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Abstract Tumor spheroids constitute an effective in vitro
tool to investigate the avascular stage of tumor growth. These
three-dimensional cell aggregates reproduce the nutrient and
proliferation gradients found in the early stages of cancer
and can be grown with a strict control of their environmental
conditions. In the last years, new experimental techniques
have been developed to determine the effect of mechanical
stress on the growth of tumor spheroids. These studies report
a reduction in cell proliferation as a function of increasingly
applied stress on the surface of the spheroids. This work
presents a specialization for tumor spheroid growth of a pre-
vious more general multiphase model. The equations of the
model are derived in the framework of porous media the-
ory, and constitutive relations for the mass transfer terms
and the stress are formulated on the basis of experimental
observations. A set of experiments is performed, investigat-
ing the growth of U-87MG spheroids both freely growing in
the culture medium and subjected to an external mechanical
pressure induced by aDextran solution. The growth curves of
the model are compared to the experimental data, with good
agreement for both the experimental settings. A new math-
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ematical law regulating the inhibitory effect of mechanical
compression on cancer cell proliferation is presented at the
end of the paper. This new law is validated against exper-
imental data and provides better results compared to other
expressions in the literature.
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Growth inhibition

1 Introduction

Cancer is a complex disease involving primarily uncontrolled
cell proliferation andmigration to distant regions of the body
(Longo et al. 2011). From the second half of the last century,
the scientific community has become more and more aware
of the difficulties that arise when treating this illness. Nowa-
days, it is clear that a combined effort from all the physical
sciences is necessary to advance our understanding of the dis-
ease and promote the discovery of new cures (Michor et al.
2011; Leder et al. 2014). The pioneering works of Greenspan
et al. (1976) paved the way for the development of mathe-
matical models that could investigate the basic principles
underlying cancer progression and predict the outcome of
therapies. Most continuum models, as the one presented in
this work, deal with the avascular phase of tumor growth.

During this stage of cancer progression, a small cluster
of cancer cells arises in a healthy tissue due to mutations
that alter their biochemical pathways. This small region of
abnormal cells grows at the expense of the host counterpart,
nourished by oxygen and nutrients that diffuse from the vas-
culature nearby (Jain 1988; Grantab et al. 2006). At a certain
point, the external nutrients are not enough to sustain the
expansion of the growing mass, leading to the formation of
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cell proliferation gradients starting from the outer regions of
the tumor. As time passes by, cancer cells at the center of the
tumor experience severe hypoxia and critical conditions that
lead to the death and consequent necrosis of some of them.
Finally, a steady state arises, where cell proliferation at the
tumor border balances cell death at the tumor center (Folk-
man and Hochberg 1973). The subsequent stage of cancer
progression is termed the vascular phase, where tumor cells
recruit new blood vessels from the host vasculature through
tumor angiogenesis. In this second stage, the cancer resumes
its previous growth and eventually enters the last stage of the
illness, themetastatic phase, wheremalignant cells evade the
tumor area to form metastases at distant regions of the body.

Since the study of the first stage can be performed in a
more controlled experimental setting, a large set of litera-
ture is devoted to the analysis of avascular tumor growth in
vitro. Experiments are usually carried out on tumor spher-
oids, three-dimensional aggregates of cancer cells that grow
in an approximately spherical shape (Sutherland et al. 1971;
Kim et al. 2010; Vinci et al. 2012; Mikhail et al. 2013). The
investigations on tumor spheroids allow evaluating the extent
of the gradients of nutrients and cell proliferation, and more
recently, the action of a mechanical stress exerted on the cell
aggregates. Helmlinger et al. (1997) grow tumor spheroids in
gels with varying stiffness and report a decrease in prolifera-
tion for stiffer gels. Another example of spheroids grown in
gels with varying stiffness is found in Kaufman et al. (2005).
There, cell proliferation and motility are investigated for dif-
ferent concentrations of collagen in the gel matrix. In that
work, a positive correlation between increasing concentra-
tions of collagen and cell invasion is reported, followed by
an opposite effect on the growth of the spheroids. The orig-
inal work of Helmlinger is extended in Cheng et al. (2009),
where the authors perform similar experiments and introduce
new tools to quantify spheroid deformation and variations in
cell proliferation and apoptosis. Another set of experiments
is presented in Desmaison et al. (2013), where tumor spher-
oids are subjected to asymmetric stress fields by the use of
microstructured substrates. Finally, Montel and Delarue in
two subsequent papers (Montel et al. 2011; Delarue et al.
2014) applymechanical forces on the surface of tumor spher-
oids through the osmotic effect of Dextran solutions with
different concentrations. All these studies report a decrease
in tumor cell proliferation as a consequence of the applied
stress, even though they are carried out via different experi-
mental configurations.

The earliest continuummodels applied to spheroid growth
focus on the dependence of cell proliferation on nutrients
and other biochemical factors, as reported in the compre-
hensive reviews of Preziosi and Tosin (2009a), Lowengrub
et al. (2010). They are based on mass balance laws for
cells and advection–reaction–diffusion equations for nutri-
ent evolution. Later, models include more components and

the mechanical interaction between them. For these cases,
which are usually defined in the framework ofmixture theory
or porous media theory, momentum balance equations and
constitutive relations are needed for describing the mechani-
cal response of each component (Ambrosi andMollica 2004;
Preziosi and Tosin 2009a; Ehlers et al. 2009; Giverso et al.
2015). Among the first, (Chaplain et al. 2006; Galle et al.
2009) incorporated the effect of mechanical stress on cell
proliferation obtaining results matching experimental obser-
vations. There followed several papers,where this example of
mechanotransduction is investigatedwith similar approaches
(Kim et al. 2011; Ciarletta et al. 2013a, b; Mpekris et al.
2015).

This work arises as an extension of the modeling frame-
work presented in Sciumè et al. (2013b). The model is
specialized for tumor spheroids, and the solution procedure is
simplified, as all the new equations are formulated in spatial
coordinates with no need of a reference configuration.

A set of experiments is carried out on spheroid cultures to
validate the equations. The comparison with the experiments
is performedbothwith spheroids growing freely in the culture
medium and subjected to increasing mechanical loads, giv-
ing in each case a good match. The experiments suggested
the presence of a “master curve,” a common growth curve
underlying the spheroid growth dynamics. Finally, a new
constitutive relation is proposed to describe the inhibitory
effect of the stress on cell proliferation, with a better perfor-
mance in terms of matching the experimental results when
compared to the existing laws in the literature.

The rest of the paper is organized as follows. Section 2
introduces the mathematical framework, based on the ther-
modynamically constrained averaging theory (TCAT), and
the differences with the original model. In the last part of
that section, the equations are specialized to the case of tumor
spheroids. Section 3 presents the experimental setup for the
two culturing conditions. Finally, results from the simula-
tions are presented in Sect. 4, and the discussion follows in
Sect. 5.

2 A biphasic tumor model

This mathematical model is developed in the framework of
the porous media theory, and the governing equations are
derived through the TCAT (Gray andMiller 2005, 2014).We
start by defining the problem in terms of microscopic rela-
tions among the constituents. The TCAT approach is used
to transform these microscopic laws into mathematically
and physically consistent macroscale relationships, which
describe the tumor at the tissue scale. By doing so, the com-
plexity due to the high spatial variability at the microscale
is overcome, and equations for average quantities describ-
ing the tumor behavior are formulated directly. The closed
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Fig. 1 Constituents of the biphasic system

form of the problem is finally obtained by introducing consti-
tutive relations into the macroscale conservation equations.
Detailed information about the mathematical model and its
derivation are found in previous work of the authors (Sci-
umè et al. 2013b, a, 2014). In this work, we describe the
behavior of the following constituents or phases: (i) the tumor
cells (TCs), which partition into living (LTCs) and necrotic
(NTCs) cells, and (ii) the interstitial fluid (IF) (Fig. 1). The
extracellular matrix (ECM) is considered together with the
tumor cells, and the union of the two entities constitutes
the solid skeleton of the tumor. The interstitial fluid phase
flows through the pores of this solid matrix, carrying nutri-
ents, growth factors, and waste products. Cell proliferation
is related to nutrient concentration, whereby cells stop to
proliferate and, after some time, undergo necrosis and lysis,
if subjected to low levels of nutrients or high levels of
mechanical stress. In the following equations, t will denote
the union of the tumor cells and ECM and l the interstitial
fluid.

2.1 The governing equations

The solid portion of the tumor is modeled as a porous solid
with porosity εl , and its volume fraction is defined as εt =
1 − εl . Hence, the interstitial fluid occupies the rest of the
volume, and the sum of all the volume fractions has to be
unity:

εt + εl = 1 (1)

We write the governing equations for the tumor volume frac-
tion (εt ), the interstitial fluid pressure (pl), the nutrient mass
fraction (ωox), and the necrotic mass fraction (ωNt). These
equations are obtained from the general form of the mass and
momentum balance equations of phases and species, accord-
ing to the TCAT derivation.

The mass balance equations for the phases are written as:

∂
(
εtρt

)

∂t
+ ∇ · (

εtρtvt
) − l→t

M
growth

+ t→l
M
lysis

= 0 (2)

∂
(
εlρl

)

∂t
+ ∇ ·

(
εlρlvl

)
+ l→t

M
growth

− t→l
M
lysis

= 0 (3)

where ρα is the density and vα is the velocity of phase
α (α = t, l). The terms Ml→t

growth and Mt→l
lysis account for the

interphase exchange of mass related to cell growth and cell
lysis, respectively.

The tumor phase t is composed of two subpopulations,
namely necrotic and living cells. The necrotic portion is
described by the mass fraction ωNt, so that the mass fraction
of living cells is ωLt = 1 − ωNt. We assume that there is no
diffusion for the necrotic and living species, and that necrotic
cells exchange mass with the interstitial fluid through the
lysis term. The mass fraction of necrotic tumor cells (ωNt)

and living tumor cells (ωLt) is thus given by:

∂
(
εtρtωNt

)

∂t
+ ∇ ·

(
εtρtωNtvt

)
− εt rNt + t→l

M
lysis

= 0 (4)

∂
(
εtρtωLt

)

∂t
+∇ ·

(
εtρtωLtvt

)
+εt rNt − l→t

M
growth

= 0 (5)

where εt rNt represents an intraphase exchange term account-
ing for the rate of death of living tumor cells.

The evolution of the mass fraction of oxygen (ωox), the
unique nutrient considered here, follows the equation:

∂
(
εlρlωox

)

∂t
+∇ ·

(
εlρlωoxvl

)
−∇ ·

(
εlρl Dox∇ωox

)
+ ox→t

M
oxygen

= 0

(6)

where Dox is the diffusion coefficient of oxygen in the extra-
cellular space and Mox→t

oxygen is a mass exchange term account-
ing for nutrient consumption by tumor cells metabolism and
growth. Note that the mass exchange term in Eq. (6) is
included in the reaction term Ml→t

growth of Eqs. (2) and (3),
since the latter is related to the exchange of mass and nutri-
ents between the two phases (for more details, see Sciumè
et al. 2013b and the references therein). Following porous
media theory (Lewis and Schrefler 1998; Pinder and Gray
2008), the mechanical stress exerted on the solid phase is
described through the effective stress tensor tteff , given by:

tteff = tt + αpl I (7)

where I is the unit tensor, tt is the total stress tensor in the
tissue, pl is the fluid pressure in the interstitial fluid, and α

123



1218 P. Mascheroni et al.

is Biot’s coefficient defined by:

α = 1 − K

KT
(8)

with K bulk modulus of the unsaturated skeleton and KT

bulk modulus of the solid phase. The relative velocity of
the interstitial fluid phase is given by a Darcy type equation
obtained by TCAT as:

εl
(
vl − vt

)
= − k

μl
∇ pl (9)

where k is the intrinsic permeability of the solidmatrix andμl

is the dynamic viscosity of the interstitial fluid. The equations
of state for the phases can be approximated as:

1

ρl

∂ρl

∂pl
= 1

KL
(10)

1

ρt

∂ρt

∂ (〈nt · tt · nt 〉) � 1

ρt

∂ρt

∂pl
= 1

KT
; (11)

here, 1/KL and1/KT are the liquid and solid compressibility,
respectively, and 〈nt · tt · nt 〉 is the normal stress at the solid
surface averaged over the solid surface. Considering (10),
Eq. (2) can be written as:

∂εt

∂t
+ εt

KT

∂pl

∂t
+∇ · (εtvt )+ εt

ρt
vt · ∇ρt − 1

ρt

(
l→t
M

growth
− t→l

M
lysis

)
= 0

(12)

Following the same steps for Eq. (3), it is possible to obtain:

∂εl

∂t
+ εl

KL

∂pl

∂t
+∇ ·

(
εlvl

)
+ εl

ρl
vl · ∇ρl + 1

ρl

(
l→t
M

growth
− t→l

M
lysis

)
= 0

(13)

and summing (12) and (13) gives:

(
εt

KT
+ εl

KL

)
∂pl

∂t
+ ∇ ·

(
εtvt + εlvl

)

− ρl − ρt

ρlρt

(
l→t
M

growth
− t→l

M
lysis

)
= 0 (14)

where the gradients of the densities have been neglected, and
the constrained in (1) has been exploited. Inserting (9) and
substituting εt = 1 − εl in (14) leads to:

(
1 − εl

KT
+ εl

KL

)
∂pl

∂t
+ ∇ · vt − ∇ ·

(
k

μl
∇ pl

)

− ρl − ρt

ρlρt

(
l→t
M

growth
− t→l

M
lysis

)
= 0 (15)

2.2 The constitutive relationship for the stress

In order to close the system of equations, it is necessary
to define a constitutive relation for the stress in the tumor
phase. A series of experiments based on single-cell force
spectroscopy (Baumgartner et al. 2000; Puech et al. 2005;
Helenius et al. 2008; Friedrichs et al. 2013) suggests the
following phenomenological description at the microscale.
When cells are well separated from each other, they do not
experience any interaction. As soon as the distance between
two cells is below a certain threshold, they start attracting
each other, and once cells are in contact, an adhesive force
builds up if they tend to be pulled apart. If the two cells are
further pushed together, a repulsive force is observed. This
repulsive force tends to high values as cells become more
and more packed. Note that, in the context of porous media
theory, the volume fraction of tumor cells can be chosen as a
surrogate for cell distance. Inmathematical terms, this can be
written as a pseudo-potential law (Byrne and Preziosi 2003;
see Preziosi and Tosin 2009b for qualitative analyses on this
kind of nonlinear systems) that describes the stress in the
tumor tissue:

�
(
εt

)=

⎧
⎪⎪⎨

⎪⎪⎩

α
(
εt − εt0

)2
[

1−εtn

(1−εt)
β − 1

(1−εt)
β−1

]
, if εt >εt0

0, otherwise

(16)

In Fig. 2, a schematic of cell behavior is provided depicting
the behavior of the cellular system for different volume frac-
tions. Note that with this description, the ensemble of tumor
cells and ECM behaves like an elastic fluid, and the effective
stress follows the relation:

tteff = −�
(
εt

)
I (17)

with � defined in Eq. (16) and positive in compression.

2.3 The mass transfer relations

The reaction terms in Eq. (2) represent tumor cell growth and
lysis, respectively. In particular, the first term is related to cell
proliferation and depends on the exchange of mass between
the interstitial fluid and the living portion of the tumor. Its
form is given by:

l→t
M

growth
= γ t

gG
(
ωox) H

(
tteff

)
ωLtεt (18)

where the coefficient γ t
g accounts for the nutrient uptake and

for the mass of interstitial fluid that becomes tumor due to
cell growth. The functionG accounts for the effect of nutrient
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Fig. 2 Scheme of the stress function �
(
εt

)
. The two insets represent

forces acting on the cells for different degrees of tumor volume fractions.
For high-volume fractions, on the right, cells experience a repulsive
force. When the volume fractions are low, on the left, cells tend to
attract each other

level on cell growth, while H describes the inhibition of cell
growth due to the mechanical stress exerted on the cells.
Finally, the factor ωLtεt accounts for the volume fraction of
viable tumor cells (i.e., only viable cells can proliferate).

The second reaction term in Eq. (2) accounts for cell lysis
in the necrotic cell population (NTCs). Its form is given by:

t→l
M
lysis

= λtlω
Ntεt ; (19)

here, λtl takes into account the degradation of cellular mem-
branes and the mass conversion into interstitial fluid. Since
ωNtεt is the volume fraction of necrotic cells, the lysis term
is active only on the dead portion of the tumor tissue.

The rate of death of tumor cells in Eq. (4) is described by
the relation:

εt rNt = γ t
n I

(
ωox) ωLtεt (20)

where the parameter γ t
n regulates the rate of cell death. The

function I describes cell death by lack of nutrient. By doing
so, cell death is considered to solely depend on nutrient con-
centration. Note that Eq. (20) can be readily modified to
include also other effects (i.e., drugs ormechanical pressure).

During the growth of the tumor, nutrients are subtracted
from the interstitial fluid, so that the mass exchange term in
Eq. (6) takes the form:

ox→t
M

oxygen
= γ t

0
ωox

ωox + cox
ωLtεt (21)

This expression is validated experimentally in Casciari et al.
(1992a, b) and takes into account the dependence of nutri-
ent consumption on the local level of nutrient in the tissue.
The two oxygen uptake parameters γ t

0 and ωox
crit describe,

respectively, the order of magnitude of oxygen uptake in the
tumor and the oxygen mass fraction at which oxygen con-
sumption is reduced by half. The functions G, H , and I are
derived from phenomenological arguments and are selected
to be similar to the available literature on the topic (Byrne
and Preziosi 2003; Roose et al. 2007; Wise et al. 2008; Kim
et al. 2011; Preziosi and Vitale 2011; Ambrosi et al. 2012;
Sciumè et al. 2013b; Mpekris et al. 2015). In particular, the
following set is assumed:

G
(
ωox) =

〈
ωox − ωox

crit

ωox
env − ωox

crit

〉

+
(22)

H
(
tteff

) = 1 − δ1
〈�〉+

〈�〉+ + δ2
(23)

I
(
ωox) =

〈
ωox
crit − ωox

ωox
env − ωox

crit

〉

+
; (24)

here, ωox
crit is the oxygen threshold value below which cell

growth is inhibited, the constant ωnl
env is the environmental

mass fraction of oxygen, and theMacaulay brackets 〈〉+ indi-
cate the positive value of their argument. Since ωox within
the spheroid can only be equal or smaller than ωox

env, it fol-
lows that the brackets will return a number between one
(ωox = ωox

env) and zero (ωox < ωox
env) (Sciumè et al. 2013b,

2014). The constants δ1 and δ2 (with δ1 < 1) account for the
action of mechanical stress on cell proliferation, modeling
the inhibitory effect of compression on tumor cell duplica-
tion (Helmlinger et al. 1997; Cheng et al. 2009; Montel et al.
2012). Note that the expression for H is different from the
usual forms assumed in the literature. However, as it will
be shown in the next sections, this relation is able to better
describe the experimental results.

2.4 The tumor spheroid case

Themathematicalmodel presented above is extended in view
of the comparison with the experiments. In this work, the
focus is onmodeling tumor spheroids,which are an aggregate
of tumor cells approximately of spherical shape. As a starting
point, we adapt the equations of the more general model for
spherical symmetry. If the constituents are assumed incom-
pressible and the densities of the phases are supposed to be
equal (ρt = ρl ≡ ρ), Eq. (14) becomes:

∇ ·
(
εtvt + εlvl

)
= 0 (25)

In spherical symmetry, Eq. (25) reads:

1

r2
∂

∂r

[
r2

(
εtvt + εlvl

)]
= 0 (26)
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which, by symmetry, gives:

vl = −εt

εl
vt = − εt

1 − εt
vt (27)

Substituting the new relation in Eq. (9) gives the expression
for the phase velocities as:

vt = k

μl

∂pl

∂r
, vl = − εt

1 − εt

k

μl

∂pl

∂r
(28)

From the point of view of the motion of the phases, since
the hydraulic permeability k/μl is a positive constant, (28)
implies that the interstitial fluid is directed opposite to the
pressure gradient while tumor cells move along it. When
the interstitial fluid pressure is higher in the tumor center,
the interstitial fluid flows toward the boundary of the tumor,
whereas tumor cells move in the direction of the tumor center
as observed experimentally in Dorie et al. (1982), Jain and
Stylianopoulos (2010) and already discussed in Byrne and
Preziosi (2003). This mechanism enables the recirculation
of interstitial fluid in the tumor tissue: Tumor cells in the
inner regions of the tumor become necrotic due to nutrient
deprivation and turn into interstitial fluid after lysis. This
fluid flows toward tumor periphery and can be employed
by proliferating cells. From the equilibrium equation for the
total stresses (∇ · tt = 0) and Eqs. (7) and (17), it follows the
important relation:

∂pl

∂r
= −∂�

∂r
= −�′ ∂εt

∂r
, �′ ≡ ∂�

∂εt
(29)

The final system of equations for spherical symmetry and
with the new expressions for the velocities reads:

∂εt

∂t
− 1

r2
∂

∂r

(
r2εt

k

μl
�′ ∂εt

∂r

)
− 1

ρ

(
l→t
M

growth
− t→l

M
lysis

)
= 0

(30)

∂
(
ωNtεt

)

∂t
− 1

r2
∂

∂r

(
r2εtωNt k

μl
�′ ∂εt

∂r

)

− 1

ρ

(
εt rNt − t→l

M
lysis

)
= 0 (31)

∂
[(
1 − εt

)
ωox

]

∂t
+ 1

r2
∂

∂r

(
r2εtωox k

μl
�′ ∂εt

∂r

)

− 1

r2
∂

∂r

[
r2

(
1 − εt

)
Dox ∂ωox

∂r

]
+ 1

ρ

ox→t
M

oxygen
= 0 (32)

The growth of the spheroid is modeled as a free-boundary
problem, and the interface constituted by the tumor cells
moves with velocity vt :

dR

dt
= vt = − k

μl
�′ ∂εt

∂r
(33)

with R being the radius of the spheroid. To close the differ-
ential problem in (30)–(32), it is necessary to define a set of
boundary and initial conditions. In particular, no-flowbound-
ary conditions are assumed at the spheroid center, while
Dirichlet boundary conditions are assumed on the tumor
external surface:

∂εt

∂r
= ∂ωNt

∂r
= ∂ωox

∂r
= 0, in r = 0, (34)

εt = εtext, ωNt = 0, ωox = ωox
env, in r = R (35)

Note that the first condition in (35) implies prescribing an
external stress on the tumor surface, since from (16) and
(17), we have:

�
(
εtext

) = �ext (36)

In the case of a stress-free growing spheroid, the external
volume fraction satisfies:

�
(
εtext

) = 0, εtext = εtn (37)

Finally, the following initial conditions are assumed through-
out the domain:

εt = εtext, ωNt = 0, ωox = ωox
env, on 0<r < R at t = 0

(38)

3 Materials and methods

3.1 Cell culture and spheroid formation

Humanmultiforme glioblastoma U-87MG cells (ATCC) are
grown at 37 ◦C at 5% CO2 in EMEM (HyClone) supple-
mented with 50 U/mL penicillin, 50 μg/mL streptomycin,
and 10% FBS (v/v). Multicellular U-87 MG spheroids are
prepared by the liquid overlay method (Sutherland et al.
1981; Carlsson and Yuhas 1984). Briefly, serum-free EMEM
medium with 2% (w/v) agar is prepared and sterilized; 50μl
of the agar solution is added to the bottom of each well of
the 96-well plates to prevent cell adhesion onto the well
surface. Plates are allowed to cool down before use. U-87
MG cells are counted and then seeded at different densities:
1000, 5000, and 10,000 cells/well. Plates are centrifuged for
5 min at 1000×g. Spheroid diameter is measured every 2
days using Nikon Eclipse Ti microscope (Nikon) with NIS-
Element software. The culture medium is replaced with fresh
medium every three days.
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3.2 Cell viability test with Dextran solutions and
spheroid compression experiments

For the compression experiments, Dextran is added to the
culture medium to exert mechanical stress on the spheroids
as reported in Montel et al. (2011, 2012), Delarue et al.
(2014). Briefly, cell culture medium is mixed with the puri-
fied Dextran (Mw = 100 kDa), and the resulting solution
is placed at 37 ◦C to obtain full solubilization. To test the
effect of the Dextran solutions on U-87 MG cell viability,
XTT assay is performed (Stigliano et al. 2015). In partic-
ular, 10,000 cells are plated in each well of 96-well plate.
After 24h, the medium is substituted with different con-
centrations of Dextran medium (20, 55, and 80g/l). After
72h of incubation, the XTT assay is performed according to
the manufacturer’s protocol. The same solutions of Dextran
at different concentrations are prepared to test the effect of
different mechanical pressures on the surface of the spher-
oids. In particular, 5000 U-87MG cells are seeded in 48-well
plates (day 0), as reported before, and the Dextran medium is
added after spheroid formation (day 3) at a concentration of
20g/l to exert 1kPa, 55g/l to exert 5kPa, and 80g/l to exert
10kPa.

The stress acting on the spheroids is estimated as inMontel
et al. (2011, 2012), Delarue et al. (2014) via the following
mathematical expression:

p = 286c + 87c2 + 5c3

where p is the external mechanical pressure (Pa), and c is
the concentration of Dextran (% w/w). This expression was
originally derived to describe the osmotic pressure ofDextran
solutions in colloidal systems (Bonnet-Gonnet et al. 1994)
and then validated to hold also for the spheroid compression
experiments (Montel et al. 2012).

Spheroid diametermeasurement andmediumreplacement
follow the same procedures described above.

4 Results

4.1 Evolution of the phases

The mathematical framework presented above is applied to
analyze the growth of a multicellular tumor spheroid in vitro.
In particular, the growth of the tumor mass is investigated,
including necrotic tumor cells and the consumption of nutri-
ent (oxygen) over time. The geometry of the problem and the
boundary conditions are described in Fig. 3. At the boundary
B1, the TC volume fraction (εt ), the oxygen mass fraction
(ωox), and the necrotic cells mass fraction (ωNt) are fixed
over time. At the symmetry boundaries B2, zero fluxes for
all phases are imposed. At the beginning of the simulation,

B1

B2

B2

Boundary 1:

Boundary 2:

Type: imposed values

Due to the symmetry of 
the problem there are no 
normal fluxes

Type: imposed fluxes

Spherical 
symmetry

Ini�al condi�ons:

r

Fig. 3 Scheme for the geometry of a tumor spheroid immersed in a cell
culture medium. The initial and boundary conditions for the differential
problem are reported on the right

the value of the oxygen and of the other variables are fixed,
as indicated in the figure. All other governing parameters
are listed in Table 1. Numerical results for the evolution
of the three principal variables of the model are shown in
Fig. 4. In Fig. 4a, the volume fraction of tumor cells in
the system is plotted for different times over the spheroid
radius. Initially, the tumor spheroid is composed only by
living tumor cells and interstitial fluid. After a few days,
necrotic tumor cells appear in the center of the spheroid. Liv-
ing tumor cells are restricted to the outer portion of the tumor,
where there is still enough nutrient to support their growth.
At 25 days, necrotic cells occupy the main portion of the
spheroid, constituting the “necrotic core,” while the prolif-
erating portion of the tumor is further reduced. Since tumor
growth is described by Eqs. (18) and (22), only tumor cells
that experience an oxygen level over the critical threshold
are allowed to proliferate. This means that the living tumor
cells that can actually proliferate are distributed only over a
small portion of the radius near the external boundary, called
the “proliferative rim.” The remaining portion of living cells
are nonproliferating cells that can resume proliferation after
an increase in the level of nutrient. Note that the volume
fraction of interstitial fluid is approximately constant over
time, apart for a small increase at the spheroid center and
reduction at the spheroid periphery. These are due, respec-
tively, to the lysis term active at the tumor center and to
the fluid consumption induced by cell growth at the bound-
ary.

The evolution of the oxygen mass fraction, the nutrient
species considered here, is shown in Each line is plotted over
the spheroid radius, every five days from the first day. As the
spheroid grows, gradients of oxygen concentration develop
from the tumor boundary to the center of the spheroid. After
a few days, the oxygen mass fraction reaches a plateau at the
center of the spheroid, with a value below the critical thresh-
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Table 1 Parameters considered in the simulations

Parameter Value Reference Unit

ωox
env 7.0 × 10−6 Mueller-Klieser and Sutherland (1982), Mueller-Klieser (1986) –

ωox
env

1 7.7 × 10−6 Mueller-Klieser and Sutherland (1982), Mueller-Klieser (1986) –

cox 1.48 × 10−7 Casciari et al. (1992a, b) –

γ t
0 3.0 × 10−4 Casciari et al. (1992a, b) kg/(m3 s)

β 0.5 Byrne and Preziosi (2003) –

εtn 0.8 Byrne and Preziosi (2003) –

εt0 1/3 Byrne and Preziosi (2003) –

k 1.8 × 10−15 Netti et al. (2000) m2

μl 1.0 × 10−3 Sciumè et al. (2013b) Pa s

Dox 3.2 × 10−9 Sciumè et al. (2013b) m2/s

ρ 1.0 × 103 Sciumè et al. (2013b) kg/m3

ωox
crit 2.0 × 10−6 – –

γ t
g 5.4 × 10−3 – kg/(m3 s)

γ t
n 1.5 × 10−1 – kg/(m3 s)

λtl 1.15 × 10−2 – kg/(m3 s)

α 1.0 × 105 – Pa

1 Value used for the simulations with compressed spheroids. Since the wells used to culture the spheroids are larger, a higher value for the available
oxygen is considered
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Fig. 4 a Volume fraction of tumor cells, plotted as the difference
between the volume fraction inside the spheroid and at the spheroid
boundary (here, εtext = εtn since the spheroids are not compressed). b

Mass fraction of oxygen. c Mass fraction of necrotic tumor cells. All
the variables are plotted over the spheroid radius with each line drawn
every five days from the first

old ωox
crit. This can be explained by considering that necrotic

cells do not consume oxygen, and therefore, a gradient is not
observed.Moreover, the oxygen consumption is proportional
to the amount of oxygen available through Eq. (21), and this
contributes to the shape of the curves.

The evolution of the necrotic mass fraction is presented
in the graph of Fig. 4c. The necrotic portion of the tumor
develops from the center toward the boundary. As the inter-
face between living tumor cells and necrotic tumor cells is
diffused, the separation between the two is smooth, and the
model can account for perinecrotic regions.

4.2 Spheroids grown with different initial cell seeding
number

The computational model is validated against data from
tumor spheroid cultures. U87-MG cells, a human glioblas-
toma cell line, are cultured with a standard protocol (see
Materials and methods). The experimental setup is shown
in Fig. 5. The bottom of standard cell culture wells is cov-
ered with agarose, in order to prevent tumor cell adhesion.
Cells are seeded at different initial numbers (1000, 5000,
10,000) and rapidly form spheroids suspended in standard

123



Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model 1223

culture medium

TS

agarose

objec�ve

day 5 day 9 day 13

day 17 day 21

Fig. 5 Optical images of the growth of U-87 MG spheroids from day
5 to day 21. The scale bar is 200 μm, and the spheroids are taken from
the 10,000 seeded cells initial condition. The last image represents a
scheme of the culture protocol

culture medium. The evolution of the spheroid radii is then
recorded over time via optical microscopy, and the result-
ing growth curves are plotted in Fig. 6a. It is possible
to distinguish between the first stages of growth, charac-
terized by an exponential/linear behavior, followed by a
phase of growth saturation where the radius reaches a steady
value.

After recording the curves, a series of simulations is run
to reproduce the experimental data. The growth curves cor-
responding to the best fit of the experimental data are shown
in Fig. 6b. The governing parameters are taken from the lit-
erature when they are available, and we use the same order
of magnitude of the experimental values when they refer to
other cell species. Table 1 lists the parameters used in this
study together with the ones determined by the fit of the
curves. There is a good agreement with the experimental
data, for all the three different initial cell seeding numbers.
The model captures the growth dynamics both in the first
fast-growing phase and in the later phase of growth satu-
ration. Note that the same parameters are used for fitting all
the three curves, and only the initial radii of the spheroids are
changed, showing a good quality of the fit. This experiment is
useful for validating themodel and displays a second remark-
able result. The different initial seeding of tumor cells affects
the initial radius of the tumor spheroid, which increases from
≈ 100 μm to almost 190 μm. The data show that, although
being constituted by a larger initial number of tumor cells,
bigger spheroids reach the same final radius of smaller ones.
This result agrees with what is reported in the literature
about the existence of a steady radius for growing spher-
oids (Sutherland et al. 1971; Folkman and Hochberg 1973;
Carlsson 1977; Freyer and Sutherland 1986), which in our
case takes approximately the value of 475 μm.

Interestingly, the model reproduces the same behavior of
the experiments with the steady state being reached after 25
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Fig. 6 Growth curves recorded from the free growth experiments. a
Each curve represents a different initial condition in terms of seeded
cells. N ≥ 4 spheroids are considered for each condition. Points are
experimental data, and error bars are the standard deviations of the
measurements. b Solid lines are the results of fits with the mathematical
model. c Growth curve obtained by superimposing the evolution of the
radii of spheroids grown at different initial cell seeding numbers

days from cell seeding. As the spheroids grow freely in the
culturemedium, the onlymechanism to stop cell proliferation
is given by Eq. (22) in the model where it is assumed that cell
mitosis and necrosis depend on the local level of nutrient.
Therefore, in this modeling framework, the hypothesis of
nutrient deprivation is sufficient to explain the phenomenon
of growth saturation and the existence of an asymptotic radius
for the spheroid.

As a further remark about these results, in Fig. 6c the
previous curves are shifted of the proper amount referring
to the different initial condition. It is good to see that they
coalesce to a single “master curve.” Spheroids grown from
a different initial radius follow the same curve, showing that
there exists a common dynamics regulating the growth of
these cellular aggregates.
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4.3 Compression experiments

The application of a constant mechanical stress on the sur-
face of the growing spheroids is investigated in this series of
experiments. Addition of Dextran to the cell culture medium
produces an osmotic pressure on the outermost layer of cells
located on the spheroid surface. The osmotic pressure acts
as a network stress directed to decrease the volume occu-
pied by the spheroid (Montel et al. 2011, 2012; Delarue
et al. 2014). This compressive force can be calibrated exper-
imentally as in Bonnet-Gonnet et al. (1994), Bouchoux et al.
(2009), where an empirical law is given to relate the con-
centration of Dextran in the solution to the external pressure
exerted on the surface of the spheroid. Three pressure con-
ditions are explored following the approach described in the
Materials andMethods section, namely 1, 5, and 10kPa, plus
a control experiment with no external pressure. Cell viability
is checked as reported in Sect. 3.2, where it is shown that
the addition of Dextran does not alter cell death or growth.
The results are presented in Fig. 7, where the growth of the
spheroids is followed for 18 days after the addition of Dex-
tran. Figure 7a shows optical images of sample spheroids
referring to the control and to the most compressed condi-
tion for different time instants. Starting from a similar initial
radius (about 200 μm), the two spheroids reach considerable
different volumes at 18 days, with the compressed spher-
oid growing slowly compared to the stress-free case. The
growing curves for the other external applied pressures are
collected in Fig. 7b. The larger value of the radius is reached
for the spheroids grown in the absence of any external com-
pression. When Dextran is added to the medium and the
osmotic stress builds up, both the growth rate and the final
diameter decrease. If the applied pressure is released, the
growth of the aggregates resumes, indicating that the effect
of the stress is reversible (Online Resource 1), as shown for
the first time in (Helmlinger et al. 1997). The effect of the
external pressure on the growth of the spheroid is included
in the model through Eq. (23), which describes the inhibi-
tion of cell proliferation due to the applied mechanical stress
on the tumor cells. The most common mathematical expres-
sions for the inhibiting function H reported in the literature
are based on a linear or inversely proportional assumptions
(Roose et al. 2003; Byrne and Preziosi 2003; Kim et al. 2011;
Mpekris et al. 2015). In Fig. 8, these forms are tested against
the experimental data, together with an exponential relation
and aMichaelis–Menten-like expression. The data in Table 2
represent the values of the parameters that provide the best fits
to the experimental curves. The linear relationship, applied
in Fig. 8a, underestimates the inhibition effect for low com-
pressions, leading to larger values of the radius for the 1
and 5kPa cases. At the same time, for larger compressions
the linear relationship gives overestimates for the inhibition,
resulting in smaller radii for the 10kPa curve than experi-
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Fig. 7 aOptical images of U-87MG spheroids grown under the effect
of the Dextran solutions. The first row shows the control experiments
and the second row a spheroid under the highest compression. The
scale bar is 200 μm, and the initial seeding is 5000 tumor cells. b
Experimental results for the compression experiments. The points are
the experimental data, and the error bars represent the standard devi-
ations of the measurements. For each condition, N = 5 spheroids are
considered

mentally measured. The exponential relationship is applied
in Fig. 8b, where it is possible to observe an improvement
for high compressions but a similar underestimation for the
1 and 5kPa curves. Another improvement can be seen in
Fig. 8c, referring to the inversely proportional expression.
In this case, there is a good agreement with the experimen-
tal data for all the curves, except for the 1kPa case. The best
results are obtainedwith theMichaelis–Menten-like law, rep-
resented in Fig. 8d. All the different compression levels are
well described by the simulations, togetherwith the final radii
reached by the spheroids.

4.4 Effect of the growth inhibition parameters

The effect of an external stress acting on the cellular compo-
nent of the spheroid can be evaluated through a parametric
study on the growth inhibition parameters δ1 and δ2 of Eq.
(23). The growth curves obtained by varying one of the two
parameters and keeping the other fixed for the case of an
external pressure of 5kPa are presented in Fig. 9. The two
solid lines represent reference values assumed by the para-
meters. In particular, “zero” indicates the curve obtained by
setting both δ1 and δ2 to zero, while “fit” is the curve obtained
with the values in Table 2. The effect of different values for
δ1 is shown in Fig. 9a. The arrow points in the direction of
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Table 2 Different mathematical expressions for the growth inhibition function in Eq. (23)

Growth inhibition factor Mathematical expression δ1 δ2

Linear H = 1 − δ1 〈�〉+ 7.3810 × 10−5 1/Pa (–)

Exponential H = exp
(−δ1 〈�〉+

)
1.3013 × 10−4 1/Pa (–)

Inversely proportional H = 1
/(

1 + δ1 〈�〉+
)

2.2725 × 10−4 1/Pa (–)

Michaelis–Menten-like H = 1 − δ1 〈�〉+
/(〈�〉+ + δ2

)
7.138 × 10−1 (–) 1.541 × 103 Pa

The values for δ1 and δ2 refer to the best fits of the experimental data in the compression experiments

Fig. 8 Fit of the experimental
data for the compression
experiments. Results from the
linear a, exponential b, inversely
proportional c, and
Michaelis–Menten-like d
assumptions for the function H
in Eq. (23)
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Fig. 9 Parametric study for the growth inhibition parameters in Eq.
(23). Effects of δ1 a and of δ2 b on the growth of the spheroids

increasing δ1, while for δ2 the value in Table 2 is selected
for all the simulations. From the top curve to the bottom one,
we consider values for δ1 that are, respectively, −50, −25,

+25, +50 and +75% of the reference value in Table 2. As
δ1 increases, tumor cells sense more the effect of external
stresses on their proliferation. This results in smaller final
radii of the spheroids and in slower growth rates. If the value
of δ1 is sufficiently high, then the tumor starts to shrink, and
an equilibrium radius no longer exists. The same investiga-
tion, this time for δ2, is reported in Fig. 9b. In this case,
the arrow points in the opposite direction, indicating that an
increase in δ2 leads to an increase in the final radius. This dif-
ference can be easily explained by considering that H in Eq.
(23) is directly proportional to δ1 and inversely proportional
to δ2, respectively. However, it is possible to note that the
effect of varying δ2 is less pronounced on the growth curve,
since the reference value in Table 2 is much smaller than the
pressures in the compression experiments. These results indi-
cate collectively a double effect of the external environment
in limiting the growth of the tumor. Tumor growth may be
hindered by nutrient deprivation but also by external stresses
exerted by regions close to the tumor.

5 Discussion

In the present study, a recent model for tumor growth has
been extended to describe the evolution of tumor spheroids.
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A set of experiments is carried out, and the resulting data are
compared to numerical predictions. The experimental growth
curves validate the model equations both for the free growth
case, where the cells are cultured in three dimensions in stan-
dard culture medium, and for the mechanically compressed
setup, where the spheroids are subjected to an external pres-
sure. In addition to providing the data for the validation, the
first series of experiments highlights the existence of a “mas-
ter curve” (Fig. 6c). This common growth trend supports the
hypothesis of describing the cell aggregates as a dynamical
system, which behavior can be predicted, at least as a first
approximation, by the laws of mechanics. The results of the
model in terms of tumor volume fraction, oxygen mass frac-
tion, and necrotic mass fraction are reported and appear in
line with the results of the original model. The second set of
experiments about spheroids compression extends the work
in Delarue et al. (2014) by adding another cell species (U87-
MG) to their study. The observed evolution curves are similar
to their findings and confirm the hypothesis of an inhibitory
effect of external stress on cancer cell proliferation. Regard-
ing the description of this phenomenon, the experimental
data are exploited to design a constitutive relationship that
performs better, compared to the existing laws, in describing
the evolution of the system.

Several simplifying assumptions are considered in the
work, and the model is certainly open to further improve-
ments. In particular, here only one nutrient species, namely
oxygen, diffuses in the interstitial fluid and regulates the
proliferation of tumor cells. Although the action of other
chemicals is implicitly included in the mass transfer term
in (18), modeling additional nutrients, growth, and necrosis
factors could provide supplementary insights into the evo-
lution of the tumor system (Chauhan and Jain 2013; Jain
et al. 2014). Another point that should be addressed is the
choice of the constitutive relations used to close the differen-
tial system.Most of these laws, as it happens frequently in the
literature, are derived fromphenomenological arguments and
deserve more experimental work to be linked to the biology
of what they are describing. In particular, here it is assumed
that the compression of the spheroids induces inhibition of
cell growth, withoutmodifying the apoptosis rate of the cells.
This hypothesis is still amatter of debate in the literature (see,
for example, (Montel et al. 2012) and comments therein), and
it is adopted here to account for the experimental observa-
tions in Delarue et al. (2014) where the experimental setup
is similar to the one in this work. A systematic comparison
of different compression modalities may improve the under-
standing of this phenomenon and the design ofmore accurate
constitutive laws.

Finally, here it is considered a very simple mechanical
description of the tumor ensemble, function of the volume
fraction of the tumor cells. This assumption provides a great
simplification of themechanical equations and describes suf-

ficiently accurately the data; however, it does not take into
account several phenomena related to the stress experienced
by the cells inside the tumor tissue. For example, viscous
effects existing at smaller timescales than cell proliferation
are neglected, as well as cellular adhesion bonds breakage
and formation during the development of the tumor mass
(Ambrosi and Preziosi 2009; Preziosi and Vitale 2011).

Further experiments will be considered in the future that
will provide better estimates for the model parameters and
new data in terms of quantities that should be compared
to the output of the model equations. A part of the future
experimental work will be also devoted to the biochemi-
cal understanding of the growth inhibition process due to
mechanical stress. Even if some work is already present
in the literature (Delarue et al. 2014; Fernández-Sánchez
et al. 2015), many details remain obscure as well as a proper
implementation of the phenomena in the growth equations.
A better description of the interactions between the tumor
and its externalmicroenvironment (biochemical andmechan-
ical) should offer valuable insights for understanding the
progression of the disease and designing new therapeutic
treatments.
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