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Abstract Traumatic brain injury (TBI) is a leading cause of
death and disability in the USA. To help understand and bet-
ter predict TBI, researchers have developed complex finite
element (FE) models of the head which incorporate many
biological structures such as scalp, skull, meninges, brain
(with gray/white matter differentiation), and vasculature.
However, most models drastically simplify the membranes
and substructures between the pia and arachnoidmembranes.
We hypothesize that substructures in the pia–arachnoid com-
plex (PAC) contribute substantially to brain deformation
following head rotation, and that when included in FE mod-
els accuracy of extra-axial hemorrhage prediction improves.
To test these hypotheses, microscale FE models of the PAC
were developed to span the variability of PAC substructure
anatomy and regional density. The constitutive response of
thesemodelswere then integrated into an existingmacroscale
FE model of the immature piglet brain to identify changes in
cortical stress distribution and predictions of extra-axial hem-
orrhage (EAH). Incorporating regional variability of PAC
substructures substantially altered the distribution of prin-
cipal stress on the cortical surface of the brain compared
to a uniform representation of the PAC. Simulations of 24
non-impact rapid head rotations in an immature piglet ani-
mal model resulted in improved accuracy of EAH prediction
(to 94% sensitivity, 100% specificity), as well as a high
accuracy in regional hemorrhage prediction (to 82–100%
sensitivity, 100% specificity). We conclude that including a
biofidelic PAC substructure variability in FE models of the
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head is essential for improved predictions of hemorrhage at
the brain/skull interface.
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1 Introduction

Traumatic brain injury (TBI) is a leading cause of death
and disability in the USA (Faul et al. 2010). Etiologies
include military conflict, motor vehicle crashes, assault,
and sports-related trauma. A powerful tool commonly used
in the investigation of TBI is finite element (FE) model-
ing. Researchers have developed comprehensive whole-head
models of head injury which take into account many of the
biological complexities of the head including scalp, skull,
meninges, brain (with gray/white matter differentiation), and
vasculature (Giordano et al. 2014; Ji et al. 2014; McAllister
et al. 2011; Roth et al. 2008; Takhounts et al. 2008; Zhang
et al. 2002, 2001). However, these studies fall short in how
they represent the pia–arachnoid complex (PAC) and its inter-
action between the brain and the skull. Most commonly, the
PAC is modeled as either a solid element or a fluid element.
These idealized representations of the PAC may result in
adequate estimations of brain stress or strain in the deeper
structures of the brain, but likely cause finite element models
to fall short in terms of injury prediction at the brain–skull
interface. Coats et al. (2012) compared multiple idealized
representations of the PAC, including elastic spring connec-
tors and solid isotropic elements tied to the brain and skull,
and evaluated their influence on predictions of brain/skull
displacement and brain strain. While both elastic connectors
and solid elements resulted in reasonable approximations of
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brain/skull displacement, the elastic connectorswere better at
predicting intracranial hemorrhage based on the tensile strain
of the connector. The sensitivity and specificity of intracra-
nial hemorrhage predictions were 80 and 85%, respectively.
Localized, or regional, predictions of hemorrhage did not
perform as well, and resulted in sensitivity and specificity
values as low as 63 and 76% in some regions. Despite this
shortcoming, the Cloots et al. (2008), Couper and Albermani
(2008), Kuijpers et al. (1995), Paolini et al. (2009), Wittek
and Omori (2003) study, and other studies investigating the
influence of the brain–skull interface on prediction of brain
injury agree that attention to the biofidelic representation of
this interface is critical to the accurate prediction of TBI.
Progress to an improved representation of the PAC has been
limited by a paucity of modeling approaches to mimic the
multi-component architecture of the PAC region, and exper-
imental data for validation.

In order to facilitate improved injury prediction,
researchers may need to delve into tissue and cellular
mechanics of the brain. Multiscale modeling or microstruc-
ture data integration into macroscale models of the head are
commonmethods used to investigate TBI.Cloots et al. (2011,
2012, 2013) developed cellular, tissue, and whole-head FE
models, and coupled them to determine how a multiscale
modeling approach refined predictions of axonal injury.
Inclusion of the cellular and tissue level details added impor-
tant information to themodel, but therewere no experimental
data to assess the influence of these nuances on predictions of
axonal injury. Wright et al. (2013) used a different approach
and implemented anisotropic behavior to elements within the
white matter tract of the brain. The anisotropic behavior was
based on a microscale model developed previously in their
laboratory that utilized axonal tract direction data from diffu-
sion tensor imaging (Wright and Ramesh 2012). Predictions
of intracranial pressure and small brain strain in the finalized
model were close to those reported from Nahum and Smith
(1977) and Sabet et al. (2008), respectively, but validation
of axonal injury prediction was not available. Sullivan et al.
(2015) recently utilized an even simpler approach in that they
developed a homogeneous model of the brain, but used DTI
data to inform the direction of strain best capable of predict-
ing axonal injury. Comparing predictions of axonal injury
against animal experimental data, Sullivan et al. were able
to show that this approach was capable of predicting axonal
injury with 100% sensitivity and 75% specificity. Of note,
the Sullivan et al. study is one of the few to actually test
prediction capabilities against experimental data.

In terms of modeling more accurate interactions of the
PAC, microscale modeling has been the dominant approach.
A simple microscale model of the PAC was demonstrated
by Ma et al. (2008) who modeled the PAC as a series of
solid elements or beam elements sandwiched between two
plates. No macroscale model was directly coupled with this

model, but they report that the overall mechanics of the
microscale model with the solid elements better correlated
with bovine PAC stress–strain data from tension and trac-
tion tests (Jin et al. 2006, 2007a). A second team developed
a microscale model of the PAC based on anatomical draw-
ings and paired it with a whole-head model to simulate head
injury (Zoghi-MoghadamandSadegh 2009). Thismodelwas
an improvement over the state of the art, but their conclusions
were limited due to the lack of available experimental data for
validation. Additionally, the distribution of the microstruc-
tures was assumed to be uniform across the brain, but recent
data shows that there is a largevariation in the volume fraction
of PAC arachnoid trabeculae throughout the brain (13.8–
53.0%) (Scott and Coats 2015).

In this study, we use multiscale models to identify how
the anatomical variability of the PAC substructures alters
cortical brain deformation, and potentially improves pre-
dictions of extra-axial hemorrhage (EAH) from non-impact
head rotations. Using PAC anatomical and population den-
sity data (volume fractions of arachnoid trabeculae), multiple
microscale FE models of the PAC were created to represent
the natural mechanical variability of the PAC across the brain
(Scott and Coats 2015). Representative solid elements (RSE)
with transverse isotropic properties were created from sim-
ulations with the microscale model, and incorporated into
a macroscale whole-head FE model previously developed
by Coats et al. (2012). The effect of subject-specific PAC
variability on brain–skull displacement and cortical stress
distribution was evaluated, as well as the ability to predict
regional EAH occurring from rapid, non-impact head rota-
tions in a piglet model of TBI.

2 Methods

2.1 Microscale model geometry

The microscale PAC model consisted of a 1.5 × 1.5 mm2

section of PAC which included the upper-arachnoid mem-
brane, arachnoid trabeculae (AT), subarachnoid vasculature,
and pia membrane. The microscale PAC was constructed to
represent the immature porcine anatomy and material prop-
erties as best as possible. Anatomical measurements were
obtained for three structures: the upper arachnoid (UA), sub-
arachnoid space (SAS), and subarachnoid vasculature (SAV).
All dimensions were measured manually from optical coher-
ence tomography (OCT) scans of two immature porcine
postmortem brains which had their subarachnoid space filled
with saline froma syringe pumpat 8mL/min (Scott andCoats
2015). This rate was the lowest rate possible to maintain
a consistent pressurization of the subarachnoid space with-
out damaging the structures or bursting the upper-arachnoid
membranes, and was believed to be an adequate representa-
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Fig. 1 Example OCT image with relevant measurements labeled: UA
thickness (a), minimum SAS thickness (b), maximum SAS thickness
(c), SAV lumen thickness (d), SAV major diameter (e), SAV minor
diameter (f)

tion of an in vivo state for this study. The OCT scan windows
were set at 1.5 × 1.5 × 2 mm (l × w × h), which allowed
for maximum in plane (w × h) resolution (2 × 3.2 μm)
while maintaining an adequate imaging window that cap-
tured multiple structures of the PAC (Scott and Coats 2015).
This imagingwindow dictated the size of themicroscale PAC
model. Dimensions of all substructures were measured in
a single representative 2D image from the middle of each
3D volumetric data set (n=20 for one brain and n=27 for
the other). In our previous studies using OCT to character-
ize the microstructures of the PAC (Scott and Coats 2015),
we reported that using a representative 2D image results in
an error of no more than 10% of the 3D volume. This was
deemed acceptable for our study.

UA thickness was measured in each 2D OCT image from
both brains (Fig. 1a). The average ± standard deviation was
27.06± 5.57μm and 30μmwas selected for the microscale
PAC model (Table 1). SAS thickness was measured in two
locations from each OCT image. The first location was
the “minimum” or smallest gap where AT structures were
present. The second was the “maximum” or largest SAS gap
where AT structures were present (Fig. 1b, c). Gaps were not
measured where there were no AT structures, or where the
pia extended below the image window (in the case of a deep
sulcus). The average of these two measurements across all
locations in both brains (287.92 ± 151.12μm) was used to
estimate an average SAS thickness of 300μm for the PAC
model, which assumed the UA and pia membranes were per-
fectly parallel.

The SAV in the OCT images were often collapsed and
surrounded by a layer of arachnoid material. Therefore, the
wall thickness and outer diameter of the SAVwere estimated
by scaling human measurements of cortical veins (Mon-
son et al. 2005) by the ratio of human subarachnoid space
reported in the literature (Armstrong et al. 2002; Frankel et al.
1998; Hagmann et al. 2011; Lam et al. 2001) to piglet sub-

Table 1 Dimensions of the microscale model of the immature piglet
PAC

Structure Parameter Model dimen-
sion (μm)

Entire PAC Slice area 1500 × 1500

SAS thickness (Gap) 300

Pia
membrane

Thickness 15

Arachnoid
membrane

Thickness 30

Arachnoid
trabeculae
(AT)

Diameter of chords
and sheet-end radii

18

Length of short sheet 150

Length of long sheet
and sheet with
SAV

450

Subarachnoid
Vessels
(SAV)

Outer diameter 112.5

Wall thickness 18.75

arachnoid space as measured from the piglet OCT images.
This resulted in an estimated SAV outer diameter of 112.5
and wall thickness of 18.75μm. To verify that these esti-
mates were reasonable, wall thickness and vessel diameter
were measured in the OCT images (Fig. 1d). As mentioned,
most vessels were not circular in the images, so the major
and minor axes were measured and averaged to approx-
imate a representative diameter (Fig. 1e, f). The average
(±SD) wall thickness and vessel diameter in the images was
22.76± 6.86μm and 183.74± 83.32μm, respectively. The
scaled measurements fall within one standard deviation of
the average measured data, and were therefore deemed to be
reasonable estimates. Measurements not directly measured
from OCT images, such as pia membrane, were determined
based on relative dimensions between substructures for other
animals or species reported in the literature (Aimedieu and
Grebe 2004; Jin et al. 2006, 2007b, 2011). Table 1 presents
all dimensions of the microscale model.

In addition to the membranes, the microscale PAC model
consisted of four basic AT substructures: a chord, a short
sheet, a long sheet, and a sheet encompassing a subarachnoid
vessel (Fig. 2a). These structures are placed between the pia
and upper arachnoid. Because the focus of this study was of
the overall mechanical behavior of the PAC, detailed anatom-
ical morphology was not included. The simplified chord and
sheet shapeswere able to act as tethers between the upper and
lower membranes in much the same way as the true anatom-
ical structures do. CSF was excluded from the model. While
this exclusion would have substantial implications during
skull impact, it was felt that relative brain–skull displacement
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Fig. 2 Microscale model geometry. a Simplified arachnoid trabeculae
structures. bExample of randomization algorithm output in a top–down
view. c Final assembled model in a side-view. d Isometric views of the

PAC model with UA removed to show differing volume fractions (VF)
of arachnoid trabeculae

during the rapid, non-impact head rotations investigated in
this study would be minimally affected.

AT and SAV substructureswere populated based on obser-
vations made during the OCT imaging studies. In general,
more small spindly chord-like structures were observed than
short and long sheets or SAV. As such, the PAC model was
populated by defining a base set of component structures and
multiplying this set to attain different total volume fractions.
The base set of structures contained 10 AT chords, six AT
short sheets, and three AT long sheets per set. This composi-
tion allowed the thinner, chord-like structures to dominate the
model, and generallymatched the observed ratio of structures
during theOCTexaminations. The average number of vessels

measured in all 47OCT imageswas 1.35 (range 0–3 vessels).
This average value did not drastically fluctuate for higher or
lower volume fractions of AT. Therefore, the number of SAV
structures was set to 2 for each model. Volumetric calcula-
tions were made by plugging the dimensions in Table 1 into
basic geometric calculations for a cylinder (chord), cylin-
der+rectangle (sheets), and hollow cylinder (SAV).

Because the organization of the arachnoid trabeculae
appeared arbitrary in the OCT images, substructure place-
ment was randomized using a custom code written in MAT-
LAB (2011b, The MathWorks Inc.). This script generated
positions for the AT chord shapes by picking random values
within the boundaries of the microscale model. Each time it
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Table 2 Example calculation of
volume fraction of the immature
porcine microscale PAC model

Shape Volume
(mm3)

No. of parts
per base unit

Multiplier to
create desired
VF

Aggregate volume (mm3)

Chord 7.634 × 10−5 10 10 7.634 ×10−3

Short sheet 8.863 × 10−4 6 10 5.318 ×10−2

Long sheet 2.506 ×10−3 3 10 7.519×10−1

Sheet /w/ SAV 5.074 ×10−3 2 1 (not
multiplied)

1.015 ×10−2

Total volume of PAC 0.675

Ratio of aggregate
AT volume divided
by volume of PAC

0.146/0.675 = 21.16%

Resulting Rounded VF 21%

Table 3 Final mesh parameters for the porcine microscale PAC model

Structure Element type Avg. aspect
ratio

Avg. shape
factor

Avg. edge
length (μm)

Elements Nodes No. in model Total nodes

AT Chord C3D20R 1.79 n/a 4.46 848 4352 100 435,200

AT Short Sheet C3D10 1.57 0.6894 9.07 15,758 25,480 60 1,528,800

AT Long Sheet C3D10 1.8 0.6467 10.69 19,417 33,757 30 1,012,710

AT w-SAV C3D10 1.43 0.7881 12.04 17480 31825 2 63,650

SAV C3D20R 1.29 n/a 7.56 6336 32,164 2 64,328

Pia C3D8R 3 n/a 10.00 30,000 40,804 1 40,804

UA C3D8R 3 n/a 10.00 60,000 71,407 1 71,407

Total nodes in PAC model 3,255,562

chose a new point it tested that point’s coordinates against
previous points to ensure no intersection of substructures.
After all chords were placed, the code then chose end points
for sheet shapes. The code rotated each sheet shape by a ran-
dom angle, thus randomizing any directionality in the sheets.
The code generated a Python (v3.3.0, Python Software Foun-
dation) macro which automated the model building process
in ABAQUS (v6.12, Dassault Systèmes). A typical output
of the MATLAB code is shown in Fig. 2b. The code does
not account for overlap during the rotation stage (i.e. two
sheets could cross each other like an “X”). While this over-
lap may physically occur in the PAC, identification of these
types of structures from the OCT images was challenging.
Therefore, all overlapping structures in our simulations were
manually corrected in ABAQUS to simplify meshing and
geometry. Figure 2c shows the final geometry of the model
and Fig. 2d showcases some representations of the different
VFmicroscalemodels created for this study. Table 2 presents
an example of the VF calculation for the 21% VF model.

2.2 Microscale model meshing

Themeshing of the PACmodel was informed by a previously
conducted convergence study on a previous model for the

human (Scott 2014). Aside from its relative size (the human
PAC model was larger than the current porcine PAC model),
both models have the same aspect ratios and geometry. The
mesh element types were all kept the same as the human
model. The element edge length was scaled down by cre-
ating equidistant edge seeds on the ends of the chords and
sheets and propagating them uniformly through the struc-
tures. This resulted in roughly the same number of nodes.
Table 3 presents the final mesh parameters for the 21% VF
model and Fig. 3 provides a visual of each meshed part.

2.3 Microscale model material properties

Material data for the PAC is limited to a series of bovine stud-
ies performed by Jin et al. in tension (2006), normal traction
(2007a, 2007b), and shear (2011). In tension, the pia and UA
membranes are being uniaxially loaded while the AT struc-
tures likely contribute very little to the response. Therefore,
the data reported from these tests were assumed to be rep-
resentative of moduli for the pia and arachnoid membranes.
The results in Jin et al. showed a strain rate-dependent “bi-
linear” response (a linear toe region, followed by a stiffer
linear working range). The stiffer, high strain modulus from
the highest strain rate test (15.8 MPa) was used in this study.
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Fig. 3 Final meshes for microscale PAC model: a AT chord, b AT short sheet, c AT long sheet, d SAV, e SAV-enveloping AT sheet

Table 4 Material properties utilized in microscale model of porcine
PAC

Structure Modulus (E) Source

AT structures 284.8 kPa (Jin et al. 2007b)

SAV 27.3 kPa (Pang et al. 2001)

Pia & UA 15.8 MPa (Jin et al. 2006)

Density was assumed to be 1130 kg/m3 and Poisson’s ratio to be 0.45

The normal traction tests conducted by Jin et al. (2007a, b).
applied tensile force normal to the surface of the brain, and
thus passed most of the load to the AT structures. These tests
exhibited a linear elastic response, so the AT were assumed
to behave similarly. In the calculation of stress, Jin et al.
divided theirmeasured loads by the cross-sectional area of the
entire rectangular PAC specimen, thus reporting an effective
elastic modulus of the entire structure. To estimate the elastic
modulus of a single AT, the volume fraction of AT present
in the Jin et al. studies was assumed to be equivalent to the
average volume fraction from our OCTmeasurements (21%
VF) and the remainder of the space void or negligible. The
effective modulus (59.8 kPa) was scaled up by the inverse of
the volume fraction resulting in a single AT elastic modulus
estimate of 284.8 kPa.

The elastic modulus of the SAV was estimated from
porcine cerebral bridging vein stress–strain data tested in
the longitudinal direction (Pang et al. 2001). Density and
Poisson’s ratio were assumed to be 1130 kg/m3 and 0.45,
respectively (Barber et al. 1970). Table 4 presents the mate-
rial properties used for all structures in this study.

2.4 Development of PAC representative solid element
material properties

In order to implement the microscale model’s behavior into
the macroscale model, solid elements with material prop-
erties representative of the different volume fractions were
created for each PAC model. The material behavior of the
PAC representative solid element (RSE) was dictated by sim-

ulating uniaxial tensile tests parallel and perpendicular to the
meninges of the microscale model, similar to the material
tests conducted by Jin et al. (2006, 2007b). The tensile test
simulations parallel to the meninges were conducted by fix-
ing the pia and UA on one side, and applying a prescribed
displacement to the other end (Fig. 4a). This prescribed dis-
placement was 0.225mm,which resulted in 15% strain. This
resulted in a moderate value of extension but did not exceed
the level of strain that the weakest samples failed at in Jin
et al.’s studies. The reaction force was collected and divided
by the cross-sectional area of the pia and UA to calculate
the stress response of the simulated material test. The cross-
sectional area was calculated from the pia and UA only (i.e.
not including the SAS) because the load in these simulations
is carried almost entirely by the pia and UA.

The normal traction test simulations (i.e., tension perpen-
dicular to themeninges) were conducted by fixing the bottom
surface of the pia and prescribing a displacement of 0.15 mm
to the top surface of the UA (Fig. 4b). This displacement
resulted in a 50% strain of the 0.300 mm tall AT structures
and represented a moderate level of stretch without going
above the failure points of the weakest tests reported by Jin
et al. (2007b). The reaction force was divided by the top
surface area of the arachnoid membrane to calculate stress.

The stress–strain responses of the microscale test simula-
tions were plotted to visualize trends with volume fraction.
The tensile tests were largely dominated by the pia and UA,
and VF did not influence the results (Fig. 5a). However, large
differenceswere seen in the traction test simulationswith dif-
ferent VF (Fig. 5b). This was expected because the AT dom-
inates the material response for these normal traction tests.

Several tests were conducted to see if any bias was
introduced into the PACmodels from the randomization pro-
cedure. For this assessment, the lowestVFmodel (7%,which
had the least AT structures and would be most influenced by
directionality of such structures) was tested in both in-plane
directions (x and y). A second model was built with a new
randomized set of structures, still with a 7% VF. This model
was also subjected to tensile tests in two in-plane directions.
The results of these tests showed no significant differences,
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Fig. 4 Boundary conditions and loading for the tensile (a) and normal traction (b) test simulations. Post-deformation stress maps showcase the
surfaces used to collect reaction force and cross-sectional area in calculations of stress in the RSE

Fig. 5 Stress–strain curves for
all VFs for (a) tension
simulations (uniaxial loading
along the pia and arachnoid
membranes) and (b) traction
simulations (tension normal to
the surface of the brain).
Tension simulation results were
independent of volume fraction
while traction simulation results
varied linearly with volume
fraction 0
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with a maximum error of 0.006% occurring at the maximum
stress point.

Each stress–strain curve from the test simulations was fit
to a linear regression trend line, and the resulting linear slope
in the regression equation was used as the modulus (Fig. 5).
Each modulus was then plotted against its corresponding VF
for the two types of tests (Fig. 6). For the tensile test simula-
tions, there appeared to be a slight increase in stiffness of the
RSE for increasedVF and some small nonlinearity. However,
the variation over the VF range was very small (≤0.4%; Fig.
6a). Therefore, an average of all of the moduli was chosen to
represent the isotropic in-plane linear elastic response. The
moduli from the traction simulations were directly propor-
tional to the change inVF, so this linear relationshipwas used
to determine the out-of-plane linear elastic response for the
RSE of volume fractions not simulated.

TheRSEswere implemented into themacroscalemodel as
transversely isotropic elements. The reported in-plane mod-
ulus (EP) and out-of-plane, or transverse, modulus (ET) had
to be supplemented with data from the literature, as well as
by using classical mechanics relationships, in order to form

a complete material model which included the in-plane Pois-
son’s ratio (νP ), transverse Poisson’s ratio (νTP), in-plane
shear modulus (GP), and transverse shear modulus (GTP).
Note that for the differing VF models, only the transverse
modulus (ET) and transverse Poisson’s ratio (νT P )were var-
ied (Table 5). All other values were kept constant (Table 6)
based on the assumptions and equations detailed below.

The in-plane Poisson’s ratiowould be almost entirely gov-
erned by the pia andUAmoduli, but no literature existswhich
reports this value. Persson et al. (2010) report the Poisson’s
ratio for spinal dura, which can be compared to cranial dura
if one considers the circumferential direction measurements
(the longitudinal measurements contain much higher colla-
gen fiber directionality than cranial dura). Based on these
reported data, the estimated in-planePoisson’s ratiowas 0.45.

The transverse Poisson’s ratio was calculated based on the
ratio of the in-plane and transverse moduli recommended by
ABAQUS to ensure model stability (Eq. 1).

νTP ≤
(
ET

EP

)1/2

(1)
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Fig. 6 Elastic moduli
determined from the microscale
PAC model simulations of
tension (a) and normal traction
(b) tests. In-plane modulus was
not substantially influenced by
PAC volume fraction in tension
simulations, but out-of-plane
modulus increased linearly with
volume fraction in traction test
simulations. A y intercept of 0
was enforced for normal traction
tests 14
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Table 5 Transverse modulus and transverse Poisson’s ratio for the
RSEs across a range of VFs

VF (%) ET (kPa) νT P VF (%) ET (kPa) νTP

7 24.40 0.000761 25 87.07 0.002715

9 31.36 0.000978 27 94.03 0.002932

11 38.32 0.001195 29 100.10 0.003150

13 45.29 0.001412 31 107.96 0.003367

15 52.25 0.001629 33 114.92 0.003584

17 59.22 0.001847 35 121.89 0.003801

19 66.18 0.002064 37 128.85 0.004018

21 73.14 0.002281 39 135.81 0.004235

23 80.11 0.002498 41 142.78 0.004452

Table 6 Constant material properties for all RSEs regardless of VF

Property Value

In-plane modulus (EP) 14.48 MPa

In-plane Poisson’s ratio (νP ) 0.45

In-plane shear modulus (GP) 4.98 MPa

Transverse shear modulus (GTP) 22.37 kPa

This calculation resulted in very low values of νTP (Table 5).
Physically this makes sense as stretching or compressing the
AT would likely result in minimal strains to the pia and UA.

The in-plane shear modulus (GP) was calculated based
on the classical mechanics relation between shear modulus,
elastic modulus, and Poisson’s ratio (Eq. 2). The in-plane
elasticmodulus (14.43MPa) and assumed in-plane Poisson’s
ratio of 0.45 were utilized because the pia and UA largely
dominate this shear response.

GP = EP

2 (1 + νP)
= 14.43MPa

2 (1 + 0.45)
= 4.98MPa (2)

The transverse shear modulus (GTP) was extracted from
PAC shear tests performed by Jin et al. (2011) at different
strain rates. The modulus from the highest strain rate test
(22.37 kPa) was selected.

2.5 Macroscale porcine model parameters

The macroscale model utilized in this study is one that has
already been verified and validated in an FE study on non-
impact rapid head rotations in the immature piglet by Coats
et al. (2012). The geometry was created by segmenting a
sequence of coronal computed tomography (CT) images of a
4-week-old pig brain, and scaling the dimension of that brain
to that of an average 3- to 5-day-old piglet brain (Fig. 7).
The skull geometry was created by extending the brain’s free
surface outwards by 1 mm, and smoothing to remove gyral
morphology. The skull was represented with rigid elements
because only non-impact rotations were simulated and the
pediatric skull is orders of magnitude stiffer than the brain
and PAC (Coats and Margulies 2006a, b; Jin et al. 2007b).
The falx was created based on measurements obtained in-
housewith calipers in-vivo and ex-vivo. Themodel consisted
of 17,587 elements (13,018 brain and brainstem hexahedral
elements, 1891 falx tetrahedral elements, and 2678 skull rigid
elements).

Thematerial properties of the previously publishedmodel
represent a 3- to 5-day-old piglet. The brain is character-

Fig. 7 Macroscale finite elementmodel of a 3- to 5-day-old piglet brain
and skull. Components include brain (red), brainstem, falx (brown), and
skull (blue). A portion of the skull (blue) has been removed to illustrate
the underlying falx and brain
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Table 7 Material properties utilized in the macroscale whole head
model

Structure Material property

Brain/brainstem μ = 526.9 Pa τ1 = 2.96 s

α = 0.01 τ2 = 0.181 s

C1 = 0.332 ν = 0.49999

C2 = 0.389

Falx ρ = 1.13 g/cm3

E = 16 MPa

ν = 0.45

Skull Rigid Body

ized as nonlinear homogenous, isotropic hyperelastic and
viscoelastic using a first-order Ogden strain energy equation.
The model parameters were determined from data presented
on samples from 5-day-old piglets and have been published
previously (Prange andMargulies 2002). The falx was repre-
sented as linear elastic with material properties scaled down
fromGalford andMcElhaney’s reported adult values (1970),
based on a ratio of adult to fetal dural stiffness calculated from
data byBylski et al. (1986). Table 7 presents a summary of all
of the material properties utilized in the macroscale model.

2.6 Implementing a representative solid element into
macroscale models

The previous Coats et al. model utilized linear elastic con-
nectors to define the interaction between the brain and the
skull. These connectors represented the tethering provided by
the cortical vasculature and were modeled using the material
properties of cortical veins from autopsy by Monson et al.
(2005). For the VF models, these connectors were removed
and 2678 solid hexahedral RSEs were added between the
brain and the skull to represent the PAC. The separation
between the brain and skull in the previous model was 1mm,
which caused the RSEs in this model to be 1 mm thick as
well. The in-plane edge lengths were determine from the
meshing scheme used previously by Coats et al. (2012) and
were 1.5–2.5 mm.

The RSE elements were isolated and segmented into the
12 regions that were scanned in previous OCT imaging stud-
ies (Scott and Coats 2015). These 12 regions represent the
groupings created when splitting the brain into left and right
hemispheres, medial and lateral to midline, within frontal,
parietal, and occipital lobes (Fig. 8). A 13th region was cre-
ated that represented all non-scanned regions (NSR). Each
of the 12 scanned regions was populated with the material
properties of the RSE that represented the average VF found
in that region.

Two macroscopic models were created to represent the
VF data from two different animals. These two models are

referred to as “High-VF” and “Low-VF” models because
they represent the animals with the highest and lowest aver-
age volume fractions reported in our previous imaging study.
The average volume fraction of the PAC across the entire
brain differed by 5% between the two animals. The regional
volume fractions (as pictured in Fig. 8 and labeled as sub-
region in Table 8) differed by as little as 0.6% (in the left
lateral parietal region), and as much as 15% (in the left lat-
eral frontal region) between the animals. Figure 9 presents
the distribution of volume fraction measurements across the
two brains. Table 8 provides the averages of the 12 subre-
gions used to populate the FE models. The unscanned region
of both models was populated with RSE’s representing the
overall average VF for each animal.

The material model of all RSE elements was transversely
isotropic, linear elastic. The in-plane directions (the two
directions with identical moduli) were the two directions
tangent to the brain’s surface, dictated by the pia and UA’s
response. The out-of-plane direction was perpendicular to
the brain’s surface (dictated by the AT response). To prop-
erly apply transverse isotropy, a local coordinate system was
established in ABAQUS, in which the z direction (out-of-
plane) for each element was perpendicular to the brain’s
surface.

2.7 Macroscale model loading

The low and high-VF macroscale models were each sub-
jected to 24 angular velocity profiles extracted from rapid
non-impact piglet head rotation experiments reported by
Eucker et al. (2011) and used by Coats et al. (2012). These
axial, coronal, and sagittal head rotations employed angu-
lar accelerations of 26 to 85 krad/s2 and angular velocities of
130–220 rad/s, and produced a range of traumatic brain injury
etiologies including diffuse axonal injury and bilateral extra-
axial hemorrhage (consisting of subdural and subarachnoid
hemorrhage) in the more severe cases. A summary of all the
simulations completed by both the low- and high-VFmodels
is provided in Table 9.

2.8 Macroscale model post-processing

To compare differences between the low- and high-VF mod-
els, we compared the population distribution of brain–skull
displacement. To calculate relative displacement, the coor-
dinates of all the outer surface nodes of the brain and inner
surface nodes of the skull were extracted at all time-points
(every 0.1 ms) and closest node pairs were identified. These
node sets were imported into a MATLAB code which sub-
tracted the values of the skull’s displacement from the values
of the brain’s displacement for each adjacent node pair. Peak
brain–skull displacement distribution plots were created for
five regions within the model which mimicked the five
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Fig. 8 RSE element
assignment to the whole-head
model. The 1st letter indicates
left or right, 2nd letter indicates
medial or lateral, and 3rd letter
indicates frontal, parietal, or
occipital. NSR indicates the
non-scanned region

Table 8 Average VF values for
each anatomical subregion of
the two inflated brains

Subregion Low-VF model (%) High-VF model (%)

LLF 14.1±6.5 29.1±13.6

LLP 17.2±3.6 16.6*

LLO 23.1±5.2 37.2±11.0

LMF 11.0±2.7 24.1±18.1

LMP 22.0±5.0 23.1±7.6

LMO 15.1±1.1 20.4±5.6

RLF 29.2±10.4 24.4±13.2

RLP 18.9±0.5 26.3*

RLO 26.3±2.4 34.79*

RMF 22.7±8.3 11.2*

RMP 33.3±12.0 32.8*

RMO 15.0±7.9 27.8±15.5

Entire Brain Average (±S.D.) 20.29 (±7.96) 25.83 (±10.26)

1st letter indicates left or right, 2nd letter indicates medial or lateral, and 3 rd letter indicates frontal,
parietal, or occipital
* Only one area imaged per region

Fig. 9 Color map of VF
distributions in each of the two
brains with boundary lines
indicating the defined regions in
Fig. 8. Averages and standard
deviations are calculated for
each brain from the last row in
Table 8. Note that positions are
approximate and based on notes
collected from the operator
during the imaging session

regions used to categorize intracranial hemorrhage predic-
tion (IHP) scores in previously published animal experiments
(Coats et al. 2012).

Coats et al. (2012) reported that cortical principal stress
was a good predictor of extra-axial hemorrhage when the
model contained solid elements for the PAC. Therefore, the
maximum principal stress for the elements on the brain’s sur-

face was also extracted from the low- and high-VF models,
and plotted in a similar manner to the brain–skull dis-
placement. Significant differences between the distribution
plots of each animal for each region were evaluated with
a two-sample Kolmogorov–Smirnov goodness-of-fit test for
continuous distributions A p value < 0.05 was used to
indicate statistically significant differences between the dis-
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Table 9 Summary of
simulation matrix

IHP Scores

Plane of
rotation

Angular
velocity
(rad/s)

Anterior
left (%)

Anterior
right (%)

Posterior
left (%)

Posterior
right (%)

Midline (%) Total (%)

1 Axial 200.6 65 43 35 6 51 37

2 Axial 202.9 64 68 18 47 35 44

3 Axial 210.9 18 27 13 16 39 19

4 Axial 179.0 60 59 30 22 42 39

5 Axial 183.9 25 29 8 11 29 18

6* Axial 199.2 49 51 13 47 68 40

7* Axial 181.3 22 33 11 7 43 19

8* Axial 161.5 1 3 14 12 20 10

9 Axial 197.9 44 17 31 21 58 31

10* Axial 168.6 23 9 8 5 30 12

11 Axial 169.9 44 33 17 14 53 27

12 Axial 194.7 34 39 16 13 50 26

13* Axial 144.0 0 0 0 4 1 1

14* Axial 130.8 0 1 0 0 0 0

15 Axial 165.1 17 21 2 7 4 9

16 Coronal 217.7 0 1 1 2 0 1

17 Coronal 193.4 0 0 0 1 0 0

18 Coronal 214.6 1 1 5 0 0 2

19 Coronal 196.0 0 0 0 0 0 0

20 Coronal 169.5 0 0 1 0 0 0

21 Coronal 207.8 0 0 0 0 0 0

22 Sagittal 160.4 15 14 19 17 67 20

23 Sagittal 156.7 28 31 23 23 94 32

24 Sagittal 161.3 27 25 25 11 66 25

The low-VF model and the high-VF model were used to simulate all of these experimental studies
encompassing a range of angular velocities, head rotation directions, and severities of injury
*Simulations used to develop injury thresholds. Remaining simulations were used to evaluate the
predictability of the threshold

tributions. A two-way ANOVA with a Tukey-Kramer post
hoc analysis was used to determine significant differences in
peak brain–skull displacement and principal cortical stress
with direction of head rotation and region.

Results fromsimulations using the low- andhigh-VFmod-
els were also compared with results from the previously
described macroscale simulations representing the PACwith
uniform elastic connectors. Coats et al. defined positive
intracranial hemorrhage in the animal experiments as any
of the five regions of the brain with≥25% of the region cov-
ered in blood. This value is called the IHP cutoff percentage.
Using a receiver operating characteristic (ROC)methods, the
top 1% of peak connector strain was determined to be the
optimal predictor, with 0.31 mm/mm as the connector strain
threshold for predicting EAH.

To determine the optimal EAH predictor for the VF mod-
els, simulation and IHP data from six of the 24 animals were

input into a MATLAB code which evaluated different com-
binations of IHP cutoff percentage and prediction threshold
for brain–skull displacement and principal stress prediction
metrics. These six animals were selected because they repre-
sented a range of velocities and injuries in the axial plane of
rotation. ROC curves were generated for each combination
of IHP cutoff percentage and prediction threshold for each
metric. The combinations with the highest area under the
ROC curve were then evaluated individually for sensitivity
and specificity according to different metric thresholds. The
final choice on which combination to use was based not only
on a large area under the ROC curve, but also on exhibit-
ing an even balance of high sensitivity and specificity. This
process was performed for the low-VF and high-VF models
separately.

Once the final IHP cutoff percentage, prediction metric,
and associated injury prediction threshold value were identi-
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Fig. 10 Brain–skull
displacement distribution curves
for five IHP analysis regions
[midline (a), anterior left (b),
anterior right (c), posterior left
(d), posterior right (e)]. The
low-VF model consistently
resulted in significantly higher
brain–skull displacements
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fied, a sensitivity and specificity analysiswas used to evaluate
how the macroscale model predicted regional and overall
hemorrhage in the remaining 18 animals not used in the
development of the prediction metrics.

3 Results

3.1 Comparison of two subject-specific multiscale
models

The Kolmogorov–Smirnov goodness-of-fit tests resulted in
p values of < 0.0001 for all five regions, indicating that the
brain–skull displacement distributions predicted by the high-

and low-VF models were significantly different (Fig. 10;
Table 10). As might be expected, the brain–skull displace-
ment for the low-volume-fraction model was greater overall
than the high-volume-fraction model, and the maximum
brain–skull displacement differed by 0.15–0.29 mm (7–
28%) between the models (the greatest discrepancies of
roughly 0.29 mm occurred in the posterior left and right
regions). The cortical stress was less affected by the differ-
ences between the low- and high-VF models and differed by
1–10%, except in the posterior right region which differed
by 16% (21.35kPa). These differenceswere driven primarily
by the axial and sagittal head rotation simulations as there
were minimal differences found between the models when
simulating coronal head rotation.
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Table 10 Average ± standard deviation (maximum) of peak brain–skull displacement and maximum cortical principal stress for the low-VF and
high-VF models

Displacement (mm) Cortical Stress (kPa)

Low VF High VF Low VF High VF

Anterior Left 0.7480±0.5250 (2.2195) 0.6064±0.4525 (2.0309) 93.34±42.73 (165.62) 88.84±38.53 (155.54)

Anterior Right 0.7642±0.5175 (2.1808) 0.6145±0.4503 (2.0337) 90.15±36.65 (150.19) 90.17±37.03 (151.67)

Posterior Left 0.8339±0.2702 (1.3094) 0.6875±0.1956 (1.0215) 95.14±44.20 (171.20) 86.39±38.71 (156.17)

Posterior Right 0.8023±0.2953 (1.3365) 0.6193±0.2247 (1.0489) 90.03±34.19 (151.89) 83.01±30.99 (130.54)

Midline 0.8677±0.5148 (2.1772) 0.6751±0.4202 (2.0102) 83.37±34.14 (134.23) 77.92±33.96 (139.52)

3.2 Differences with head rotation direction

For both the low- and high-VF models, the magnitudes of
maximum brain–skull displacements and cortical stresses
were significantly dependent on the direction of head rota-
tion. Simulations of sagittal head rotation resulted in sig-
nificantly higher magnitudes of brain–skull displacement
and cortical principal stress than axial head rotations, which
were significantly higher than coronal head rotations (p <

0.001; Fig. 11). Sagittal head rotations exhibited near-perfect
left/right anterior lobe symmetry for brain–skull displace-
ment, despite differing RSE elements for the left and right
hemispheres of the brain. Principal cortical stress during
sagittal head rotations did not exhibit the same degree of
symmetry.

Maximum values of brain–skull displacement were also
significantly dependent on region and the interaction between
head rotation direction and region (p < 0.0001). Average
maximum brain–skull displacements following sagittal head
rotation were largest in the anterior left/right and midline
regions (2.047 ± 0.177) and more than double maximum
brain–skull displacements in the same regions from axial
(0.661 ± 0.236) and coronal (0.513 ± 0.114) head rota-
tions. Maximum values of principal cortical stress were only
significantly dependent on the direction of head rotation.
Average maximum values of principal cortical stress from
sagittal (125.62 ± 17.1) and axial (103.87 ± 27.73) head
rotationswere nearly three times greater thanmaximumprin-
cipal cortical stress resulting from coronal head rotations
(39.12 ± 6.80), regardless of region.

3.3 Comparison of multiscale model to previous
connector model

The multiscale simulations exhibited stress patterns with
smaller, localized hot spots of stress than the connector
model. The connectormodel has homogenous stress contours
due to the homogenous nature of the spring connectors. Two
major kinematic events were observed to create local peaks

of stress. The first is when the skull is leading the brain and
the PAC is in tension (Fig. 12). This occurs at the same time
for the multiscale models, but slightly earlier for the connec-
tor model. At this time point, there is a large concentration
of stress in the midline regions of the multiscale models with
some “fingers” of stress across various regions of the brain
due to the variability in the PAC elements. In the connec-
tor model, there is only one large concentration of stress that
spans the occipital and parietal lobes. The secondmajor kine-
matic event is when the brain “catches up” to the skull and
is now leading, causing compression of the PAC elements
(bottom row of Fig. 12). During this stage, there is a hot spot
of stress in the midline at the intersection of the frontal and
parietal lobes in the multiscale models, but there is a much
higher level of stress and more discontinuity in the connector
model. The more localized stress patterns in the multiscale
model were observable in all three of the head rotation direc-
tions (i.e., sagittal, coronal, or axial).

3.4 Hemorrhage prediction abilities of the new model

Based on the receiver operating characteristic curves devel-
oped from the simulations of six of the 24 animal exper-
iments, the brain–skull displacement or cortical principal
stress experienced by the top 5% of the nodes or elements,
respectively, was found to be the best predictor of intracra-
nial hemorrhage for each metric. The low- and high-VF
models had brain–skull displacement thresholds of 0.373
and 0.284 mm, respectively (Fig. 13). The cortical stress
thresholds were 46.6 and 44.7kPa for the low- and high-VF
models, respectively. Despite these differences in thresholds,
the overall sensitivities and specificities of the predictions
were fairly consistent between the low- and high-VF mod-
els, especially when cortical stress was used as a predictor.
Of note, the two VF models were generally more sensitive
to predictions of hemorrhage than the previously published
connector model (Coats et al. 2012), because only 1% of
each region of the brain had to be covered in blood in order
to detect the hemorrhage in the animal experiments. This is
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Fig. 11 Regional time history of the maximum node pair brain–skull
displacement and principal cortical stress for a single representative ani-
mal simulation with axial, coronal, and sagittal head rotation. Note that
the same animal model was used for each representative direction, but

the location at which the maximum node pair brain–skull displacement
and maximum principal cortical stress occurred were not necessarily
the same
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Fig. 12 Stress maps of the top surface of the brain at the times of
highest stress in a simulation of the same sagittal head rotation using
the three different PAC models. In the top row, the skull is leading the

brain and the PAC is in tension. In the bottom row the brain has caught
up with the skull motion. The brain is now leading and the PAC is in
compression
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graph

substantially improved from the 25% IHP cutoff threshold
required by the uniform connector model.

In comparing the sensitivity and specificity of EAH
predictions between the connector andVFmodels, the brain–
skull displacement prediction metric generally improved the

sensitivity of the EAH predictions, but often decreased the
specificity of the predictions (Table 11). Cortical princi-
pal stress, however, increased the overall sensitivity and
specificity of EAH predictions by 14 and 15%, respec-
tively. Furthermore, predictions substantially improved in all
regions except the posterior left which had a drop from 100 to
86% in sensitivity and an increase from 93 to 100% in speci-
ficity. From these data, it is clear that cortical principal stress
was the best predictor of hemorrhage. The lack of difference
between the low- and high-VFmodel for this metric suggests
that this metric is robust enough to handle natural variations
in arachnoid trabeculae volume fraction between animals.

4 Discussion

In this study, multiscale modeling was used to investigate the
influence of PAC microstructure variability on overall brain
mechanics, and on predictions of intracranial hemorrhage in
a porcine model of TBI. Incorporating representative solid
elements that utilize transversely isotropic properties based
on the varying density of arachnoid trabeculae and vascu-
lature within the brain resulted in an increase in localized
variability, or “hot spots” of stress, along the brain compared
to the previous connector model that exhibited a more uni-
form cortical stress pattern. This is an intriguing finding, as
it illustrates that despite the small volumetric contribution
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Table 11 Sensitivity and specificity (respectively, in percent) for all models

Connector model (25% IHP
threshold)

New VF models (1% IHP threshold)

FE Metric Top 1% connector strain Top 5% brain–skull displacement Top 5% principal stress

Low or High VF n/a Low VF High VF Low VF High VF

FE Metric Value 0.31 mm/mm 0.373 mm 0.284 mm 46.6 kPa 44.7 kPa

Overall 80/85 94/69 94/73 94/100 94/100

Anterior Left 63/80 85/100 77/100 92/100 92/100

Anterior Right 80/88 92/83 100/67 100/100 100/100

Posterior Left 100/93 93/25 93/0 86/100 86/100

Posterior Right 0/76 92/100 100/100 92/100 92/100

Midline 90/100 100/100 100/83 100/100 100/100

of the PAC to the intracranial space, the microstructural vari-
ability has substantial impact on brainmechanics during head
rotation. Furthermore, the data suggest that the variability
may be influential on localized predictions of intracranial
hemorrhage.

Two subject-specific models were created to evaluate the
effect of subject to subject variation in VF and resulting
brain mechanics. The regional volume fractions differed by
as much as 15% between the two models, but the volume
fractions averaged across the entire brain of each subject only
differed by 5%. This is representative of our previous OCT
imaging findings that found a 4.8% maximum difference in
arachnoid trabeculae volume fraction across five animals.
The two animals used in this study were not part of the pre-
vious imaging study. The VF model with the higher volume
fraction exhibited lower brain–skull displacement and corti-
cal principal stress values compared to the lower VF model.
This is likely due to the increased tethering between the brain
and skull in the high-VF model. These differences resulted
in subject-specific injury threshold values for each hemor-
rhage prediction metric. Brain–skull displacement was more
affected by subject variability and resulted in slightly differ-
ent sensitivities and specificities for some regions of the brain
when predicting intracranial hemorrhage with the low- and
high-VFmodel.As can be observed inTable 10, cortical prin-
cipal stress had less variation between the subject-specific
variability and resulted in the same sensitivities and specifici-
ties, regardless of the model used (Table 11). The different
results between the two prediction metrics was surprising,
given that both were pulled from the same brain surface
nodes (the displacement data additionally pulled from the
skull surface nodes). One possible explanation for this is
that brain–skull relative displacement is a value calculated
purely from the interactions between the two surfaces, while
the stress metric was determined from the first layer of brain
elements and will be influenced by the deeper structures of
the brain. The stress metric may thus possess a smoother pro-
file and lead to less false positives and false negatives, giving

it higher sensitivity and specificity values. We conclude that
cortical principal stress is a more robust prediction metric.
Of course, this conclusion might not hold true for animals
with arachnoid trabeculae volume fractions outside of our
observed range.

Regardless of the subject-specific differences, both VF
models showed a more consistent ability to correlate with
the severity of regional intracranial hemorrhage relative to
the existing cortical connector model, especially for cor-
tical principal stress. The brain–skull displacement metric
dramatically increased both sensitivity and specificity for
some regions, but dramatically decreased both parameters
for other regions. This resulted in an overall increase in the
sensitivity of the prediction from 80% in the previous uni-
form connector model to 94% in the VF model. However,
the overall specificity of the brain–skull displacement metric
decreased from 85 to 69% and 73% for the low- and high-
VF model, respectively. In contrast, using cortical principal
stress as a predictor for intracranial hemorrhage substantially
increased overall sensitivity and specificity by 14 and 15%,
respectively. Regionally, predictions improved by as much
as 92%, and there was only a single region where there was
a decrease in performance (100–86% sensitivity in the pos-
terior left region). This decrease was offset by an increase
from 93 to 100% specificity in the same region. Even more
intriguing was that the required IHP cutoff threshold, which
defined whether a region in the animal’s brain was consid-
ered positive for hemorrhage, wasmarkedly reduced from 25
to 1%.We conclude that incorporating the natural variability
of arachnoid trabeculae volume fraction increases the overall
ability of themodel to predict smaller regions or hemorrhage,
or milder traumatic brain injuries.

The finding that cortical principal stress is a better pre-
dictor of regional intracranial hemorrhage is interesting con-
sidering that maximum values of cortical principal stress did
not significantly differ between many of the regions. Upon
further post hoc analysis of regional intracranial hemorrhage
patterns, bleeding in the brain following sagittal rotation was
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highest in themidline regions, and then uniformly distributed
across anterior and posterior left/right lobes. Following axial
head rotation, intracranial hemorrhagewas also highest in the
midline region, and then distributed across the anterior lobes.
Levels of intracranial hemorrhage in the posterior lobes were
more sporadic.Maximumbrain–skull displacementwas con-
sistently higher in the midline and the posterior lobes, which
is likely why it did not perform as well as a predictor of hem-
orrhage.A post hoc correlational analysis betweenmaximum
cortical principal stress and the percentage of IHP indicated
that there was a significant correlation between increas-
ing principal stress and increasing levels of hemorrhage
(p < 0.001), but only moderately so (correlation coefficient
= 0.676). Performing a similar post hoc correlation analysis
of brain–skull displacement and IHP also showed a signifi-
cant correlation (p < 0.001), but the correlation was lower
(correlation coefficient = 0.484). What this suggests is that
cortical principal stress is an accurate predictor of the pres-
ence/absence of regional intracranial hemorrhage, but may
onlyweakly predict the severity of the hemorrhage. Inclusion
of microstructural anatomy specific to the midline region of
the model may improve these correlations.

The VF models provided substantial improvements over
our previously published model, but there are several lim-
itations in the development of the microscale PAC models
used to generate the representative solid elements. Nonlin-
ear strain and strain rate responses of brain tissue were well
represented with hyperelastic and viscoelastic properties in
the macroscale model, but the microscale PAC models were
composed of linear elastic constitutive models. Based on
the data from Jin et al. (2007b), a linear elastic model was
likely appropriate for arachnoid trabeculae, but the pia and
arachnoid membranes have been shown to exhibit nonlin-
ear behavior (Aimedieu and Grebe 2004; Jin et al. 2006).
Given that these membranes were thin and effectively fixed
to the dura and brain when the RSEs were implemented
into the macroscale model, we speculate that the assump-
tion of linearity in these tissues likely had minimal effect
on the findings. However, Jin et al. report that the PAC is
rate-dependent in traction (2007b), suggesting the arachnoid
trabeculae may also be rate dependent. Viscoelastic proper-
ties were not included in the PACmodel. Instead, the highest
strain rate (500 s−1) evaluated by Jin et al. was used as the
basis for the properties of the arachnoid trabeculae. Future
work should consider incorporating intrinsic rate-dependent
behavior.

One other limitation in the PACmodels was the exclusion
of cerebrospinal fluid (CSF). Physiologically, the compres-
sive response of the PAC is dominated by the fluid buoyancy
of the CSF. This suggests that the model developed in this
study is not appropriate for head impact or blast-associated
predictions. We simulated rapid, non-impact head rotations
with the assumption that the influence of the CSF would

be minimal. In reality, there is likely some PAC compres-
sion during the head rotation, even without impact. Despite
this limitation, our correlations with intracranial hemorrhage
were still excellent. Therefore, we propose that subarachnoid
and subdural hemorrhage are strongly correlated with vascu-
lature tension during brain–skull displacement rather than
compression of the brain against the skull. The influence of
CSF in head impact or blast exposure are future investiga-
tions required to broaden the applicability of this model to
multiple injury modalities.

Gyral folds were not included in the macroscale or
microscale simulations, and the localized cortical stress dis-
tributionwas a function of the PACmaterial property changes
and not brain surface undulation. Inclusion of gyral folds
in the macroscale model would likely alter the stress dis-
tributions reported in this study, but we hypothesize that
these changes would be fairly localized and not affect our
overall regional predictions of hemorrhage. Cloots et al.
(2008) investigated the effect of gyral inclusion on cortical
stress magnitude. They reported stress concentrations near
the endpoints of the gyral folds (deep within the cortex) that
increased the maximum equivalent stress by 31–84%. How-
ever, the average equivalent stress of the cortex was only
8–10% greater than a homogeneous model. The average
stress on the surface of the brain was minimally increased,
which suggests that the inclusion of gyral folds may increase
our hemorrhage prediction thresholds slightly, but not our
regional distribution of stress.

Even with these limitations, the results show that dur-
ing head rotation, the variability of the structures will have
significant influence on the pattern of cortical stress and
the prediction of intracranial hemorrhage. One of the ulti-
mate goals of TBI biomechanics research is to be able to
relate head kinematic data (e.g., accelerations, velocities)
to predictions of TBI. Improvements in technology have
allowed researchers to begin collecting biomechanical data
on the forces leading to concussion and mild TBI in ath-
letic populations (Broglio et al. 2010; Crisco et al. 2010,
2011; Higgins et al. 2007). However, interpretation of this
data has been challenging because of the large injury vari-
ability among players and the multiple confounding factors
such as history of impact and timing between impacts. The
findings from our study suggest that the natural variabil-
ity in the brain–skull interface could also contribute to the
variability of TBI. At present, there are no in vivo imaging
methods to assess arachnoid trabeculae in humans. How-
ever, investigation of the PAC microstructures postmortem
in a human population may also conclude that a single
PAC architectural density is sufficient to predict localized
intracranial hemorrhage across subjects. At present, it is
unclear how much PAC variation exists in the human pop-
ulation and whether this variation is affected by age and/or
gender.

123



1118 G. G. Scott et al.

5 Conclusion

A computationally efficient method of implementing
microscale level details of the PAC into a macroscale whole-
head model was developed. The macroscale simulations
showed a marked improvement in predicting regional hem-
orrhage when using a variable VF PAC (as compared to a
strictly homogenous model). These new models were able
to predict hemorrhage at a much lower cutoff value, as well
as with higher sensitivity and specificity overall, when using
cortical principal stress as our injury metric. These data sug-
gest that the PAC does have a significant effect on brain
biomechanics. We conclude that including a biofidelic PAC
substructure variability in FE models of the head is essential
for improved predictions of hemorrhage at the brain/skull
interface.
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