
Biomech Model Mechanobiol (2016) 15:745–758
DOI 10.1007/s10237-015-0721-x

ORIGINAL PAPER

A novel strain energy relationship for red blood cell membrane
skeleton based on spectrin stiffness and its application
to micropipette deformation

Saša Svetina1,2 · Gašper Kokot3 · Tjaša Švelc Kebe1,2 ·
Boštjan Žekš1,4 · Richard E. Waugh5

Received: 17 March 2015 / Accepted: 22 August 2015 / Published online: 16 September 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Red blood cell (RBC) membrane skeleton is a
closed two-dimensional elastic network of spectrin tetramers
with nodes formed by short actin filaments. Its three-
dimensional shape conforms to the shape of the bilayer, to
which it is connected through vertical linkages to integral
membrane proteins. Numerous methods have been devised
over the years to predict the response of the RBC membrane
to applied forces and determine the corresponding increase
in the skeleton elastic energy arising either directly from con-
tinuum descriptions of its deformation, or seeking to relate
the macroscopic behavior of the membrane to its molecu-
lar constituents. In the current work, we present a novel
continuum formulation rooted in the molecular structure
of the membrane and apply it to analyze model deforma-
tions similar to those that occur during aspiration of RBCs
into micropipettes. The microscopic elastic properties of
the skeleton are derived by treating spectrin tetramers as
simple linear springs. For a given local deformation of the
skeleton, we determine the average bond energy and define
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the corresponding strain energy function and stress–strain
relationships. The lateral redistribution of the skeleton is
determined variationally to correspond to the minimum of
its total energy. The predicted dependence of the length of
the aspirated tongue on the aspiration pressure is shown to
describe the experimentally observed system behavior in a
quantitative manner by taking into account in addition to the
skeleton energy an energy of attraction between RBC mem-
brane and the micropipette surface.

1 Introduction

Red blood cell (RBC) membrane is a composite of a bilayer
and membrane-associated cytoskeleton (in the following
“skeleton”). The bilayer is lipid based, but densely occupied
by integral proteins. The skeleton is essentially a triangular
protein network linked to the cytoplasmic side of the bilayer
(Byers and Branton 1985). The principal component of the
RBC skeleton is a fibrous spectrin heterodimer (composed
of α and β subunits) which at its tail associates with a short
actin filament belonging to a junctional complex, and at its
head with another spectrin dimer to form a spectrin tetramer
(Ipsaro et al. 2010). The junctional complexes can be con-
sidered to be network nodes and the spectrin tetramers the
bonds connecting the nodes. Under resting conditions, spec-
trin tetramers have an end-to-end distance of approximately
70 nm and are thus much shorter than when extended to their
full contour length of about 200nm. The number of bonds
emanating from each node varies from five to seven but is
typically six (Liu et al. 1987). In addition to having different
numbers of spectrin tetramers at different nodes, irregular-
ities in the network include spectrin dimers that may stay
unconnected or associate with other oligomeric structures
such as hexamers. RBC skeleton is linked to the bilayer via
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integral proteins at junctional complexes and via ankyrin near
the middle of the tetramer (Grey et al. 2012).

The tri-layer structure formedby the two layers of theRBC
bilayer and its membrane skeleton is the main determinant
of the RBC response to mechanical deformations. All three
layers are two-dimensional entities freely able to slide one by
the other, the skeleton because of the freedom of the integral
membrane proteins to move laterally within the plane of the
bilayer. Each layer thus relaxes its elastic strainswithin its lat-
eral direction independently of the other two layers, with the
exception that the layers are in contact and therefore must
have a common shape and interrelated total areas (Svetina
and Žekš 1992). The RBC bilayer and the skeleton respond
to deformation in markedly different ways. The area com-
pressibility moduli of the two leaflets of the bilayer are much
larger than that of the skeleton so that the area of the RBC
membrane corresponds to the area of its bilayer. The mem-
brane bending resistance of the bilayer is also much greater
than that of the skeleton and includes both local, intrinsic
resistance to curvature change as well as a global coupling
(area difference elasticity) between the two leaflets (Svetina
and Žekš 2014). The bilayer exhibits no shear elastic resis-
tance, and its behavior in surface shear is well characterized
as that of a two-dimensional liquid. In contrast, the mechan-
ical contribution of the skeleton is manifested principally in
its resistance to in-plane shear deformation. These macro-
scopic features of the RBC membrane are well incorporated
into the model introduced by Mukhopadhyay et al. (2002).

There remain several reasons that the calculations of the
total energy of the deformed skeleton and its lateral redis-
tribution remain a challenge. When a RBC is deformed, the
acquired state of the skeleton is governed by two important
constraints: The topological connectedness of the network
elements must be preserved while maintaining the total area
of the membrane defined by the area of the bilayer. Within
these constraints, skeleton responds by changing both the
position of its structural elements relative to their original
position on the cell surface and their deformation. Under-
standing the relationship between the skeletal energy and
the skeletal state after an imposed deformation has been the
subject of numerous published reports over the past several
decades. In one common approach, the skeleton elastic prop-
erties are described on the basis of assumed constitutive rela-
tions defined at the level of an elastic continuum(for example,
Waugh and Evans 1979; Skalak et al. 1973; Mohandas and
Evans 1994;Mukhopadhyay et al. 2002;Kuzman et al. 2004).
The different versions of constitutive relations presented in
the literature typically describe small deformations equally
well, but differ in describing the behavior of the system at
relatively large deformations (Dimitrakopoulos 2012). Alter-
natively, skeletal energies have been estimated based on
molecular-level models of the spectrin network either using
simple elastic springs (Hansen et al. 1996) or a worm-like

chain potential (Discher et al. 1998; Li et al. 2005). Given
understanding that the macroscopic behavior of the cell is
ultimately rooted in the interactions and properties of the con-
stituent molecules of the skeleton (An and Mohandas 2008),
this approach has significant appeal, although the computa-
tional complexity of suchmolecular-scale calculations limits
the applicability and accessibility of these approaches.

In this study, we propose a theoretical approach that is
based on the characteristics of the principal constituentmole-
cules of the skeleton (spectrin), but which is expressed in
terms of macroscopic continuum variables: the principal
extension ratios of the deformation. We derive strain energy
descriptions for an underlying molecular potential of simple
linear springs and then apply this energy function to sim-
ple, well-defined changes in surface shape to gain insights
into the underlying mechanisms that determine the balance
between local changes in skeletal density and the elastic shear
energy of the deformed network. In the first part of the paper,
we shall describe the method for the determination of lateral
distribution of spectrin bonds and the increase in the skeleton
energy for axisymmetric shape transformations. As an exam-
ple, we analyze a deformation of an annulus of membrane
into a cylinder before proceeding to compare the predicted
behavior of model calculations with measurements of cell
projections formed by micropipette aspiration.

2 Spectrin bond approximation of the
deformational energy of the RBC membrane
skeleton

Our determination of the energy of a deformed RBC skeleton
structural element is based on the assumption that the main
contribution to the energy comes from the compression or
extension of spectrin tetramers. Thus, the first step in our
analysis is to define the molecular energy as a function of its
extension, and to relate this energy to measures of macro-
scopic deformation, namely the principal extension ratios of
the surface deformation. Our treatment of spectrin bonds as
simple elastic springs (Hansen et al. 1996, 1997) is clearly
a simplification in light of evidence that spectrin tetramers
exhibit a complex length–strain relationship and that their
extensional behavior may be complicated by strain induced
unfolding of subunits within the larger molecule (Rief et al.
1999; Randles et al. 2007). Nevertheless, this simple poten-
tial represents the small deformation limit for more complex
molecular potentials and should capture the behavior of any
network model for small to moderate deformations. We fur-
ther assume that the deformation of a given bond is not
correlated with the deformation of the neighboring bonds,
that is, we neglect effects that may arise from the connectiv-
ity within the network, and treat the system as a collection
of randomly oriented molecules. The advantage of this sim-
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plification is that an analytical expression for the energy in
terms of the principal extension ratios of the deformation
can be obtained, and this allows the direct determination of
the average bond energy for any macroscopic deformation of
the membrane expressed in terms of the principal extension
ratios. The method will be illustrated by a change of skeleton
geometry from an annulus to a cylinder such as occurs in the
problem of micropipette aspiration of the RBC membrane.

2.1 Average energy of the deformed spectrin bond

With the goal of developing the simplest possible molecular-
based model for the RBC skeleton, the main contribution to
its elastic energy is assumed to come from the elastic energy
of network bonds behaving as Hookean springs. The energy
of a given bond is then given (Hansen et al. 1996) by

Wbond = K

2
(X − X0)

2 (1)

with K the elastic spring constant, X0 the equilibrium length
of the bond, and X the length of stretched or compressed
bond.

It is assumed that in the resting state the length of all
bonds is X0. Skeleton deformation is defined by two exten-
sion ratios, λ1 and λ2, such that a rectangle a1 × a2 deforms
into a rectangle λ1a1×λ2a2. In accordwith this deformation,
the length of the spring changes as a function of the original
bond orientation defined by angle ϕ (Fig. 1). The acquired
bond length is then

X = X0

√
λ21 cos2ϕ + λ22 sin2ϕ (2)

For a given deformation defined by the extension ratios
λ1 and λ2, it is possible to determine the average of deforma-
tional energy of a single bondwhere the average is calculated
over all surface orientations of the undeformed bond.Assum-
ing that the bonds in the undeformed state are oriented in all
directionswith the equal probability, the average bond energy
can be expressed as

W bond = K X2
0

2
u (λ1, λ2) (3)

Fig. 1 Deformation of rectangle a1 ×a2 into λ1a1 ×λ2a2. At original
bond orientation ϕ, the bond acquires the length given by Eq. 2

Fig. 2 The dependence of the reduced strain energy function u(λ1, λ2)

(Eq. 5) on the extension ratios λ1 and λ2. The lines of constant reduced
strain energy are presented in a two-dimensional representation. Thin
lines are separated by 0.1 and bold lines by 0.5

where u(λ1, λ2) is the average of the square of the relative
deviation of the bond length from its equilibrium value

u (λ1, λ2) =
(

X

X0
− 1

)2

= 2

π

∫ π
2

0

(√
λ21 cos

2 ϕ + λ22 sin
2 ϕ − 1

)2

dϕ

(4)

The integration over all bond orientations gives

u (λ1, λ2) = 1 + λ21 + λ22

2
− 4

π
λ1E

(
1 − λ22

λ21

)
, λ1 > λ2

(5)

where E is the complete elliptic integral of the second kind.
The expression (5) is written for λ1 > λ2. For λ2 > λ1, the
expression is analogous with the exchanged extension ratios
λ1 and λ2.

The function u(λ1, λ2) (Eq. 5) can be considered as the
reduced strain energy. Its dependence on the extension ratios
λ1 and λ2 is shown in Fig. 2 in its two-dimensional repre-
sentation where the dependence of the deformational energy
on the extension ratios is represented by the lines of constant
energy.

2.2 The deformational energy of the whole skeleton

Assuming that in the resting state the spectrin bonds are dis-
tributed uniformly, the area density of the skeleton energy w

can be expressed:

w (λ1, λ2) = n0K X2
0

2
u (λ1, λ2) (6)
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where n0 is the area density of bonds of the undeformed
skeleton. The total skeleton energy is then the integral of
its energy area density (energy per unit area) over the unde-
formed membrane area. In the following, this integral will
be determined only for axisymmetric shapes. Therefore, we
shall define extension ratios for this geometry, i.e., along the
meridians λm = λ1 and along the parallels λp = λ2. The
skeleton energy is then

Wsk = n0K X2
0

2

∫
u

(
λm, λp

)
dA0 (7)

where dA0 is the differential area of the undeformed mem-
brane.

The strain energy functions such as the one presented in
Fig. 2 are alternative to the use of constitutive relations. It
is straightforward to define constitutive relationships that are
consistent with the strain energy function given by Eq. 6. The
principal force resultants τ1 and τ2 can be expressed as:

τ1 = 1

λ2

∂w

∂λ1
= n0K X2

0

2

[
λ1

λ2
− 4

π

λ2(
λ21 − λ22

)

×
(

λ21

λ22
E

(
1 − λ22

λ21

)
− K

(
1 − λ22

λ21

))]
(8)

τ2 = 1

λ1

∂w

∂λ2
= n0K X2

0

2

[
λ2

λ1
+ 4

π

λ2(
λ21 − λ22

)

×
(
E

(
1 − λ22

λ21

)
− K

(
1 − λ22

λ21

))]
(9)

where E(x) is the complete elliptic integral of the second
kind and K (x) is the complete elliptic integral of the first
kind (not to be confusedwith themolecular spring constant!).
Note that as was the case with u(λ1, λ2), expressions are
written for λ1 > λ2, and when this condition is not met, the
respective indices must be interchanged.

2.3 The variational procedure to determine the
redistribution of membrane skeleton in the case
of axisymmetric deformation

We are looking for the skeleton deformation that corresponds
to the minimum of the skeleton energy (Eq. 7). The unde-
formed shape of the axisymmetric skeleton is given by the
contour r0(s0) where s0 is the arc length on the contour mea-
sured from one of the poles and r0 is the distance from the
axis. The deformed contour is defined by the function r(s)
where s and r have corresponding meanings. The skeleton
at the position s0 moves to the unknown position s on the
deformed shape. We define the mapping function s0(s) that
relates the location of the point at s in the deformed state to its
position in the undeformed surface s0. Then it is possible to

define principal deformations along parallels and meridians,
respectively, as

λp = r (s)

r0 (s0)
(10)

and

λm = (
s′
0

)−1 =
(
ds0
ds

)−1

(11)

Replacing the area differential dA0 = 2πr0ds0, the total
change of the skeleton energy (Eq. 7) for the axisymmetric
case then reads

Wsk = πn0K X2
0

∫
u

(
λm, λp

)
r0ds0 (12)

Our task is to find the mapping function s0(s) for which
the total energy Wsk will be minimal. Because our variable
is s, we shall look for the minimum of the functional

F =
∫

ζ
(
s, s0, s

′
0

)
ds (13)

where

ζ
(
s, s0, s

′
0

) = u
(
λm, λp

)
r0 (s0) s

′
0 (14)

The minimum of F corresponds to the solution of the Euler–
Lagrange equation:

∂ζ

∂s0
− d

ds

∂ζ

∂s′
0

= 0 (15)

By expressing the partial derivatives in Eq. (15) as

∂ζ

∂s0
=

(
−λp

∂u

∂λp
+ u

)
dr0
ds0

s′
0 (16)

and

∂ζ

∂s′
0

= − ∂u

∂λm

r0 (s0)

s′
0

+ ur0 (s0) (17)

we get for the Euler–Lagrange equation

∂2u

∂λm∂λp

1

s′
0

dr

ds
− ∂2u

∂λm∂λp

r

r0

dr0
ds0

− ∂2u

∂λ2m

s′′
0

s′3
0

r0 − ∂u

∂λp

dr

ds
= 0 (18)

Equation 18 is to be solved for a given change of the skeleton
geometry prescribed by the function r(s). Technical details
to solve this equation are given in “Appendix 1”.
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2.4 The effects of geometrical changes on the skeleton
lateral distribution

The applicability of this approach to determining the skele-
ton lateral distribution in its deformed state is illustrated
by deforming a section of skeleton originally in the shape
of an annulus with uniform density into a narrow cylinder
(Fig. 3a). The skeleton responds to this deformation by redis-
tributing so that the increase in its elastic energy is minimal.
To illustrate how an imposed change in shape affects the
local energy density of the skeleton, we calculated the dis-
tribution of energy density for three different annuli being
deformed into a cylinder. The distributions were obtained by
minimization of Eq. 7 and are illustrated in Fig. 3b, where
three curves showing the variation in the reduced energy
with position s are superimposed on a contour diagram of
the reduced strain energy function u(λm, λp) as a function
of the extension ratios λm and λp. In Fig. 3c, we show the
corresponding extension ratios λm and λp, and the reduced
bond area density (1/λmλp) as functions of the coordinate
distance s from the edge of the cylinder. The formation of
the cylinder requires material elements originally near the
outer edge of the annulus to move the greatest distance from
their original location on the planar surface toward the axis
of symmetry, leading to large compressions along the sur-
face parallels and the lowest values of the extension ratio λp.
(See Eq. 10.) This also results in an increase in the skeleton
density, but by a proportion less than the proportional change
in λp because compression along the parallels is accompa-
nied by the extension along the meridians. It is interesting to
note that the predicted distribution of density depends only
on the function u(λ1, λ2) and so is independent of the elastic
moduli of the material.

3 Aspiration of RBC into a micropipette with a
small attraction energy between the membrane
and the wall of the pipette

The proposed approach to calculating the energy of the
deformed spectrin skeleton can be readily applied to the
analysis of the experiment in which a RBC is aspirated into a
micropipette. The cell shape during this deformation remains
axisymmetric, and the expected extension ratios are signifi-
cantly less than maximal extension of spectrin tetramer and
thus remainwithin the region of applicability of the harmonic
approximation for the spectrin bond. In the experiment, a
micropipette is used with an inside radius of approximately
1.0μm. A small aspiration pressure (
p) is applied to the
surface of the cell, creating a short projection of the cell
membrane into the pipette (Fig. 4). Aspiration of a small
section of the membrane into such a small micropipette does
not appreciably affect the shape of the rest of the cell. The

a

b

c

Fig. 3 Skeleton deformation due to transformation from annulus to
cylinder. a Side view of the deformation. s0 is the contour along the
undeformed skeleton and s the contour along the deformed skeleton.
The radial distance from the axis of symmetry in the undeformed state
is r0 and in the deformed state, r . The areas of the cylinder and the
annulus are equal (5.9μm2). b The variation in the reduced energy of
the deformed skeleton with position, s, is illustrated by the solid curves
overlaid on a contour depiction of the reduced strain energy u(λm , λp)

as a function of the extension ratios λm and λp . The inner radius of the
annulus is taken to be Rp/2 (curve i), Rp (curve ii) and 2Rp (curve iii)
where Rp = 0.56μm. Arrows indicate the direction of increasing arc
length s. c The extension ratios λm (dashed line) and λp (dotted line)
and the reduced bond area density 1/λmλp (solid line) as a function of
arc length s for the case where the initial inner radius of the annulus is
Rp . In keeping with the diagram shown in a, s increases from right to
left.

length of the aspirated projection is measured as a function of
the aspiration pressure (Fig. 5a, experimental points). While
experiments like these have been performed and analyzed
since the earliest days of testing RBCmechanical properties,
there are two subtle aspects of the experimental results that
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Fig. 4 A red blood cell being aspirated into a micropipette. Pipettes
were made by pulling capillary tubing to a point and using a microforge
to produce a flat tip of the desired diameter. The inside diameter was
measured using a calibration needle inserted into the tip. The maxi-
mum insertion depth was measured, and the corresponding diameter
(1.70μm) was determined from electron micrograph images of the
probe. Pressure was applied to the surface of the cell by using amicrom-
eter to adjust the height of a water manometer relative to zero pressure,
which was determined by observing the movement of small particles
within the empty pipette lumen. For a typical measurement series, the
cell was aspirated near the dimple region of the biconcave disk (a–f).
Suction was increased stepwise to a maximum of approximately 30Pa
and then decreased stepwise to a minimum pressure of approximately
7.4Pa. Images were recorded on videotape, and frames were captured
subsequently for data analysis. At each pressure step, the length of the
projection was measured. Six example images are shown for an indi-
vidual cell at different pressures: a–c increasing pressures of 12.3, 19.6
and 29.4Pa; d–f decreasing pressures of 19.6, 12.3 and 7.3Pa. Obser-
vation of the transition from the cell membrane contacting the front
face of the pipette to contacting the interior of the pipette cylinder is
more easily seen when a cell is aspirated on edge (g, h). This transition
(for this particular experiment) typically took place between aspiration
pressures of 7.3 and 12.3Pa. The pressure in g (pre-transition) is 9.8Pa,
and in h (post transition) is 14.7Pa. Scale bar (c) is 2.0μm

a

b

Fig. 5 aAspiration length of the RBC (Lp/Rp) as a function of pipette
aspiration pressure (
pRp) for the pipette radius Rp = 0.85μm. Points
are average values of the measured projection length at each pressure
taken from nine or ten different cells, and error bars indicate the stan-
dard deviation. Each different color corresponds to a different day of
experiments. For the black data points, the pipette diameter was 1.7μm,
and for the red and blue data points, the pipette diameter was 1.1μm.
The lines show corresponding theoretical predictions. Dotted line rep-
resents aspiration of the RBC without forming a cylindrical part inside
the pipette (Lc = 0). Dashed line represents the equilibrium aspira-
tion lengths versus the aspiration pressure obtained by Eq. 22 with
no adhesion (σeff = 0). The thick black line presents a rough visual
fit to the data for the larger pipette, and the red curve is a visual fit
to the red data points from a smaller pipette. Parameters for the solid
black line are K = 30μN/m and σeff = −0.277, and for the red
curve, K = 30μN/m and σeff = −0.225. b Free energy G of the
aspirated RBC (Eq. 19) as a function of the aspiration pressure. Dot-
ted lines represent the energy of the RBC without a cylindrical section
inside the pipette (Lc = 0), the upper for σeff = 0 and the lower for
σeff = −0.277, i.e., the value at which the Lc = 0 curve was found
to cross the curve with Lc �= 0. Dashed line presents the energy for
Lc > 0 and the adhesion constant σeff = 0. Full line presents energy
that corresponds to the solid black line in (a)

we will attempt to address here. First, we note that a line
drawn through projection length values measured at differ-
ent aspiration pressures extrapolates to an intercept at zero
aspiration pressure at an unexpectedly high positive value of
the projection length (Fig. 5a). Second, at very small aspira-
tion pressures, the shape of the projection differs from what
is observed at larger pressures. It appears that for the low-
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est pressures, the membrane aligns along the flat surface of
the pipette tip, forming a Gaussian-like shape at the opening
of the pipette, whereas at higher pressures, the membrane
aligns with the inner wall of the pipette, forming a longer
projection with less curvature at the tip. (See Fig. 4 and sup-
plemental movie.) This latter observation could reflect the
existence of an attractive force between the membrane and
the micropipette wall. The effect such a force might have on
the behavior of the aspirated membrane will be explored in
our analysis.

To estimate the RBC skeleton deformational energy as a
function of the aspirated projection length and determine the
dependence of the projection length on the aspiration pres-
sure, we model the aspiration process as the deformation
of a planar disk with an area equal to the area of the RBC
membrane into a shape comprising an annulus, a cylinder of
length Lc and a section of a spherical cap (not a complete
hemisphere) with a meniscus height h (Fig. 6a). The length
of the aspirated projection is thus Lp = Lc + h. The total
area of the deformed skeleton geometry is kept constant. The
lateral distribution of the principal extension ratios and the
surface density of the skeleton were determined as described
in the previous section. For the two representative examples
presented in Fig. 6a, the variation in the reduced energy with
position on the deformed surface s is mapped in overlay on
the reduced energy diagram (Fig. 6b). In Fig. 7, the corre-
sponding (total) skeleton energy (Wsk) is plotted as a function
of Lc and h, which can vary independently.

Model predictions for the equilibrium configuration of the
system can be obtained by considering the deformational
energy of the skeleton, thework due to the aspiration pressure
and the energy of the membrane—micropipette interaction.
The corresponding free energy (G) can then be expressed as

G = Wsk − 
pV + σ Ai (19)

where V is the volume of the aspirated part of the membrane,
σ the membrane–micropipette interaction constant, and Ai

the area of the membrane–micropipette contact.
The equilibrium of this system is obtained by requiring

δG = 0. For the case inwhich the area of interaction between
the micropipette and the cylindrical portion of the membrane
takes the form Ai = 2πRpLc, we obtain

∂Wsk

∂Lc
δLc + ∂Wsk

∂h
δh − 
p

∂V

∂Lc
δLc

+ σ2πRpδLc − 
p
∂V

∂h
δh = 0 (20)

Equation 20 is satisfied by the conditions

∂Wsk

∂Lc
− 
p

∂V

∂Lc
+ σ2πRp = 0 (21)

a

b

c

Fig. 6 Skeleton deformation in the aspiration into micropipette. a Side
view of the deformation of RBC membrane by a micropipette with the
radius Rp = 0.56μm. Before the deformation, the RBC membrane is
approximated by a flat disk (left side). Two deformations are consid-
ered (right side). In the first case, an inner circle of the flat disk deforms
into a spherical cap with the height h/Rp = 0.19 (I) and its remaining
annulus partly into a cylinder of the length Lc/Rp = 0.78 (II) and a
smaller annulus (III). In the second case, the flat disk deforms into a
spherical cap with the height h/Rp = 0.70 (I) and its remaining annu-
lus into a smaller annulus (III). The total area of the deformed skeleton
is equal to the undeformed area. In both cases, Lp is the length of the
projection in the pipette. Definitions of s0, s, r0 and r are as given in the
caption of Fig. 3. b Presentation of the first (red) and the second (black)
skeleton deformation in the diagram of the reduced strain energy func-
tion u(λm, λp). Arrows indicate the direction of increasing arc length
s. c The extension ratios λm (dashed lines) and λp (dotted lines) and
the reduced bond area density 1/λmλp (solid lines) as functions of the
arc length (distance from the pole) s for the first (red/thin line) and the
second (black/thick line) cases shown in a
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and

∂Wsk

∂h
− 
p

∂V

∂h
= 0 (22)

Using the fact that volume of the aspirated part of the cell is
πR2

pL + πh(3R2
p + h2)/6 , Eqs. 21 and 22 become

∂Wsk

∂Lc
+ σ2πRp = 
pπR2

p (23)

and

∂Wsk

∂h
= 
p

π

2

(
R2
p + h2

)
(24)

Elimination of
p from Eqs. 23 and 24 gives the relationship

∂Wsk

∂Lc
+ σ2πRp = ∂Wsk

∂h

2R2
p

R2
p + h2

(25)

To calculate the dependence of h on Lc for any given equi-
librium configuration, it is convenient to write this equation
in a reduced form:

1

R2
p

∂
∮
udA0

∂
(
Lc/Rp

) + 2πσe f f = 2

R2
p + h2

∂
∮
udA0

∂
(
h/Rp

) (26)

where an effective interaction constant was defined as σeff =
2σ/n0K L2

0. In Fig. 7 are shown examples of the correspond-
ing relationships for some positive (repulsive) and negative
(attractive) values of this constant. For repulsive interactions
or for very small attractive forces (0.010 > σeff > −0.0074),
these curves begin at Lc = 0 and have initial values of h/Rp

larger than 0.35. When the adhesive interaction becomes

larger in magnitude (σeff < −0.0074), the attraction is suffi-
cient to pull the membrane into the pipette lumen, resulting
in a finite initial projection length. The attractive interaction
that provides the closest agreement with measurement varies
depending on the experiment. For the two example fits shown
in Fig. 5a, σeff = −0.225 (lower curve) and σeff = −0.277
(top curve). It should be kept in mind, however, that there is
significant uncertainty in this value because of practical lim-
itations of determining the exact location of the pipette tip
and the consequent uncertainty in knowing the exact value
of the projection length.

To obtain predictions for Lp as a function of 
p, we note
that the value of 
p that corresponds to a given equilib-
rium point in Fig. 7 can be obtained either from Eqs. 21 or
22. We can also determine Lp(
p) for the case Lc = 0,
that is, for the lowest pressures where the membrane aligns
with the flat end of the pipette and the contact area is given
by Ai = π(R2

p,out − R2
p) where Rp,out is the outside radius

of the pipette tip. In this case Lp = h. The corresponding
pressure difference is given by Eq. 22. The predictions for
Lp(
p) are shown in Fig. 5a for the regime where Lc = 0
(dotted line), and for the cases of nonzero h and Lc with either
no (dashed line) or finite (full line) membrane–micropipette
interaction energy. We note that depending on the magni-
tude of the effective interaction constant σeff , one of the two
qualitatively different behaviors is predicted. When σeff is
within the interval −0.0074 < σeff < 0.0101, the aspiration
process is continuous: As the aspiration pressure increases
from zero, a cell is first sucked into the micropipette without
touching the inner wall, and after a certain critical aspiration
pressure is reached, the membrane contacts the inner wall
forming a cylindrical section. As shown in Fig. 5b (dotted
and dashed curves), the free energies for these two stages

Fig. 7 The reduced skeleton
strain energy

∫
udA0/R2

p (see
Eq. 7) of the aspirated RBC as a
function of the relative cylinder
length (Lc/Rp) and relative
meniscus height (h/Rp). Gray
lines connect points with the
same reduced strain energy in
increments of 0.2. Curves
corresponding to reduced
energies of 1.0 and 2.0 are
labeled. Dotted lines below∫
udA0/R2

p = 0.1 are separated
by 0.02. Black lines represent
the dependence of h/Rp on
Lc/Rp for the equilibrium
shapes obtained by solving
Eq. (26) for the effective
adhesion constants (from top
down) σeff = 0.010, 0.0,
−0.0074,−0.087 and − 0.225
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form a single smoothly varying curve, indicating that this
transition is continuous. For more negative σeff , however, the
transition is discontinuous (Fig. 5b, dotted and solid curves).
In this case, the favorable interaction energy between the
RBC membrane and the flat face of the micropipette shifts
the curve for Lc = 0 to lower values of the energy. The
discontinuous transition from Lc = 0 to Lc �= 0 occurs
when the two energy curves cross each other. This behav-
ior is in fact observed experimentally. (See supplemental
movie.)

To obtain the value of the spring constant K that corre-
sponds to the measured Lp(
p) values presented in Fig. 5a,
we first need to estimate the number of bonds per square area
of undeformed membrane. By assuming a triangulated net-
work, we obtain n0 = 2

√
3/L2

0. The energy density (Eq. 6)
is then

√
3Ku. Experimental measurements of the length of

the aspirated projection as a function of the aspiration pres-
sure (Fig. 5a, red curve and points) are well fit by taking
K = 30μN/m and σ = −0.13

√
3K = −6.8μN/m. In

accordance with the observed projection lengths, the adhe-
sion constant is in the regime of discontinuous transitions
from the aspiration at Lc = 0 to the case in which h and Lc

are both changing. From the obtained negative energy at zero
aspiration pressure −6.3 aJ and the value σ = −6.8μN/m,
we estimate the area of the cut edge of the pipette to be
0.93μm2. With the inner pipette radius 0.56μm, we get for
the outside pipette radius Rp,out = 0.78μm. For the black
curve and data points in Fig. 5a, similar values are obtained:
K = 30μN/m and σ = −0.16

√
3K = −8.3μN/m. In this

case, the pipette radius is 0.85μm, and the estimated outer
radius of the pipette is 1.19μm.

4 Discussion

After it is released from a strain of a reasonably low magni-
tude and short duration, an RBC returns into its undeformed
state. Such elastic behavior is entirely the consequence of
the mechanical properties of its membrane. There is a long-
standing quest to properly describe these properties (Evans
1973; Skalak et al. 1973; Zarda et al. 1977; Stokke et al.
1986;Markin andKozlov 1988;Hochmuth andWaugh 1987;
Mohandas and Evans 1994; Discher et al. 1998; Li et al.
2005; Mukhopadhyay et al. 2002; Lim et al. 2002; Kuzman
et al. 2004; Pivkin and Karniadakis 2008; Zhu and Asaro
2008; Fedosov et al. 2010; Peng et al. 2010; Hartmann 2010;
Li et al. 2013; Chen and Boyle 2014). Understanding that
the membrane bilayer constrains the surface area of the cell
to be constant inspired early formulations involving a two-
dimensional, locally incompressible skeleton. This condition
is attractive from a practical point of view because it cap-
tures many of the qualitative behaviors of the membrane and
it vastly simplifies analysis of deformation. Consequently,

it has persisted even in recent analyses (Dimitrakopoulos
2012). Elegant experiments by Discher and colleagues have
demonstrated, however, that the distribution of the skeleton in
deformed cells is not uniform (Discher et al. 1994; Discher
and Mohandas 1996). Therefore, accounting for the local
changes in skeletal density is critical for accurately model-
ing the mechanical response of the cell membrane (Stokke
et al. 1986; Markin and Kozlov 1988; Mukhopadhyay et al.
2002; Lim et al. 2002; Kuzman et al. 2004; Li et al. 2013).
There have also been efforts to construct models based on
an understanding of the molecular composition of the mem-
brane skeleton (Hansen et al. 1996; Discher et al. 1998; Dao
et al. 2006). All of these models to varying degrees replicate
some aspects of cellular behavior, but in the worst cases, this
agreement is confined to a particular experiment, or themodel
has no connection to experiment at all, and in other cases,
the models may provide agreement across multiple experi-
mental approaches, but are so computationally intensive that
connections between molecular behavior and macroscopic
thermodynamic observables are obscure.

We have undertaken the current analysis to derive macro-
scopic relationships from consideration of molecular-level
behavior to obtain insights into the mechanisms that gov-
ern basic membrane behavior. In doing so, we made several
simplifications, and it is important to consider the limits
of applicability of these assumptions. Consistent with other
molecular approaches, we assumed that the skeleton network
elastic properties arise primarily from the elastic properties
of spectrin molecules. In a departure from prior models,
however, we neglect the connectivity of the network and
the resulting interdependence of molecular deformation on
the deformation of neighboring molecules. Rather, we take
the point of view that the molecular deformations are affine,
that is, that molecular deformations follow the deformation
of a local material element. This enabled us to obtain an
analytic expression for the energy of the system in terms
of the principal extension ratios of the deformation, some-
thing that is not generally possible with models based on
discrete molecular networks. In defense of this viewpoint,
we note that the actual spectrin network is not a perfectly
regular hexagonal lattice, but may deviate from such a model
because of different numbers of spectrin tetramers joined at
junctional complexes or the formation of higher-order spec-
trin oligomers in the intervening space. Thus, we believe
that treating the orientation of the spectrin molecules as ran-
domly oriented is a reasonable simplification of the actual
network.

Our next simplification was to treat the energy of the
spectrin molecules as simple harmonic springs. We note
that this approximates any molecular potential for “small”
extensions. To assess how small is small, we compare the
harmonic potential and the commonly used worm-like chain
potential used by Discher et al. (1998) and by Dao et al.
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Fig. 8 Comparison between the dependence of effective elastic poten-
tial of a spectrin bond on its length X presented for a worm-like chain
potential by Li et al. (2013) (Eq. 1) (dashed curve) and the harmonic
potential exhibiting the same second derivative of the potential at its
minimum (Eq. 1) (solid curve). The constants of the chain term are
taken from Discher et al. (1998) to be X0 = 75 nm, Xmax = 3.17X0,
and the persistence length is b = 0.075X0. The parameter kp obtained
to give the minimum of the potential at X0 is 1.82 10−34 J/m2. Second
derivatives of both potential functions correspond to the spring constant
K = 25.1μN/m

(2006). In extension, the harmonic potential coincides with
the worm-like chain potential up to a ratio X/X0 of 2.0, and
in compression deviation begins to occur around 0.6 (Fig. 8).
The extension ratios encountered in micropipette aspiration
experiments (Fig. 6b, c) fall within the applicability of the
harmonic potential. Significantly, the use of the harmonic
potential reveals that the minimum energy of the system due
to a given change in shape is determined solely through the
function u(λ1, λ2), which is independent of the properties
of the molecular springs. Thus, the distribution of extension
ratios depends only on the nature of the shape change and
is independent of the stiffness or density of the molecular
springs. Inasmuch as this formulation approximates other
molecular potentials for small to moderate extension, this
suggests that this result should be approximately accurate
for a wide range of different molecular models for modest
membrane deformations. That is, the distribution of skeletal
density after deformation dependsmuchmore strongly on the
geometry of the deformation than on the material constants
involved.

Our treatment of deformations approximating micro-
pipette aspiration experiments was also simplified, first by
treating the biconcave shape of the cell as a simple disk
and second by neglecting membrane bending stiffness. The
approximation of the cell surface by a plane was originally
proposed by Evans (1973) and is justified by noting that the
majority of the energy of deformation is concentrated near
the tip of the pipette and falls off rapidly with distance away
from the mouth of the pipette. Although we neglect bend-
ing energy in our calculations, it is likely that the bending
energy plays a role in the initial stages of cell entry into the
micropipette. Specifically, resistance to bending will prevent
the formation of sharp curvatures such as those depicted in

Fig. 6a. If one assumes that themembrane bilayer at the inside
edge of the pipette opening takes on a radius of curvature of
50nm, and knowing the local bending stiffness of the RBC
membrane is∼2.0×10−19 J, we estimate the energy of bend-
ing for a cell aspirated into a pipette with inside diameter of
1.0μm to be ∼8× 10−18 J. This is comparable to the elastic
energy of the skeleton for the formation of a hemispherical
cap (3.3× 10−18 J) but less than the energy required for for-
mation of a projection of length 2Rp(23.4× 10−18 J). Thus,
bending resistance will almost certainly affect the shape of
the initial projection into the pipette, but will become less
important as the projection length increases. This is con-
sistent with the images of very small projections shown in
Fig. 4g, where the shape appears more like a Gaussian than
a spherical section.

Finally, we find that the observed projection lengths into
the pipette are longer than would be expected for an elastic
membrane. This is the case for essentially all of the consti-
tutive models we have examined, including one (R. Waugh,
unpublished) based on the worm-like chain calculations of
Discher et al. (1998) and Li et al. (2005), the original formu-
lation of Evans (1973), the model used by Lim et al. (2002),
the function proposed by Mohandas and Evans (1994) and
one based on a simple harmonic potential (Svetina, Žekš
and Waugh, unpublished). To account for this discrepancy
between theory and experiment, we postulate that there exists
a favorable interaction energy between the RBC membrane
and the pipette wall. This postulate results in new predictions
about the system behavior that match experimental observa-
tion. Note that our estimate of the strength of this interaction
energy depends strongly on measuring the absolute magni-
tude of the projection length. This value is prone to error
because of uncertainty about the exact location of the pipette
tip. In analyzing our data, we took the smallest measurement
of Lp that seems justified for the given images, and so the
magnitude of the energywe estimate should represent a lower
bound for the strength of this interaction.

The model we have proposed is unique in that by spec-
ifying the stiffness of the molecular springs that make up
the skeleton and their density on the surface, the macro-
scopic elastic moduli that correspond to that stiffness can
be readily calculated. The values we obtain for the spectrin
tetramer elastic spring constant (K = 30μN/m) are in good
agreement with the constant obtained by taking the second
derivative of the worm-like chain potential with parameter
values used by Discher et al. (1998) to obtain agreement
between their network model and micropipette aspiration
tests (25μN/m). The value is different from the one calcu-
lated by Hansen et al. (1996), which is based on comparison
between their model predictions and published values of
the membrane shear modulus for an incompressible skele-
ton. This disagreement should not be surprising because the
modulus value they chose was based on an incorrect (incom-
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pressible) description of skeletal elasticity, and there was no
direct comparison between model predictions and experi-
mental observations.

At the continuum level, the elastic properties of the trian-
gular network of springs are described by the area expansivity
(κ) and shear (μ) moduli. In the limit λ1 − 1 � 1 and
λ2 − 1 � 1, they both can be described in terms of the
bond stiffness K . From the number of bonds per square
area obtained by assuming a triangulated network, we have
n0 = 2 × 31/2/L2

0. The energy density is then 31/2Ku. For
λ1 = λ2 = 1, the second derivatives of u for area expan-
sivity and surface shear are 1/2 and 1/4, respectively, so that
κ = 31/2K/2 and μ = 31/2K/4 which yields, by taking
K = 30μN/m, κ = 26μN/m and μ = 13μN/m.

When extension ratios are large, the comparison of the
predictions of the current model and predictions of different
proposed continuous models is not so straightforward. For
the model proposed here, large deformations still depend on
the same single parameter K , whereasmost continuousmod-
els attempt to separate the energy changes due to isotropic
deformation from those due to surface shear, and two differ-
ent elastic constants are defined. For example, a number of
descriptions of red cell membrane elasticity use the quanti-
ties α = λ1λ2−1 (the fractional change in skeletal area) and
β = (λ1 − λ2)

2/2λ1λ2 (a measure of surface shear defor-
mation) as the independent thermodynamic state variables to
define the state of the membrane (Waugh and Evans 1979; Li
et al. 2013). This approach is appealing because it separates
the energy change due to isotropic deformation from that due
to surface shear. In this case, the elastic energy can be written
as (Dimitrakopoulos 2012):

WE =
∮

κ

2
α2dA +

∮
μβdA (27)

In traditional treatments, the elastic moduli κ and μ are con-
stants that characterize the resistance to area expansion at no
shear deformation and the resistance to shear deformation at
constant area, respectively (Waugh and Evans 1979; Hansen
et al. 1996). In terms of the strain energy, these are defined
as:

μ = ∂w

∂β

∣∣∣∣
α

(28)

κ = ∂2w

∂α2

∣∣∣∣
β

(29)

One possible way to compare predictions of the treated
microscopic model with those of the model defined by
Eq. (27) is to see how μ and κ defined by Eqs. (28) and
(29) depend on extension ratios. It is straightforward to cal-
culate these dependences, and the corresponding equations
are presented in “Appendix 2.” The dependence of μ and

Fig. 9 Dependence of the macroscopic elastic constants on the prin-
cipal extension ratios. a The shear modulus as a function of extension
ratios λ1 and λ2. Each line/color change corresponds to an increase
in 10μN/m. Note that values of the modulus in the white portion of
the graph are negative. b The area expansivity modulus as a function
of extension ratios λ1 and λ2. In contrast to the shear modulus, the
area modulus increases under compression, whereas the shear modulus
increases with extension. Contour lines/color changes indicate changes
of 10μN/m

κ on λ1 and λ2 is shown in Fig. 9. It can be seen that
in a more extended skeleton, the shear modulus increases,
while the area expansivity modulus decreases. For example,
at λ1 = λ2 = 1.5, κ = 7.7μN/m and μ = 58.5μN/m
which is considerably different from the corresponding val-
ues at small extensions given above. This behavior was also
recognized by Hansen et al. (1996) who presented the depen-
dence of the shear modulus on one of the extension ratios.

When comparing the predictions of the proposed micro-
scopic model and the continuous approach defined by
Eq. (27), it is also of interest to compare the correspond-
ing analyses of the aspiration of a RBC into a micropipette.
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Fig. 10 Functional relationship for values of the coefficients κ and μ

that provide a match to experimental measurements of the projection
length as a function of pressure in micropipette aspiration experiments

By replacing in Eq. (19) Wsk by WE defined by Eq. (27),
and applying the same subsequent procedure as there, it is
possible to find different combinations of the moduli μ and
κ which give a satisfactory fit of the observed dependence of
Lp/Rp on Rp
p (Fig. 5). These combinations are presented
in Fig. 10. It is clear that from the micropipette aspiration
experiment alone, it would not be possible to obtain the val-
ues of the constantsμ andκ appearing inEq. (27).However, it
is satisfactory to note that if the spring network model which
predicts that κ = 2μ gives μ ∼ 13μN/m, the apparent
shear modulus obtained by assuming local inextensibility of
the RBCmembrane (κ = ∞) isμm ∼ 8.5μN/mwhich is of
the order of the value of the apparent modulus obtained from
micropipette studies (6.6 ± 1.2μN/m) (Waugh and Evans
1979).

5 Conclusions

We have developed a novel formulation to describe the elas-
ticity of the RBC membrane skeleton based on the idea that
the macroscopic properties of the membrane can be derived
from a collection of randomly oriented Hookean springs.
The simplicity of our approach has enabled us to derive
closed-form expressions for the elastic energy of the sur-
face, the membrane force resultants and elastic moduli in
terms of the principal extension ratios of the deformation.
Moreover, we show that for this form, the distribution of
molecular densities in the deformed state is independent of
spring stiffness.While the actual force versus length relation-
ship for spectrin molecules is almost certainly more complex
(Rief et al. 1999; Law et al. 2003; Paramore and Voth 2006),
the behavior of simple harmonic springs approximates all of
the more complex molecular models for small deformations
and in fact matches the expected worm-like chain behav-

ior over a fairly wide range. This is significant, because it
suggests that our conclusions regarding the independence of
skeletal density distribution from molecular stiffness should
be approximately correct even for more realistic molecular
potentials. Clearly, our simple approach is likely not applica-
ble for very large deformations, as it is expected that the
resistance of spectrin molecules to extension should increase
sharply as its end-to-end distance approaches its maximum
contour length. How this will affect membrane behavior at
large extensions and whether unfolding of spectrin domains
might limit worm-like chain effects must await further inves-
tigation.
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Appendix 1: Description of the numerical
procedure

Equation 18 is a differential equation of second order, and
we translate it to a system of two differential equations of
first order:

ds0
ds

= 1

λm

dλm

ds
=

(
r0

∂2u

∂λ2m

)−1 [
∂2u

∂λm∂λp

(
1

λm

r

r0

dr0
ds0

− dr

ds

)

+ 1

λm

(
∂u

∂λp

dr

ds
− ∂u

∂λm

dr0
ds0

)] (30)

The undeformed RBC area is a disk with radius RIII =
(A0/4π)1/2 and is divided into three sections, each corre-
sponding to a different region of the deformed membrane:
cap, cylinder and annulus. Because each section has a differ-
ent contour function s(r), the corresponding deformations
are obtained from different versions of Eq. 30 subject to the
constraints that s and s0 must be continuous across bound-
aries from the beginning of Sect. 1 to the end of Sect. 3
(Fig. 6a).

The contour functions in case of deformation from a flat
disk to a spherical cap are:

r = R sin
s

R
r0 = s0 (31)

where R is the radius of the spherical cap and can be deter-
mined from the meniscus height h and the pipette radius Rp

R = h2 + R2
p

2h
(32)
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For the cylindrical section, the contour functions are:

r = Rp

r0 = s0 (33)

and for deformation from a larger to a smaller annulus, the
relationships are:

r = s − sp + Rp

r0 = s0 (34)

where sp is the length of the contour within the micropipette.
The mapping function between the shapes s0 (s) is deter-
mined by requiring area preservation and applying the
condition that the extension ratios at the pole are the same
λm = λp. Numerically, we set the value of λm at the pole as
λm = 1/γ and making the first step of integration s0 = γ s.
The value of γ is obtained by iteration to satisfy the require-
ment that the value of s0 at the end of the third sectionmatches
the initial disk radius RIII.

Appendix 2

For our present model, it is straightforward to calculate the
dependence of the continuum moduli κ and μ on extension
ratios:

μ = Kn0X2
0

2

{
λ1λ2 − 4

π

λ21λ
3
2(

λ21 − λ22

)2

×
[(

λ21

λ22
+ 1

)
E

(
1 − λ22

λ21

)
− 2K

(
1 − λ22

λ21

)]}
(35)

κ = Kn0X2
0

2π

1

λ1λ
2
2

E

(
1 − λ22

λ21

)
(36)

forλ1 > λ2, andwith indices interchangedwhen the inequal-
ity is not satisfied. At first, the second term in the expression
forμ appears to be singular forλ1 = λ2, but a careful analysis
of this term reveals the following limit:

lim
λ1→λ2

(μ) = Kn0X2
0

2

(
λ1λ2 − 3λ2

4

)
(37)

From Fig. 9, it is evident that these two coefficients for a
material made up of randomly oriented springs are strongly
dependent ondeformation,with the shearmodulus increasing
dramatically with extension and the area modulus decreas-
ing with expansion. This indicates that such a material would
“prefer” to decrease its local density than stretch when mem-
brane deformations are large. As indicated in the discussion,
experiments involving aspiration of small portions of red

cell membrane into a micropipette, by themselves, do not
enable us to determine whether this behavior is exhibited by
RBC membrane, but future experiments using fluorescence
to image changes in local skeletal density could provide a
test of this prediction.
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