constrained
mixture models. The long-term differences between the two
models remind us, however, that any computational advan-
tage gained via approximations of actual mechanobiological
processes must be assessed in individual cases for ultimately
we wish to understand the biology, not just minimize com-
putational costs.

4 Conclusions

There exist computationally efficient models for the G&R of
soft tissues that are based on a multiplicative decomposition
of the deformation gradient into inelastic (growth-induced)
and elastic parts (Rodriguez et al. 1994) without explicit
incorporation of mass turnover. Nevertheless, actual G&R
necessarily results from the turnover ofmaterial in potentially
evolving configurations and mechanobiologically motivated
models should include both mass production and removal
(Kroon and Holzapfel 2009;Watton et al. 2011;Wilson et al.
2013). Although the models of Watton and colleagues do
not, computational models based on classical constrained
mixture theory can suffer from high computational costs. In
this paper, we proposed a homogenized constrained mixture
model that is conceptually as simple and computationally
as efficient as the kinematic growth models but incorpo-
rates mass turnover on the basis of the idea of a constrained
mixture. Using the example of aneurysmal enlargement in a
simplemodel aorta, we demonstrated both the computational
efficiency of our new approach and its generally good agree-

ment with the previously developed classical constrained
mixture models.

An added advantage of a temporally homogenized con-
strained mixture approach is that it suggests a simple and
intuitive way to understand mechanobiologically driven
G&R through a mechanical analog model, namely a motor-
reinforced viscoelastic Maxwell fluid. The “motor element”
represents the actomyosin-based cell-mediated creation of a
prestress within newly deposited or remodeled matrix, con-
sistent with data that show that cells actively work upon
the matrix that they secrete (Humphrey et al. 2014). Given
that the form of the classical constrained mixture model
was motivated by ideas from multi-network theory and non-
linear viscoelasticity (Humphrey and Rajagopal 2002), a
viscoelastic analog model is not surprising. An interesting
consequence of such an analog, however, is that soft tis-
sues can maintain a long-term static geometry despite an
inherently fluid-like character only because of the deposi-
tion prestress, which is in agreement with prior numerical
hypothesis testing (Valentin et al. 2009) and a prior study
of mechanobiological stability [cf. “prestress corollary” in
Cyron and Humphrey (2014)], which together provide a nat-
ural explanation for the apparent omnipresence of prestress
in soft tissue.

Another important consequence of our theory relates to
the origin of residual stress in soft tissue, which has been
hypothesized to originate from geometrically incompatible
growth (Rodriguez et al. 1994; Vandiver and Goriely 2009).
Our analysis suggests that residual stresses introduced by
incompatible growth could—at least in tissues with pro-
nounced mass turnover such as arteries—quickly relax due
to the fluid-like character of soft tissue G&R and that resid-
ual stresses are therefore likely to originate rather from
deposition prestresses than incompatible growth. This inter-
pretation is supported by the experimental observation that
residual stress forms in vitro in initially relaxed collagen
gels as soon as fibroblasts begin to remodel the matrix in
an attempt to establish a homeostatic state of stress (Simon
and Humphrey 2014; Simon et al. 2014), although nomacro-
scopically incompatible growth processes occur in these gels
since there is no frank mass addition. Note, too, that in
capturing experimental observations on remodeling in tis-
sue equivalents (Brown et al. 1998; Ezra et al. 2010), our
model suggests further that G&R may well be driven by not
one, but rather two or more, structural turnover processes
(recall the two characteristic time constants associated with
Figs. 3, 4 above). Identification and examination of the pre-
cise micromechanical mechanisms corresponding to these
distinct turnover processes should be a promising avenue of
future research.

In summary, although we focused on G&R in soft
tissue, the general derivation of our model from a classi-
cal constrained mixture theory suggests potential broader
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applicability of the viscoelasticity-based mechanical ana-
log model, including potential utility in studying creep-like
deformations in bone [as observed, e.g., in orthodonics (Han-
non and Knapp 2006)], G&R-related behaviors of biofilms
(Albero et al. 2014), and likely many other cases. Clearly,
much remains to be explored in the general area of the
biomechanics of growth and remodeling and itsmyriad appli-
cations.

Appendix 1

In general, [cf. Eqs. (6.10) and (6.11) in Holzapfel (2000)]

∂σ i

∂Fi
e

: Ḟi
e = ∂σ i

∂C i
e

:

Ċ
i
e = ∂σ i

∂C i
e

:
[(

Ḟ
i
e

)T
Fi
e +

(
Fi
e

)T
Ḟ
i
e

]
. (26)

With (26), (14), (15), and the (symmetric) elastic Cauchy–

Green deformation tensor C i
e = (

Fi
e

)T
Fi
e, we can rewrite

(13) as

σ̇ i
r = −

[
∂σ i

∂C i
e

:
[
C i
eL

i
r +

(
Li
r

)T
C i
e

]]

F,Fg=const

(27)

or equivalently with (12) as

[
�̇i
0(s)

�i
0(s)

+ 1

T i

] [
σ i − σ i

pre

]

=
[

∂σ i

∂C i
e

:
[
C i
eL

i
r +

(
Li
r

)T
C i
e

]]

F,Fg=const

. (28)

Using [cf. Eq. (6.12) in Holzapfel (2000)]

σ i = 1

J
FSi FT , (29)

with Si the second Piola–Kirchhoff stresses and J = det (F)

the Jacobi determinant, plus the condition F, Fg = const ,
we rewrite (28) as

1

J

[
�̇i
0(s)

�i
0(s)

+ 1

T i

]
F

[
Si − Sipre

]
FT

=
[
1

J
F

∂Si

∂C i
e

:
[
C i
eL

i
r +

(
Li
r

)T
C i
e

]
FT

]

F,Fg=const

(30)

or
[

�̇i
0(s)

�i
0(s)

+ 1

T i

] [
Si − Sipre

]

=
[

∂Si

∂C i
e

:
[
C i
eL

i
r +

(
Li
r

)T
C i
e

]]

F,Fg=const

. (31)

Noting the symmetries of Si , Sipre, and C i
e, (31) provides in

m dimensions (if ∂Si/∂C i
e has full rank)m (m + 1) /2 equa-

tions to determine the six unknowns of the symmetric part of
C i
eL

i
r , leaving the skew symmetric part undefined. Similar

problems are well known from (anisotropic) plasticity and
are often addressed by additional micromechanically moti-
vated kinematic or constitutive conditions (Dafalias 1998),
including the simple assumption that the undetermined skew
symmetric part is zero. A general discussion of this issue
is beyond the scope of this paper. It is worth mentioning,
however, that both for isotropic materials and for quasi-
one-dimensional fiber families, it is sufficient to decompose
Fi
r = Ri

rU
i
r into a rotation tensor Ri

r and a (symmet-
ric) stretch tensor U i

r (as common in nonlinear continuum
mechanics) and to assume Ri

r = I (with identity tensor I).

Then C i
eL

i
r = C i

eU̇
i
r

(
U i

r

)−1
so that (31) becomes in a time-

discrete setting a system of m (m + 1) /2 linear equations
that enables computation of the m (m + 1) /2 components
of U i

r . For isotropic materials, the assumption Ri
r = I is

justified by the rotation invariance of the strain energy func-
tion. For quasi-one-dimensional fiber families, it results from
the micromechanical modeling assumption that during mass
turnover new fibers are deposited always in the same direc-
tion (in reference configuration).

In case of a rank deficient stiffness ∂Si/∂C i
e, there are

deformation modes in Fi
r that do not contribute to strain

energy and that can (and have to) be chosen arbitrarily. For
example, for (incompressible) quasi-one-dimensional fiber
families aligned in direction Ai in the reference configura-
tion (and thus also in the inelastically deformed intermediate
configuration due to the assumption Ri

r = I for such fibers),
we can choose

Fi
r = λirAi ⊗ Ai + 1√

λir

(I − Ai ⊗ Ai ) , (32)

where only the inelastic stretch λir in the fiber direction is
unknown and all other deformation modes (except for the
volumetric one) are arbitrarily chosen such as to ensure zero
inelastic shear deformation. Then the general equation

σ i = 1

J

∂	i (Fi
e

)

∂F
FT = 1

J

∂	i

∂Fi
e

∂Fi
e

∂F
FT

= 1

J

∂	i

∂Fi
e

(
Fi
g

)−1
FT = 1

J

∂	i

∂Fi
e

F−1Fi
eF

T , (33)
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simplifies in the fiber direction due to the unit Jacobi deter-
minant J = 1 and Ri

r = I to

σ i = ∂	 i

∂λie
λie, (34)

and thus

[
∂σ i

∂λie

]−1

F,Fi
g=const

=
(

∂	 i

∂λie
+ ∂2	 i

(
∂λie

)2 λie

)−1

. (35)

with elastic fiber stretch λie and Cauchy stress σ i in the fiber

direction. Then (28) yields with ∂λie/∂
(
λie

)2 = 1/
(
2λie

)
the

scalar evolution equation

λ̇ir =
[

�̇i
0(s)

�i
0(s)

+ 1

T i

]
λi(
λie

)2
[

∂	 i

∂λie
+ λie

∂2	 i

(
∂λie

)2
]−1

×
[
σ i − σ i

pre

]
, (36)

which allows to compute the only unknown component of
Fi
r in (32).

Appendix 2

In this appendix, we examine, assuming a classical non-
homogenized constrainedmixturemodel, in the linear regime
the relation between mass turnover and the theory of vis-
coelasticity. In this theory, stress is generally expressed by
the Volterra equation

σ i (s) =
∫ s

−∞
Gi (s − τ) : ε̇(τ )dτ (37)

where the kernel function Gi is a fourth-order tensor, ε is
the (linear) engineering strain tensor, and the colon denotes
a double contraction product. The Cauchy stress for a mass
increment produced at time τ ′ equals, in the linear elastic
regime, its prestress plus the stress from the deformation
ε(s) − ε(τ ′) that the mass increment experienced between
its deposition at time τ ′ and current time s, that is,

σ i (s) = σ i
pre(τ

′) + C
i : [

ε(s) − ε(τ ′)
]

= σ i
pre(τ

′) + C
i :

∫ s

−∞
h

(
τ − τ ′) ε̇(τ )dτ (38)

where Ci is the fourth-order elasticity tensor and h
(
τ − τ ′)

is the Heaviside step function. The ith constituent in each
volume element comprises, in general, mass increments pro-
duced in the time interval ]−∞; s]. At time s, the mass
fraction of an increment produced in the time interval dτ ′

at τ ′ is qi
(
s, τ ′) �̇i

0+
(
τ ′) dτ ′/�i

0(s) so that, according to
the classical constrained mixture approach (Humphrey and
Rajagopal 2002), the (mass-averaged) Cauchy stress of the
ith species is, with (18),

σ i (s) = σ̄ i
pre(s) + C

i :
∫ s

−∞

∫ s

−∞
h

(
τ − τ ′) ε̇ (τ ) dτ

×qi
(
s, τ ′) �̇i

0+
(
τ ′)

�i
0(s)

dτ ′

= σ̄ i
pre(s) + C

i :
∫ s

−∞

∫ s

−∞
h

(
τ − τ ′)

×qi
(
s, τ ′) �̇i

0+
(
τ ′)

�i
0(s)

dτ ′ε̇(τ )dτ

= σ̄ i
pre(s)

+
∫ s

−∞

∫ τ

−∞
qi (s, τ ′)�̇i

0+(τ ′)
�i
0(s)

dτ ′
C
i

︸ ︷︷ ︸
Gi (s−τ)

: ε̇(τ )dτ

= σ̄ i
pre(s) +

∫ τ

−∞
Gi (s − τ) : ε̇(τ )dτ (39)

Given the physiological requirement qi
(
s → ∞, τ ′) = 0,

we conclude from (37) and (39) that mass turnover makes a
body behave like a viscoelastic fluid with the special kernel
function

Gi (s − τ) =
∫ τ

−∞
qi

(
s, τ ′) �̇i

0+(τ ′)
�i
0(s)

dτ ′
C
i . (40)

Note that, by definition, the current density �i
0(s) equals the

sumof the surviving fractionsqi (s, τ ′)of allmass increments
�̇i
0+(τ ′)dτ ′ previously deposited per unit volume, that is,

�i
0(s) =

∫ s

−∞
qi (s, τ ′)�̇i

0+(τ ′)dτ ′ (41)

and therefore Gi (0) = Gi (s − τ)
∣∣
τ=s = C

i .
To understand the mechanical implications of (39), we

consider its time derivative (after subtracting σ̄ i
pre(s))

∂

∂s

(
σ i (s) − σ̄ i

pre(s)
)

=
[
Gi (s − τ) : ε̇(τ )

]
τ=s

+
∫ s

−∞
∂

∂s
Gi (s − τ) : ε̇(τ )dτ.

(42)

The time derivative of (40)

∂

∂s
Gi (s − τ) = − �̇i

0(s)

�i
0(s)

C
i

�i
0(s)

∫ τ
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+ C
i

�i
0(s)

∫ τ

−∞
∂

∂s
qi (s, τ ′)�̇i

0+(τ ′)dτ ′,

(43)

with (7), gives

∂

∂s
Gi (s − τ) = −

[
�̇i
0(s)

�i
0(s)

+ 1

T i

]
Gi (s − τ), (44)

which leads, with (42) and Gi (0) = C
i , to

∂

∂s

(
σ i (s) − σ̄ i

pre(s)
)

= C
i : ε̇(s)

−
[

�̇i
0(s)

�i
0(s)

+ 1

T i

]∫ s

−∞
Gi (s − τ) : ε̇(τ )dτ (45)

and, with (39), finally to

∂

∂s

(
σ i (s) − σ̄ i

pre(s)
)

= C
i : ε̇(s)

−
[

�̇i
0(s)

�i
0(s)

+ 1

T i

] [
σ i (s) − σ̄ i

pre(s)
]
, (46)

This stress evolution equation is equivalent to (22), recalling
that in (22) we had considered a Heaviside deformation step,
that is, ε̇(s > ŝ) = 0. Therefore, in the linear limit the clas-
sical constrained mixture approach based on multi-network
theory, as introduced by Humphrey and Rajagopal (2002), is
equivalent to the homogenized constrainedmixture approach
developed herein, which explains the similar results of both
in Fig. 5 and supports the appropriateness of our homog-
enization scheme. We conclude that the mechanical analog
model inFig. 2 is therefore also appropriate for understanding
the general behavior of classical constrained mixture mod-
els. Conversely, the kernel function in (40) is also applicable
to the homogenized constrained mixture model (noting the
unique relationbetweenkernel function and stress evolution).

Appendix 3

It is instructive to compare the mathematical and physical
basis of classical andhomogenized constrainedmixturemod-
els for G&R. Mathematically, classical models are based on
multi-network theory and assume that the total strain energy
of the constrainedmixture equals the sum of the strain energy
of all mass increments and that the stress response func-
tions σ i(τ ) (τ, F) of mass increments of the ith constituent
deposited at time τ form for all τ a “similar set” in the sense of
Definition 3 in Rajagopal and Srinivasa (1998). This means,
for any τ and τ̂ there exist Fi(τ )

gr and Fi(τ̂ )
gr such that for any

F

σ i(τ )

(
F

(
Fi(τ )
gr

)−1
)

= σ i(τ̂ )

(
F

(
F
i(τ̂)
gr

)−1
)

. (47)

In other words, the stress response function of different mass
increments of the same constituent differs only by some
inelastic deformation. By contrast, in homogenized con-
strained mixture models we assume that the stress response
function σ i (s, F) of the whole constituent (which may
change in time) belongs at any two times s and ŝ to the same
“similar set”, that is, for any F there exist Fi

gr(s) and Fi
gr(ŝ)

such that

σ i
(
s, F

(
Fi
gr(s)

)−1
)

= σ i
(
ŝ, F

(
Fi
gr

(
ŝ
))−1

)
(48)

This difference in the mathematical basis has a nice inter-
pretation in the context of soft matter physics. Nonlinear
constitutive behaviors of polymeric materials can result from
different mechanisms. For example, theymay result from the
nonlinear stiffness of the single fibers, which are immersed
in a thermal bath and behave like nonlinear entropic springs
[cf. Eq. (6.14) in Howard (2001) or Eq. (8.10) in Mofrad and
Kamm (2006) or Cyron and Wall (2009, 2012)]. Let in such
a setting a certain group of the fibers persist, while another
group is degraded and replaced by new fibers in a different
nonlinear stretch state. The elastic behavior of the resulting
mixture cannot, in general, be described by averaging the
nonlinear strain of both groups of fibers (e.g., on the basis of
their respective mass fractions) because of the nonlinearity
of the stress response of each group of fibers. Rather, one has
to keep track separately of the nonlinear strain states of both
groups and average only their strain energy or Cauchy stress
on the basis of mass fractions. In a first approximation, one
may neglect interactions between different fiber groups (e.g.,
by cross-linking molecules), which are not assumed to con-
tribute significantly to the nonlinear behavior of the material.
This idea is formalized in multi-network theory, which was
developed to understand inelasticity of remodeling rubber
materials (Rajagopal and Wineman 1992) whose nonlinear
behavior largely depends on the nonlinear entropic elasticity
of single fibers (Mark et al. 2013) as discussed above.

In other polymeric materials, however, nonlinear elastic-
ity mainly results from reorientation of fibers in the network
(Onck et al. 2005; Stein et al. 2011) during deformation.
Again, let a certain group of fibers in such networks per-
sist while another group is degraded and replaced by new
fibers with a different stress-free configuration. The mechan-
ical nonlinearity of the resulting mixture crucially depends
on the orientation distribution of the fibers. This orientation
distribution can be approximated by the average orienta-
tion of both fiber groups, which motivates models based
on one average elastic strain for the whole mixture such
as homogenized constrained mixture models. At the same

123



1402 C. J. Cyron et al.

time, in this setting (cross-linker-mediated or steric) inter-
actions between subgroups of fibers often play an important
role, which complicates application of multi-network theory
(and thus classical constrained mixture models) where such
interactions are generally neglected.

Both classical and homogenized constrained mixture
models rely on assumptions that will in general form only
approximations of the actual complex micromechanical
behavior of a soft tissue. It is interesting to note, however,
that the origin of the mechanical nonlinearity of collagen
gels has been assumed to lie rather in fiber reorientation
during large deformation (Stein et al. 2011) than, for exam-
ple, in entropic elasticity of single fibers, which physically
motivates application of homogenized constrained mixture
models to G&R of soft tissue. It is, however, worth men-
tioning that homogenized constrainedmixturemodels suffer,
despite their otherwise favorable properties, from a potential
drawback compared to the classical ones (Humphrey and
Rajagopal 2002). Since the latter keep track of all singlemass
increments produced at any time in the network, they allow
arbitrary survival functions qi (s, τ ). Any approach involving
homogenization across all mass increments of the ith con-
stituent, such as the one developed herein, can necessarily
allow only dependences of qi (s, τ ) on quantities common
for all mass increments of the species, which excludes for
example a specific dependence on the deposition time τ (and
thus explicit age) of an individual mass increment. Potential
limitations associated with (7) should thus be kept in mind,
and it may be an interesting avenue of future research to
examine better the structural basis for the assumptions made
in (7) based on specific experiments.

Homogenized constrained mixture models are based on
a multiplicative decomposition of the deformation gradient
into an elastic and inelastic part and thus in certain aspects
similar to classical approaches to plasticity or viscoelastic flu-
ids (Reese andGovindjee 1998).Nevertheless, there are some
important differences. The first and perhaps most important
one is prestress: Stress evolution in our approach depends
crucially on some prestress σ i

pre(s), represented in Fig. 2 by
amotor element in parallel to theMaxwell body.This element
is missing in common models of viscoelasticity or plasticity
where inelastic deformation is driven by relaxation of some
overstress rather than via active intervention by microscopic
agents (cells) that seek to enforce some nonzero stress level
(like collagen-producing cells in G&R). A second impor-
tant difference of homogenized constrained mixture models
to classical nonlinear viscoelasticity (Reese and Govindjee
1998; Simo and Hughes 2000) as well as recent G&R mod-
els (Himpel et al. 2005; Ambrosi et al. 2011; Menzel and
Kuhl 2012) is the law of stress evolution which in our case is
not motivated in any way by the Clausius–Duhem inequality,
but rather is derived from assumptions on the micromechan-
ical foundations of G&R. This way we avoid the problem of

the undefined extra-entropy term complicating the derivation
of a stress evolution law (Himpel et al. 2005). Clearly, more
work is needed to derive a thermomechanical basis for G&R.
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