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Abstract We propose a multiscale mechanobiological
model of bone remodelling to investigate the site-specific
evolution of bone volume fraction across the midshaft of
a femur. The model includes hormonal regulation and bio-
chemical coupling of bone cell populations, the influence
of the microstructure on bone turnover rate, and mechan-
ical adaptation of the tissue. Both microscopic and tissue-
scale stress/strain states of the tissue are calculated from
macroscopic loads by a combination of beam theory and
micromechanical homogenisation. This model is applied to
simulate the spatio-temporal evolution of a human midshaft
femur scan subjected to two deregulating circumstances:
(i) osteoporosis and (ii) mechanical disuse. Both simulated
deregulations led to endocortical bone loss, corticalwall thin-
ning and expansion of the medullary cavity, in accordance
with experimental findings. Our model suggests that these
observations are attributable to a large extent to the influ-
ence of the microstructure on bone turnover rate. Mechanical
adaptation is found to help preserve intracortical bonematrix
near the periosteum.Moreover, it leads to non-uniform corti-
calwall thickness due to the asymmetry ofmacroscopic loads
introduced by the bending moment. The effect of mechani-
cal adaptation near the endosteum can be greatly affected by
whether the mechanical stimulus includes stress concentra-
tion effects or not.
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1 Introduction

Bone is a biomaterial with a complex hierarchical struc-
ture characterised by at least three distinct length scales:
(i) the cellular scale (10–20µm); (ii) the tissue scale (2–
5mm); and (iii) the whole organ scale (4–45cm) (Rho et al.
1998; Weiner and Wagner 1998). Several interactions exist
between these scales, which affect bone remodelling, bone
material properties and bone structural integrity. The activ-
ity of bone-resorbing and bone-forming cells during bone
remodelling leads to changes in material properties at the
tissue scale which subsequently affect the distribution of
loads at the structural, whole organ scale (Fig. 1). Besides,
changes in bone shape and microarchitecture modify the
stress/strain distribution and bone surface availability, which
providemechanical and geometrical feedbacks onto the bone
cells and, eventually, affect bone remodelling (Martin 1972;
Lanyon et al. 1982; Frost 1987). Due to the complexity of
these interactions, the interpretation of experimental data at
a single scale is difficult. Predicting the evolution of multi-
factorial bone disorders, such as osteoporosis, necessitates
a comprehensive modelling approach in which these multi-
scale interactions are consistently integrated.

Various mathematical models of bone remodelling have
been proposed in the literature. Biomechanics models esti-
mating tissue-scale stress and strain distributions from mus-
culoskeletal models and average material properties, such
as bone density, are often used in conjunction with remod-
elling algorithms based on Wolff’s law. These remodelling
algorithms locally increase or decrease bone density depend-
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(a)
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Fig. 1 Multiscale representation of bone. a Scheme of the couplings in
the bone remodelling process; b femur bone geometry (organ scale); c
midshaft cross section depicting coordinate axes and the sectional forces

used for beam theory (tissue to organ scales); d representative volume
element (RVE) of cortical bone used to define bone cell densities, bone
volume fraction and specific surface (cellular to tissue scales)

ing on the tissue’s mechanical state (Carter and Hayes 1977;
Carter and Beaupré 2001; Fyhrie and Carter 1986; Weinans
et al. 1992; Van der Meulen et al. 1993; Pettermann et al.
1997). Such models may also include damage accumula-
tion due to fatigue loading and damage repair (Prendergast
and Taylor 1994; McNamara and Prendergast 2007; García-
Aznar et al. 2005). Other models focus at the microstructural
scale (µm to mm) and describe the evolution of trabecu-
lar bone microarchitecture through resorption and formation
events at the bone surface induced by the local mechani-
cal state (Huiskes et al. 2000; Ruimerman et al. 2005; Van
Oers et al. 2008; Christen et al. 2012, 2013). Most of these
mathematical models focus on the biomechanical aspects of
bone remodelling and do not consider hormonal regulation
or biochemical coupling between bone cells.

In this paper, we propose a novel multiscale modelling
approach of bone remodelling combining and extending sev-
eral mathematical models into a consistent framework. This
framework enables (i) the consideration of biochemical and
cellular interactions in bone remodelling at the cellular scale
(Lemaire et al. 2004; Pivonka et al. 2008; Buenzli et al. 2012;
Pivonka et al. 2013), (ii) the evolution of material properties
at the tissue scale based on bone cell remodelling activities
regulated by mechanical feedback (Scheiner et al. 2013) and
bone surface availability (Pivonka et al. 2013; Buenzli et al.
2013), and (iii) the determination of the stress/ strain distrib-
utions from the tissue scale to the microstructural scale by a
combination of generalised beam theory and micromechan-
ical homogenisation (Hellmich et al. 2008; Scheiner et al.
2013; Buenzli et al. 2013).

This modelling approach is applied to simulate the tempo-
ral evolution of a human femoral bone at themidshaft (Fig. 1),
subjected to various deregulating circumstances such as
osteoporosis and changes in mechanical loading. An initial

state of normal bone remodelling is first assumed, in which
the tissue across the midshaft cross section remodels at site-
specific turnover rates without changing its average material
properties. Osteoporosis is then simulated by hormonal
changes deregulating the biochemical coupling between
osteoclasts and osteoblasts. These hormonal changes are cal-
ibrated so as to reproduce realistic rates of osteoporotic bone
loss. The strength of the resorptive and formative responses
of bone cells to mechanical feedback is calibrated so as to
reproduce rates of bone loss and recovery in cosmonauts
undertaking long-duration space flight missions. A scan of a
femur cross section is used as initial condition for our simula-
tions. This illustrates the potential of our modelling approach
to be used as a predictive, patient-specific diagnostic tool for
estimating the deterioration of bone tissues. Here, we use
the model to investigate the interplay between geometrical
and mechanical feedbacks in inducing site-specific bone loss
in osteoporosis, which is characterised by endocortical bone
loss, cortical wall thinning and the expansion of the marrow
cavity (Feik et al. 1997; Bousson et al. 2001; Zebaze et al.
2010).

2 Description of the model

Figures 1 and 2 summarise the general approach of our
model. We consider a portion of human femur near the
midshaft. This portion of bone is assumed to carry loads
corresponding to a total normal force N and total bending
moment M (Fig. 1c). These loads are distributed unevenly
across the midshaft cross section depending on the site-
specific bone microstructure, particularly on the cortical
porosity (Zebaze et al. 2010; Buenzli et al. 2013). This load
distribution determines a site-specific mechanical stimulus
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Fig. 2 Flow chart of bone remodelling simulations taking into account (a) the global mechanical loading, (b) the bone cell population model and
(c) the bone material and geometry adaptation

which is sensed and transduced by bone cells (Fig. 2a).
This mechanical feedback is incorporated in a cell popu-
lation model as biochemical signals leading to changes in
the balance between osteoclasts and osteoblasts (Fig. 2b).
In addition, microstructural parameters such as bone volume
fraction ( fbm) and bone specific surface influence the propen-
sity of bone cells to differentiate and become active (Martin
1984; Lerebours et al. 2015). This geometrical feedback is
included in the cell population model via a dependence of
the bone turnover rate on the bone volume fraction. The
activities of osteoclasts and osteoblasts modify the tissue
microstructural parameters (bone volume fraction, bone spe-
cific surface), which in turn induce changes in the load
distribution (Fig. 2c). In the following, we introduce in more
detail themultiple scales and related variables involved in this
model workflow. Table 1, in the section “Model parameter
values” of theAppendix, lists all the parameters of themodel.

2.1 Load distribution from the organ scale to the
cellular scale

Loading is composed of body weight and muscle forces
exerted onto bone via tendons and direct action of mus-
cles. These forces can be calculated from bone shape, muscle
and tendon attachment, and gait analysis data using muscu-
loskeletal models (Lloyd and Besier 2003; Viceconti et al.
2006; Martelli et al. 2014). Continuum mechanics provides
the link between external forces exerted onto a structure, and
the strain and stress distribution in the structure (Salencon
2001).

Tissue-scale properties within the framework of con-
tinuum mechanics are average mechanical properties over
microstructuralmaterial phases and pores (presented in detail
in the next sections). The corresponding tissue-scale stresses
and strains may significantly deviate from the microscopic,
cellular scale, stresses and strains acting in the differentmate-

rial phases composing the tissue due to so-called strain and
stress concentration effects (Zaoui 2002; Hill 1963). Micro-
scopic stress and strain distributions in the bone matrix are
likely to be sensed directly by bone cells, particularly by
osteocytes (Scheiner et al. 2013). However, as osteocytes
form an extensive interconnected network (Marotti 2000;
Buenzli and Sims 2015), they may also sense larger scale
stress and strain distributions. We will let either the tissue-
scale or themicroscopicmechanical state of bone act onto the
bone cells to investigate how this influences the site-specific
evolution of bone tissue microstructures.

In the following, we present first how stress and strain
distributions can be calculated at the tissue scale using
beam theory. We then present how these tissue-scale stress
and strain distributions are employed as site-specific load-
ing boundary conditions to the continuum micromechanical
model of Hellmich et al. (2008) for the calculation of micro-
scopic stress and strain distributions effective at the cellular
level.

2.1.1 Determination of tissue-scale stress and strain
distributions based on beam theory

The continuum mechanical field equations allow the calcu-
lation of tissue-scale strain and stress distributions in bone.
Given that the length of the femur L is significantly larger
(45–50cm) than its diameter D (3–5cm) at the midshaft
(Fig. 1b), the continuum mechanical field equations can be
approximated using beam theory formulated for small strains
and generalised to materials of non-uniform properties, an
approach we have used previously in Buenzli et al. (2013).

This approach requires the knowledge of the total exter-
nal forces, i.e. the normal force N and the bending moment
M carried by the femur cross section. N and M can be
estimated for different physical activities by using muscu-
loskeletal models (Vaughan et al. 1992; Forner-Cordero et al.
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2006). In our simulations, we take constant values for N
and M comparable with the maximum ground reaction force
and knee and hip moments that occur during a gait analy-
sis, estimated as: N = (Nx , 0, 0), Nx = −700N, and
M = M m̂, M = 50Nm, where m̂ is a unit vector along the
antero-posterior axis of the cross section determined from
the microradiograph (Vaughan et al. 1992; Forner-Cordero
et al. 2006; Ruff 2000; Cordey and Gautier 1999) (Fig. 6c).
The x-axis is the femur’s longitudinal axis, and (y,z) is the
plane transverse to x at the midshaft (Fig. 1b, c).

Tissue-scale mechanical properties correspond to spa-
tial averages over a so-called representative volume element
(RVE) of the tissue. In cortical bone, an appropriate tissue
RVE is of the order of 10 × 2 × 2mm3, a size large enough
to contain a large number of pores, but small enough to retain
site-specific information and to not be influenced by macro-
scopic features such as overall bone shape (Hill 1963; Zaoui
2002). We denote by C

tissue(r, t) the local bone tissue stiff-
ness tensor defined at the RVE scale, where r denotes the
location in bone of the RVE (Fig. 1c), and the dependence on
time t reflects the fact that bone remodelling may modify the
local mechanical properties of the tissue. This tissue-scale
stiffness tensor is assumed to relate the tissue-scale stress
tensor σ tissue and strain tensor εtissue pointwise according to
Hooke’s law:

σ tissue(r, t) = C
tissue(r, t) : εtissue(r, t). (1)

Beam theory is based on the so-called Euler–Bernoulli kine-
matic hypothesis, which asserts that material cross sections
initially normal to the beam’s neutral axis remain planar,
undeformed in their own plane, and normal to the neutral
axis in the beam’s deformed state (Timoshenko and Good-
ier 1951; Bauchau and Craig 2009; Hjelmstad 2005). These
assumptions are expected to bewell satisfied near the femoral
midshaft under small deformations generated by bending and
compression or tension. Furthermore, no shear force, tor-
sional loads or twisting along the beam axis are assumed.
These assumptions, Eq. (1), and the fact that bone is an
orthotropic material (Hellmich et al. 2004) imply that the
only nonzero components of the stress tensor are the normal
stresses σ tissue

xx = C
tissue
1111 εtissuexx , σ tissue

yy = C
tissue
1122 εtissuexx and

σ tissue
zz = C

tissue
1133 εtissuexx , where the normal stresses σ tissue

yy and
σ tissue
zz are induced by compression or tension along the beam

axis x by the Poisson effect1 (see Buenzli et al. 2013 formore
details). The Euler–Bernoulli hypothesis implies that the tis-
sue strain tensor reduces to the single nonzero component
εtissuexx and that:

1 The stress components σ tissue
yy and σ tissue

zz do not participate directly
to the transfer of the resultant force N and resultant bending moment
M across the bone cross section; however, they are accounted for in the
calculation of the tissue-scale strain energy density Ψ tissue.

εtissuexx (y, z, t) = ε1(t) − κ3(t)y + κ2(t)z, (2)

where ε1 is the sectional axial strain, and κ2 and κ3 are the
sectional beam curvatures about the z- and y-axes, respec-
tively (Bauchau and Craig 2009). The three unknowns ε1, κ2
and κ3 are determined by the constraints that (i) the integral
of σ tissue

xx over the midshaft cross section must give the total
normal force Nx , and (ii) the integral of the stress moment
(0, y, z) × σ tissue

xx x̂ must give the total bending moment
M = M m̂ [the axes origin in the (y, z) plane is set at
the modulus-weighted centroid of the section, also called
normal force centre (Bauchau and Craig 2009)]. Explicit for-
mulas for ε1, κ2 and κ3 as functions of Ctissue, N and M are
presented in the section “Generalised Beam theory for inho-
mogeneous materials” of the Appendix. We refer the reader
to Bauchau and Craig (2009), Sect. 6.3 and Buenzli et al.
(2013) for their derivation.

2.1.2 Determination of microscopic stress and strain
distributions based on micromechanical
homogenisation theory

Bone tissue stiffness C
tissue is strongly influenced by the

tissue’s microstructure, in particular its porosity, or equiv-
alently, its bone volume fraction fbm. Bone volume fraction
is a microstructural parameter defined at the tissue scale as
the volume fraction of bone matrix in the RVE (Fig. 1d):
fbm = BV/TV = 1 − porosity, where BV is the volume of
bone matrix in the RVE and TV is the tissue volume, i.e. the
total volume of the RVE (Dempster et al. 2013). In Buen-
zli et al. (2013), we used an explicit power-law relationship
C
tissue
1111 ( fbm) ∝ fbm3 based on experimental relationships

between bone stiffness and bone mineral content (Carter
and Hayes 1977; Hernandez et al. 2001). While regression
approaches based on power-law relations are able to account
formaterial properties in one principal direction, they are less
accurate in estimating material properties in other principal
directions.

Here, we follow a different approach taken by Hellmich
and colleagues using the framework of continuum micro-
mechanics (Hill 1963, 1965; Zaoui 1997, 2002; Hellmich
et al. 2004, 2008; Fritsch and Hellmich 2007; Fritsch et al.
2009). Mechanically, bone tissue can be considered as a two-
phase material: a bone matrix phase (‘bm’) consisting of
mineralised bone matrix, and a vascular phase (‘vas’) con-
sisting of vascular components, cells, extracellular matrix
and other soft tissues present in Haversian canals and in the
marrow.

Continuummicromechanics provides a framework to esti-
mate the tissue-scale stiffness tensor Ctissue( fbm) from the
microscopic stiffness properties of bone matrix and vascular
pores, and considerations regarding pore microarchitecture
and phase interactions (Hellmich et al. 2008). The advantage
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of this approach is to provide (i) accurate three-dimensional
estimates ofCtissue and (ii) estimates of themicroscopic stress
and strain distributions of the bonematrixwithout recourse to
costly microfinite element analyses of the tissue microstruc-
ture (Fritsch et al. 2009). Using the concept of continuum
micromechanics is justified in bone due to the separation
of length scales between the RVE size and the characteristic
sizes of the two-phase microstructures (Hellmich et al. 2008;
Scheiner et al. 2013).We summarise below thepremises upon
which this approach is based.

The tissue-scale stress and strain tensors σ tissue and
εtissue correspond to spatial averages over the RVE of
the microscopic (cellular-scale) stress and strain tensors.
Assuming that each phase within the RVE is homogeneous,
these spatial averages can be expressed as sums over the
phases:

σ tissue(r, t) ≡ 1

TV

∫
TV

σmicrodV =
∑
k

fk σmicro
k , (3)

εtissue(r, t) ≡ 1

TV

∫
TV

εmicrodV =
∑
k

fk εmicro
k , (4)

where fk(r, t) is the volume fraction of phase k (‘bm’, ‘vas’),
σmicro
k (r, t) and εmicro

k (r, t) are the microscopic stress and
strain tensors in phase k. We emphasise that all these quanti-
ties still depend on the tissue-scale location r of the RVE in
bone, while microscopic inhomogeneities are encoded in the
phase index k. It can be shown that due to the linearity of
the constitutive equations, the phase strain tensor εmicro

k is
related linearly with the tissue-scale strain tensor:

εmicro
k = Ak : εtissue, (5)

whereAk is a fourth-order tensor called the strain concentra-
tion tensor (Zaoui 2002; Hellmich et al. 2008; Fritsch et al.
2009). Assuming that Hooke’s law also holds for each phase
at themicroscopic scale, σmicro

k = cmicro
k : εmicro

k (withcmicro
k

the stiffness tensor of phase k), one obtains from Eqs. (3)
and (5):

σ tissue =
∑
k

fk c
micro
k : εmicro

k (6)

=
(∑

k

fk c
micro
k : Ak

)
: εtissue ≡ C

tissue : εtissue,

where

C
tissue = fbm cmicro

bm : Abm + fvas c
micro
vas : Avas. (7)

Equation (7) provides a relationship between the tissue-
scale stiffness, Ctissue, and the microscopic properties of the
phases composing the tissue, fk, cmicro

k and Ak . Because

mineral content across bone tissues only varies little on aver-
age (Scheiner et al. 2013; Fritsch and Hellmich 2007), cmicro

bm
can be assumed constant and homogeneous, i.e. indepen-
dent of r, t . The elastic modulus cmicro

vas is likewise assumed
independent of r, t and taken as that of water (Scheiner
et al. 2013). Both cmicro

bm and cmicro
vas have been measured

experimentally, and their values are listed in Table 1. The
strain concentration tensors Ak can be estimated by solving
so-called matrix-inclusion problems of elasticity homogeni-
sation theory, which use assumptions on phase shape within
the RVE and phase interactions (Eshelby 1957; Laws 1977).
For bone, accurate multi-scale homogenisation schemes
were developed and validated experimentally (Hellmich et al.
2008; Fritsch et al. 2009; Morin and Hellmich 2014). These
schemes provide explicit expressions for Ak depending on
the phase volume fractions fbm and fvas. Because fvas =
1 − fbm, this defines both the fbm dependence of Ctissue via
Eq. (7), and a method to estimate the strains and stresses in
the bone matrix at the microscopic level from those known
at the tissue level:

εmicro
bm (r, t) = Abm( fbm) : εtissue (8)

σmicro
bm (r, t) = cmicro

bm : (
Abm( fbm) : εtissue

)
≡ Bbm( fbm) : σ tissue, (9)

where Hooke’s law, Eq. (1), was used in the last equality in
Eq. (9). The stiffness tensor Ctissue( fbm), the strain concen-
tration tensor Abm( fbm) and the stress concentration tensor
Bbm( fbm) can be evaluated numerically at each location r in
the femur midshaft cross section and each time t based on
the value of fbm(r, t) and the expressions given in Fritsch
and Hellmich (2007) and Scheiner et al. (2013).

Combined with beam theory, this procedure enables us to
completely determine, at each time t , the spatial distribution
across the femur midshaft of (i) the tissue-scale stress and
strain tensors, σ tissue, εtissue; and (ii) the microscopic stress
and strain tensors of bone matrix, σmicro

bm , εmicro
bm .

In this paper, we will consider both the tissue-scale strain
energy density (SED), Ψ tissue, and microscopic SED of the
bone matrix, Ψmicro

bm , as local mechanical quantities sensed
and transduced by bone cells. These SEDs are defined by:

Ψ tissue(r, t) = 1
2ε

tissue : Ctissue : εtissue, (10)

Ψmicro
bm (r, t) = 1

2ε
micro
bm : cmicro

bm : εmicro
bm . (11)

The SEDs defined in Eqs. (10) and (11) will be used to
formulate biomechanical regulation in the bone remodelling
equations. In the literature, biomechanical regulation is com-
monly based on the SED since this quantity is scalar and it
integrates bothmicrostructural state and loading environment
(Fyhrie and Carter 1986; Mullender et al. 1994; Ruimerman
et al. 2005).
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Fig. 3 Schematic representation of the definition of bone turnover pro-
vided by Eq. (13) in cases of balanced remodelling, remodelling with
bone loss and remodelling with bone gain

2.2 Bone tissue remodelling

The tissue is assumed to be remodelled by a population of
active osteoclasts (OCa) and active osteoblasts (OBa). Active
osteoclasts are assumed to resorb bone at rate kres (volume
of bone resorbed per cell per unit time). Active osteoblasts
are assumed to secrete new bone matrix at rate kform (vol-
ume of bone formed per cell per unit time). These cellular
resorption and formation rates are taken to be constant and
uniform. However, the bone volume fraction fbm(r, t) of the
tissue may evolve with site-specific rates depending on the
balance between the populations of active osteoclasts and
active osteoblasts (Martin 1972; Buenzli et al. 2013):

∂
∂t fbm(r, t) = kformOBa − kresOCa. (12)

In Eq. (12), OCa(r, t) and OBa(r, t) denote the average den-
sities of active osteoclasts and active osteoblasts in the tissue
located at r (number of cells in the RVE/TV, Fig. 1d). The
site-specific remodelling rateχBV(r, t) of the tissue at r (also
called turnover rate) can be defined as the volume fraction
of bone in the RVE that is resorbed and refilled in matched
amount per unit time. This corresponds to the minimum of
the volume fraction of bone resorbed per unit time, kresOCa,
and volume fraction of bone formed per unit time, kformOBa
(Parfitt 1983, Sect. II.C.2.c.ii):

χBV(r, t) = min{kresOCa, kformOBa}. (13)

Any imbalance between resorption and formation in Eq. (12)
corresponds to surplus resorption or surplus formation with
respect to the baseline of bone properly turned over in
Eq. (13), as shown in Fig. 3.

Equation (12) enables us to track site-specific modifica-
tions of themidshaft tissuemicrostructure through fbm(r, t),
fromwhich stress and strain distributions across themidshaft
can be estimated at both the tissue scale and the microscopic,
cellular scale, by means of Eqs. (34)–(35) and (8)–(11).

2.3 Bone cell population model

It remains to specify how the populations of active osteo-
clasts OCa(r, t) and active osteoblasts OBa(r, t) evolve in
the RVE located at r under mechanobiological, geometrical
and biochemical regulations. For this, we use a continuum
cell population model based on rate equations, originally
developed by Lemaire et al. (2004), and later refined and
extended by Pivonka and co-workers (Pivonka et al. 2008,
2010; Buenzli et al. 2012; Pivonka et al. 2013; Scheiner et al.
2013; Pivonka et al. 2012).

To highlight important biochemical couplings and regu-
lations in osteoclastogenesis and osteoblastogenesis, several
differentiation stages of osteoclasts and osteoblasts are con-
sidered. These biochemical interactions are mediated by sev-
eral signalling molecules whose binding kinetics are explic-
itly considered in the model, such as transforming growth
factor β (TGFβ), receptor activator of nuclear factor κB
(RANK) and associated ligand RANKL, osteoprotegerin (OPG)
and parathyroid hormone (PTH). The biochemical network of
these couplings and regulations is summarised in Fig. 4.

Active osteoclasts (OCas) denote cells attached to the bone
surface that actively resorb bone matrix. These cells are
assumed to differentiate from a pool of osteoclast precursor
cells (OCps) by the binding of RANKL to the RANK recep-
tor, expressed on OCps, which induces intracellular NFκB

signalling. Osteoclast precursors are assumed to differen-
tiate from a pool of uncommitted osteoclasts progenitors
(OCu), such as haematopoietic stem cells, under the action
of macrophage colony stimulating factor (MCSF) and RANKL

signalling (Roodman 1999; Martin 2004).
Active osteoblasts (OBas) denote cells at the bone sur-

face that actively deposit new bone matrix. These cells are
assumed to differentiate from a pool of osteoblast precur-
sor cells (OBps). This activation is inhibited in the presence
of TGFβ. Osteoblast precursors are assumed to differentiate
from a pool of uncommitted osteoblasts progenitors (OBu),
such as mesenchymal stem cells or bone marrow stromal
cells, upon TGFβ signalling (Roodman 1999).

The rate equations governing the evolution of the tissue-
average cell densities are given by:

∂
∂t OCp(r, t) =DOCu

(
MCSF,RANKL(Ψ, PTH)

)
OCu( fbm)

− DOCp

(
RANKL(Ψ, PTH)

)
OCp, (14)

∂
∂t OCa(r, t) =DOCp

(
RANKL(Ψ, PTH)

)
OCp

− AOCa(TGFβ)OCa, (15)
∂
∂t OBp(r, t) =DOBu(TGFβ)OBu( fbm) + POBp(Ψ )OBp

− DOBp(TGFβ)OBp, (16)
∂
∂t OBa(r, t) =DOBp(TGFβ)OBp

− AOBaOBa, (17)
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Fig. 4 Proposed cell
population model of bone
remodelling taking into account
several developmental stages of
osteoblasts and osteoclasts
together with biochemical
regulation, biomechanical
regulation (via strain energy
density, Ψ ) and geometrical
regulation (via the turnover
function, χBV( fbm))

where Di is the differentiation rate of cell type i (i =
OCu,OCp,OBu,OBp) modulated by signalling molecules,
AOCa is the apoptosis rate of active osteoclasts modulated
by TGFβ, AOBa is the (constant) apoptosis rate of active
osteoblasts, POBp is the proliferation rate of osteoblast pre-
cursor cells and Ψ is the strain energy density, taken to be
either Ψ tissue or Ψmicro

bm .
The concentrations of the signalling molecules are gov-

erned by rate equations expressing mass action kinetics of
receptor–ligand binding reactions. Since time scales involved
in cell differentiation and apoptosis are much longer than
characteristic times of receptor–ligand binding reactions, the
signalling molecule concentrations can be solved for in a
quasi-steady state (adiabatic approximation) (Buenzli et al.
2012; Pivonka et al. 2012).

Explicit expressions for the signalling molecules concen-
trations and their modulation of the cell differentiation and
apoptosis rates depending on receptor–ligand binding are
presented in the sections “Differentiation rates and signalling
molecules in the cell populations model” and “Recalibration
of the model” of the Appendix. Below, we comment in more
detail on new features of Eqs. (14)–(17) that are included to
model the geometrical and biomechanical feedbacks on bone
cell populations.

2.3.1 Geometrical feedback and turnover rate

The turnover rate of different bone microstructures is
believed to be significantly influenced by geometric vari-
ables in particular by the availability of bone surfaces (Parfitt
1983;Martin 1972). Active osteoclasts and active osteoblasts
require a surface to resorb or form bone matrix. In a fixed
RVE, the more surface there is, the more cells process bone
matrix, and the higher the turnover rate. A remarkable rela-
tionship between the density of bone surface SV and bone
volume fraction fbm has been exhibited in bone tissues across
wide ranges of porosities (Martin 1984; Fyhrie and Kimura
1999; Lerebours et al. 2015). This relationship SV( fbm) is

particularly interesting from a computational modelling per-
spective as it enables to model the influence of bone surface
density through an implicit dependence on bone volume frac-
tion. Turnover rate may also be influenced by bone volume
fraction in another way. Indeed, turnover rate is influenced by
the biochemical microenvironment, such as the availability
of precursor cells. In the femur midshaft, the availability of
precursor cells depends on pore size and the radial position
in the midshaft (i.e. periosteal, intracortical and endosteal),
which are both well characterised by bone volume fraction.
These two geometrical influences (surface density and pore
size/location) can thus be represented by a single dependence
of turnover rate on bone volume fraction.

In our model, different turnover rates, Eq. (13), can be
achieved in microstructures of different bone volume frac-
tions by assuming that OBu and OCu are functions of fbm.
Indeed, the functions OBu( fbm) and OCu( fbm) introduce a
dependence of the active bone cell populations OCa and
OBa upon fbm via Eqs. (14)–(17). We emphasise that an
explicit geometrical influence ofmicrostructure is only intro-
duced here on the population of uncommitted cells. This
is consistent with the conclusions of Pivonka et al. (2013)
who investigated different possibilities on how geometrical
feedback can affect various stages of bone cell differentia-
tion. This is also consistent with the interpretation that the
microstructure’s surface area plays an important role for the
initiation of new BMUs (basic multicellular units), occur-
ring through OBu and OCu differentiation, rather than for
the activation of osteoclasts and osteoblasts. The activation
of osteoclasts and osteoblasts depends instead on temporary
BMUcavity internal surfaces that only comprise a small frac-
tion of the microstructure’s bone surface.

To determine functions OBu( fbm) and OCu( fbm) that
lead to physiological turnover rates at different bone vol-
ume fractions, we assume that in a ‘normal healthy state’,
a phenomenological relationship χBV( fbm) can be defined
between turnover rate and bone volume fraction, such that
χBV(r, t) = χBV

(
fbm(r, t)

)
. A normal healthy state is
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(a) (b)

Fig. 5 a Plot of the phenomenological relationship χBV( fbm) between
turnover rate and bone volume fraction assumed in the model, the grey
data points are the ones givenbyParfitt (1983).bDependenceofOCu and

OBu upon fbm based on the prescribed bone turnover function. OBu( fbm)
and OCu( fbm) serve as input values in the bone cell population model

defined as a steady state inwhich resorption and formation are
balanced in an individual with normal physical activity and
normal hormonal levels. Taking as input such a phenomeno-
logical relationship χBV( fbm), one can determine for each
fbm the values OCu( fbm) and OBu( fbm) that lead to (i) bal-
anced remodelling and (ii) an actual steady-state turnover rate
χBV such that χBV = χBV( fbm). From Eqs. (12) and (13),
this imposes the following two constraints to be solved for
OCu( fbm) and OBu( fbm):

χBV( fbm) = kformOBa
(
OCu( fbm),OBu( fbm)

)
(18)

= kresOCa
(
OCu( fbm),OBu( fbm)

)
, (19)

where the bars on the right-hand side indicate steady-state
values of the cell density variables.

By analogy with the relationship SV( fbm), we assume in
this paper that the phenomenological relationship χBV( fbm)

is a dome-shaped function whose height is adjusted to
Parfitt’s reported measurements of turnover rate in cortical
and trabecular bone (Parfitt 1983, Table 1 and Table 7),2 see
Fig. 5a. The relationship satisfies χBV(0) = χBV(1) = 0
since there is no turnover possible without the presence of
bone surfaces. The maximum of bone turnover is assumed to
occur at fbm =0.35, corresponding to typical trabecular or tra-
becularised bonemicrostructures in themidshaft femur.With
this assumed relationship χBV( fbm), the constraints (18)–

2 Parfitt reports that cortical bone of average bone volume fraction 0.95
has a turnover rate of 0.115cm3/day, corresponding to χBV(0.95) ≈
0.77 × 10−4/day with TVcort = 1.5 × 106 mm3. He also reports that
trabecular bone of average bone volume fraction 0.20 has a turnover rate
of 0.25cm3/day, corresponding toχBV(0.20) ≈ 1.43 × 10−4/daywith
TVtrab = 1.75 × 106 mm3.

(19) were solved numerically for OBu( fbm) and OCu( fbm) at
each value of fbm ∈ [0, 1] by using a trust-region dogleg
method. The functions OCu( fbm) and OBu( fbm) obtained by
this procedure are shown in Fig. 5b. These functions are used
as input in Eqs. (14)–(17) in all our simulations. This ensures
that in the normal healthy state, each RVE of the midshaft
cross section located at r remodels at rate χBV( fbm(r))with-
out changing bone volume fraction. The functions OCu( fbm)

and OBu( fbm) are assumed to hold unaffected in the var-
ious deregulating circumstances considered later on (i.e.
osteoporosis and altered mechanical loading). During these
deregulating circumstances, the value of the actual turnover
rate, Eq. (13), differs from the value of χBV and depends
implicitly on the hormonal and mechanical states that influ-
ence the active cell populations OBa and OCa.

The explicit calibration of the cell population model,
Eqs. (14)–(17), to site-specific tissue remodelling rates is a
significant novelty compared to our previous temporal model
(Pivonka et al. 2013; Scheiner et al. 2013). This modification
was made necessary to consistently describe the site-specific
evolution of bone in the spatio-temporal framework of Buen-
zli et al. (2013) while retaining a cell population model that
includes biochemical regulations.

2.3.2 Mechanical feedback and initial bone microstructure
stability

A mechanical feedback is included in the cell popula-
tion model such that underloaded regions of bone promote
osteoclastogenesis and overloaded regions of bone promote
osteoblastogenesis (Frost 1987, 2003). These responses are
viewed as consequences of biochemical signals transduced
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from a mechanical stimulus sensed by osteocytes (Bonewald
2011). Osteocytes are known to express RANKL, which reg-
ulates osteoclast generation, and sclerostin, which regulates
osteoblast generation viaWnt signalling (Bonewald and John-
son 2008). Following Scheiner et al. (2013), the resorptive
response of the mechanical feedback is assumed to act by an
increase in the microenvironmental concentration of RANKL,
whereas its formative response is assumed to act by an
increase in the proliferation rate of osteoblast precursors.

The exact nature of the mechanical stimulus sensed by
osteocytes is still a matter of debate. It may include lacuno-
canalicular extracellular fluid shear stress on the osteocyte
cell membrane, extracellular fluid pressure, streaming poten-
tials and direct deformations of the osteocyte body induced
by bone matrix strains (Knothe Tate 2003; Bonewald and
Johnson 2008; Bonewald 2011). Due to the extensive net-
work of osteocyte connections in bone (Buenzli and Sims
2015), average bone matrix strains at a higher scale may also
be sensed by the osteocyte network. Below, we assume that
the mechanical stimulus to the bone cell population model
is described by a local strain energy density, Ψ (r, t). This
strain energy density will be taken to be either the micro-
scopic, cellular-scale strain energy density of bone matrix,
Ψmicro
bm (r, t), or the average tissue-scale strain energy density,

Ψ tissue(r, t), defined, respectively, in Eqs. (11) and (10).
To predict with our model the evolution of a real scan of

midshaft femur under various deregulating circumstances, it
is important to assume that the bone scan represents a stable
state initially in the absence of any deregulation. In particular,
this initial bone state is assumed mechanically optimal. This
can be ensured by choosing the local mechanical stimulus
acting onto the bone cells,μ(r, t), as a normalised difference
between the current SED and the SED of the initial bone
microstructure Ψ (r, 0):

μ(r, t) = Ψ (r, t) − Ψ (r, 0)
Ψ (r, 0) + K

(20)

The normalisation by Ψ (r, 0) in the denominator in Eq. (20)
ensures that the mechanical stimulus is not over-emphasised
away from the neutral axis where SED takes high values. The
small positive constant K = 1 · 10−6 GPa is added to keep
mechanical stimulus well defined near the neutral axis where
Ψ (r, 0) ≈ 0 (see also Discussion Sect. 4.3).

When negative, μ(r, t) in Eq. (20) is assumed to promote
βmech
RANKL, the production rate of RANKL (Fan et al. 2004;Wang

et al. 2004):

βmech
RANKL(Ψ ) =

{
−κ · μ(r, t), if μ(r, t) ≤ 0

0, if μ(r, t) > 0
(21)

where κ is a parameter describing the strength of the biome-
chanical transduction (see Sect. 2.6). This results in increased

RANKL signalling in underloaded conditions (see Eq. (28)
in Appendix), and so in increased osteoclast generation in
Eqs. (14)–(15).

When positive, μ(r, t) in Eq. (20) is assumed to promote
POBp , the proliferation rate of pre-osteoblasts in Eq. (16)
(Kaspar et al. 2002; Weyts et al. 2003; Robling et al. 2006):

POBp(Ψ )= POBp +

⎧⎪⎨
⎪⎩
0, if μ(r, t) ≤ 0

POBp · λ · μ(r, t), if 0 < μ(r, t) < 1
λ

POBp , if μ(r, t) ≥ 1
λ

(22)

where λ is a parameter describing the strength of the biome-
chanical transduction. The first term in (22) accounts for a
transit-amplifying stage of osteoblast differentiation occur-
ring in the absence of mechanical stimulation (Buenzli et al.
2012). The proliferation rate is assumed to saturate to the
valuePOBp = 2POBp in highly overloaded situations to ensure
the stability of the population of OBps (Buenzli et al. 2012;
Scheiner et al. 2013).

A similar type of mechanical feedback was implemented
in purely temporal settings in Scheiner et al. (2013). The ini-
tial SED distribution, Ψ (r, 0), is calculated from Eqs. (10)–
(11) and from the initial bone volume fraction distribution,
fbm(r, 0), determined on the bone scan (described in the next
section).

2.4 Initial distribution of bone volume fraction from
microradiographs

The initial microstructural state of the midshaft bone cross
section can be derived from high-resolution bone scans such
asmicrocomputed tomography (micro-CT) scans ormicrora-
diographs. Since Haversian canals have an average diameter
of about 40µm, at least 10-µm resolution is required to
evaluate intracortical bone volume fractions with sufficient
accuracy.

In the simulations presented in Sect. 3, we used the micro-
radiograph represented inFig. 6awhere the pixel size is 7µm.
The femur sample was collected from a 21-year-old subject.
Themicroradiographwas digitised and binarised by a thresh-
olding operation based on pixel grey level. Bone matrix is
assigned the value 1 irrespective of the degree of minerali-
sation, and intracortical pores are assigned the value 0. The
distribution of the bone volume fraction, fbm(r, 0), across the
midshaft was determined by calculating the volume of bone
matrix in a disc of 2mm diameter, centred at each pixel of the
binarised image and divided by the disc’s area. For the points
near the periosteal surface, only the portion of the disc con-
tained into the subperiosteal areawas used for this calculation
(see Fig. 6b). The discrete values of fbm defined at each pixel
contained in the subperiosteal region were then interpolated
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Fig. 6 aMicroradiograph of a midshaft femur cross section (courtesy
of C. David L. Thomas and John G. Clement, Melbourne Femur Col-
lection). b Binarisation of the microradiograph and determination of
the local fbm values: (i) at the periosteal region; (ii) in the intracortical
region; and (iii) at the endosteal region; c Bone volume fraction distri-

bution extracted from the radiograph and interpolated. The dashed line
represents the location of the neutral axis. The origin of the coordinate
system (y, z) is taken at the normal force centre, NC. The grey lines are
the 10mm along which we are studying the evolution of the model in
the Results Section

into a continuous function, fbm(r, 0), using MATLAB’s 2D
cubic interpolation procedure. The result is shown in Fig. 6c.
A similar exclusion was not performed at the endosteal sur-
face since this surface is less well defined, in opposition to
the periosteal surface, due to the presence of trabecular-like
structures. Bone matrix volume fractions near the endosteal
surface are averages of intracortical bone regions and regions
in the bone marrow cavity.

2.5 Numerical simulations

The multiscale mechanobiological model of bone remod-
elling presented in this paper is governed by a coupled system
of (i) distributed ODEs describing the evolution of bone
cell populations at each location r in the midshaft femur
(Eqs. (14)–(17)) and (ii) non-local and tensorial algebraic
equations determining the mechanical state of the tissue
RVE at r , both at the tissue scale and at the microscopic
scale (Eqs. (2)–(11)). Themodel is initialisedwith a bone vol-
ume fraction distribution across the midshaft femur deduced
from high-resolution bone scans (Fig. 6a) and with steady-
state populations of cells fulfilling the site-specific turnover
rate conditions Eqs. (18)–(19). This initial state is thereby
constructed to be a steady state of themodel, inwhich the bio-
chemical, geometrical and mechanobiological regulations of
resorption and formation are balanced.

To solve this non-local spatio-temporal problem numer-
ically, we use a staggered iteration scheme in which we
first solve the mechanical problem (i.e. tissue-scale SED
and microscopic SED), assuming constant material prop-
erties, and then solve the bone cell population model and
evolve the bone volume fraction at each location r of the
femur midshaft assuming constant mechanical feedback for

a duration Δt. After Δt, the mechanical problem is recalcu-
lated based on the updated bone volume fraction distribution,
fbm(r , t+Δt), and this procedure is iterated. The ODEs
are solved using a standard stiff ODE solver (MATLAB,
ode15s). The spatial discretisation is a regular grid with
steps Δy = Δz = 0.8mm. Due to the separation of time
scales between changes in the local mechanical environ-
ment (years) and changes in bone cell populations (days),
the mechanical stimulus requires updating after durationsΔt
= 2years. The accuracy of the numerical results depending on
Δt is studied in the section “Update frequency of mechanical
state in the numerical algorithm” of the Appendix.

2.6 Model calibration

Themodel presented in this paper contains: (i) biomechanical
parameters associated with the estimation ofΨ (r, t), and (ii)
parameters associated with the bone cell population model.
Biomechanical parameters as well as biochemical parame-
ters were determined and validated in other studies (Scheiner
et al. 2013; Pivonka et al. 2013, 2008; Buenzli et al. 2012)
(Table 1). The origin and robustness of parameter estimates
are discussed in the section “Model parameter values” of the
Appendix. Here we calibrate the newly introduced parame-
ters: (a) mechanical coupling parameters λ and κ (Eqs. (21)
and (22)), and (b) biochemical parameters related to the sim-
ulation of osteoporosis.

2.6.1 Calibration of the hormonal deregulation for
osteoporosis simulation

In our previous temporal model (Scheiner et al. 2013), osteo-
porosiswasmodelled by an increase in systemic PTH together
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(a) (b)

Fig. 7 a Evolution of the total bone mass in the cross section with time
while simulating osteoporosis: calibration of the PTH infusion. Osteo-
porosis is characterised by a bone loss of 1%/year (Parfitt and Chir

1987; Nordin et al. 1988; Szulc et al. 2006). b Evolution of the total
bone mass in the cross section with time while simulating a spaceflight
mission: calibration of the mechanical parameters, λ and κ

with a reduction in the biomechanical transduction parame-
ters: λ and κ . In this paper, we simulate age-related bone loss
using a single parameter perturbation, i.e. an increase in sys-
temic PTH concentration. This increase is calibrated so as to
obtain a loss of total bone cross-sectional area in the femur
midshaft of 1% per year 3 (Parfitt and Chir 1987; Nordin
et al. 1988; Szulc et al. 2006). The total bone cross-sectional
area is defined by the integral of fbm(r, t) over the midshaft
cross section. In the model, a rate of bone loss of 1%/year
was obtained by an increase in systemic concentration of
PTH from 2.907 to 2.954pM (1.62% increase) (see Fig. 7a).

2.6.2 Calibration of mechanobiological feedback

The rate of change in bone mass due to mechanical feedback
is determined in themodel by the biomechanical transduction
parameters λ (in Eq. (22)) and κ (in Eq. (21)). To calibrate
these parameters, we used data gathered from mechanical
disuse and re-use experiments. It has been shown that cos-
monauts undertaking long mission space flights lose bone
mass at a rate of approximately 0.3% per month (Vico et al.
2000). This microgravity-induced bone loss is only slowly
recovered after return to Earth. No significant bone gain is
observed after 6-month exposure to normal gravity on Earth
(Vico et al. 2000; Collet et al. 1997).

In our multiscale model, microgravity is simulated as a
80% reduction in the normal mechanical loads experienced

3 The calibration is performed without mechanical adaptation (i.e. set-
ting λ = 0 and κ =0 in Eqs. (21) and (22)) in order to compare both
mechanical feedbacks in a more consistent way.

by the femur, i.e. Nmicrogravity = 0.2N and Mmicrogravity =
0.2M. Based on these reduced loads, the parameter κ has
been calibrated such that 1.8% of total bone cross-sectional
area is lost after 6months. We found such rate of loss with
κ = 18pM/day when the mechanical stimulus is based
on the microscopic SED, Ψmicro

bm (r, t) (see Fig. 7b), and
κ = 19pM/day when the mechanical stimulus is based on
the tissue-scale SED,Ψ tissue(r, t). After return to Earth, rates
of bone recovery are too low to be detected after 6months
(Collet et al. 1997). We performed a parametric study inves-
tigating various strengths of λ. Using parameter values of
λ > 1 in our model results in significant bone gain after
6months, while λ ≤ 1 results in small bone gain. Based on
these results, we use λ = 0.5 for both the microscopic and
tissue-scale mechanical stimuli.

3 Results

In this section, we present numerical simulations of the evo-
lution of the midshaft femur cross section subjected to either
(i) changes in mechanical environment (Sect. 3.1) or (ii) hor-
monal deregulation simulating osteoporosis (Sect. 3.2). We
also investigate how site-specific bone loss may depend on
whether mechanical stimulus is sensed at the microscopic,
cellular scale or at the tissue scale.

3.1 Bone loss due to mechanical disuse

Figure 8a represents site-specific changes of the femur mid-
shaft cross section simulated by the model assuming a 80%
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Fig. 8 a Difference between the bone volume fraction distribution in
the cross section after a 6-month spaceflight mission with the initial
distribution. b Difference between the bone volume fraction distribu-
tion in the cross section after a 40years of simulated osteoporosis with
the initial distribution. c Bone volume fraction distribution in the cross

section after 40years of simulated osteoporosis. dMicroradiograph of a
human femur cross section from an 89-year-old individual. The dashed
lines highlight regions with sharp transition between porous and com-
pact tissue. The arrows point out regions with high porosity along the
antero-posterior axis

reduction in the normal mechanical loading. This reduction
in mechanical loading may represent microgravity in long
spaceflight missions (see Sect. 2.6) or prolonged bed rest.
The Figure depicts the difference between the bone volume
fraction distribution after 6months of mechanical disuse and
the initial bone volume fraction. It can be seen that bone
loss is site-specific with more bone loss occurring near the
endosteal surface. Close to the neutral axis, only limited loss
of bone is observed.

3.2 Simulation of osteoporosis due to hormonal
deregulation

Figure 8b and c represents the site-specific changes of the
midshaft cross section that occur after 40years of simulated
osteoporosis when the mechanical feedback acting onto the

bone cell populationmodel is based on themicroscopic SED.
Figure 8b depicts the difference between the fbm distribution
at the end of the simulation and the initial distribution. Fig-
ure 8cdepicts the fbm distribution at the endof the simulation.
Bone loss occurs everywhere in the cross section except at the
medial and lateral sides. The loss is site specific with higher
rates of loss in the endocortical region and around the neutral
axis, close to the antero-posterior axis. This pattern of bone
loss is consistent with the high porosity commonly observed
in these regions in osteoporotic subjects (Fig. 8d, arrows).
The simulation exhibits a sharp transition between a very
porous endocortical region and a dense intracortical region
towards the periosteum. Although perhaps less pronounced,
such a transition is also observed in the microradiograph of
Fig. 8d (dashed lines). In contrast to the osteoporosis simu-
lation, the simulation of mechanical disuse (Fig. 8a) shows
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(a)

(b)

(c)

(d)

Fig. 9 Evolution of a bone volume fraction; bmechanical stimulus, μ(r, t), at the microscopic scale; c mechanical stimulus, μ(r, t), at the tissue
scale; and d turnover rate along the y and z-axis during the simulation of osteoporosis

that bonewas lost all over the cross section, with little change
around the neutral axis. In both simulations, bone was lost
predominantly in the endocortical region.

In Fig. 9, we show how the distributions of the follow-
ing quantities evolved along the y- and the z-axes during
the simulation of osteoporosis: (a) the bone volume frac-
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Fig. 10 Bone volume fraction along the y- and z-axes, the initial distribution and the distributions after 40years of simulated osteoporosis, without
mechanical regulation, with mechanical regulation based on microscopic SED and with mechanical regulation based on tissue-scale SED

tion, (b) the microscopic mechanical stimulus, μmicro
bm , used

as mechanical stimulus in this simulation, (c) the tissue-scale
mechanical stimulus, μtissue, not used as mechanical stimu-
lus in this simulation and (d) the turnover rate. Along both
axes, the regions in which bone volume fraction transitions
from low to high (3 < y < 6mm and −7 < z < −5mm)
are resorbed at higher rate, due to the higher values of χBV

in these regions (Fig. 9d). As time progresses, bone volume
fraction is strongly reduced in the endocortical region, lead-
ing to an expansion of the marrow space and a reduction in
cortical wall width. This is accompanied by a shift of the
maximum of χBV towards the periosteum. Along the y-axis
(near the neutral axis), bone is lost at a high rate not only in
the endocortical region but also near the periosteum, as can
be seen by the gradual increase in turnover rate in the whole
cortical width (Fig. 9d). In contrast, along the z-axis, bone
is lost at a high rate only at the endosteum where turnover
rate maintains a well-defined peak. The intracortical region
(z < −7mm) is preserved even after 40years of simulated
osteoporosis.

3.2.1 Microscopic vs tissue-scale mechanical stimulus

ComparingFig. 9b and c,we canobserve that the values of the
mechanical adaptation stimuli are strongly dependent on the
length scale at which they are calculated, i.e. tissue scale or
microscopic scale. Along the z-axis,μmicro

bm is always positive
(Fig. 9b), whereas, μtissue takes negative values in the endo-
cortical region (Fig. 9c). Regions with high values of μmicro

bm
and positive values ofμtissue correlate with regions where the
bone matrix is preserved. Regions with low values of μmicro

bm
and negative values ofμtissue correlatewith regionswhere the
bone matrix is resorbed. The Figures also show a qualitative
and quantitative difference in mechanical stimuli μmicro

bm and
μtissue between the y- and z-axes. The mechanical stimulus

is asymmetric between the antero-posterior axis and lateral–
medial axis due to the assumed bending loading state. Along
the y-axis, no important variation can be observed between
endocortical and periosteal regions. Along the z-axis, both
stimuli exhibit much lower values in the endocortical region
than at the periosteum or in the marrow cavity. We note that
the mechanical stimuli are not zero in the marrow even when
fbm = 0 due to the assumed vascular stiffness.
Figure 10 compares the evolution of bone volume fraction

during simulated osteoporosis when themechanical stimulus
acting onto the bone cells is either (i) absent, (ii) based on
the microscopic mechanical stimulus, μmicro

bm , or (iii) based
on the tissue-scale mechanical stimulus, μtissue.4 All cases
exhibit strong endocortical bone loss with little difference in
the expansion rate of the medullary cavity. A slightly steeper
endosteal wall is created along the z-axis during the simu-
lation using tissue-scale mechanical stimulus, and a region
with very low bone volume fraction ( fbm � 0.1) is preserved
in the medullary cavity during the simulation with micro-
scopic mechanical stimulus. Intracortical bone towards the
periosteum is preserved along the z-axis by both mechanical
stimuli, but it is resorbed more strongly along the y-axis in
the simulation with tissue-scale mechanical stimulus.

4 Discussion

4.1 Endocortical bone loss

The loss of endocortical bone, with its associated expan-
sion of the marrow cavity and cortical wall thinning, is a

4 For the simulation in case (iii), the mechanical transduction strength
parameters are: κ = 19 pM/day and λ = 0.5, calibrated with the tissue-
scale mechanical stimulus while simulating spaceflight.
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trait common to several bone disorders and deregulations of
remodelling. It is observed in biochemical disorders, such
as in osteoporosis, vitamin D deficiency and hyperparathy-
roidism (Feik et al. 1997; Parfitt 1998; Bousson et al. 2001;
Thomas et al. 2005; Szulc et al. 2006; Zebaze et al. 2010;
Busse et al. 2013; Hirano et al. 2000; Burr et al. 2001; Turner
et al. 2002). It is also observed during disruptions of normal
mechanical loading, such as in prolonged bed rest, long-term
space missions and trauma-induced paralysis such as spinal
cord injury (Leblanc et al. 2007; Rittweger et al. 2009; Vico
et al. 2000; Lang et al. 2004; Kiratli et al. 2000; Eser et al.
2004), and in animal experiments involving muscle paralysis
or hindlimb disuse induced by tail suspension (Warner et al.
2006; Ausk et al. 2012, 2013; Bloomfield et al. 2002; Judex
et al. 2004).

Our numerical simulations of osteoporosis and mechani-
cal disuse are consistentwith these experimental findings.All
Figs. 8, 9 and 10 highlight the strong site-specificity of bone
loss under deregulations of bone remodelling. The endocorti-
cal region systematically undergoes themost significant loss.
This similarity arises despite the fact that in the simulation
of mechanical disuse, the deregulation is non-uniform in the
cross section (due to the uneven distribution of mechanical
loads), whereas in the simulation of osteoporosis, the hor-
monal deregulation is uniform in the cross section.

The precise mechanisms that underlie the predominant
loss of bone in the endocortical region are still poorly under-
stood (Raisz and Seeman 2001; Thomas et al. 2005; Squire
et al. 2008;Ausk et al. 2012).Mechanical adaptation has been
suggested as a potential mechanism (Frost 1997; Burr 1997;
Thomas et al. 2005; Jepsen and Andarawis-Puri 2012). Bone
loss induced by mechanical disuse redistributes mechanical
loads towards the periosteum, where bone volume fraction is
higher. This could unload endocortical regions and thereby
accelerate their resorption. Reduced physical activity and
muscle strength in ageing subjects support this hypothesis
(Frost 1997). However, the ubiquity of endocortical bone
loss in situations in which mechanical loading is not signifi-
cantly modified suggests that other mechanisms are at play.
The morphological influence of the tissue microstructure on
the rate of bone loss has been suggested to be another impor-
tant factor (Martin 1972; Squire et al. 2008; Zebaze et al.
2010; Buenzli et al. 2013). Cortical bone has little bone sur-
face available to bone cells, but this surface expands during
bone loss, which could increase the activation frequency of
remodelling events. If remodelling is imbalanced, this may
lead to an acceleration of bone loss and to an increase of the
available surface until the tissue microstructure becomes so
porous that its surface area reduces with further loss (Martin
1972; Raisz and Seeman 2001).

We have shown previously the possibility of this morpho-
logical mechanism to explain cortical bone trabecularisation
in both temporal (Pivonka et al. 2013) and spatio-temporal

settings (Buenzli et al. 2013). The spatio-temporal model
proposed in the present work incorporates both mechanical
adaptation and a morphological feedback of the microstruc-
ture on turnover rate. In Fig. 10, our simulations of osteo-
porosis conducted with and without mechanical feedback
suggest that the rate at which the medullary cavity expands
and the cortical wall thins is only marginally dependent on
mechanical adaptation. This rate is primarily due to the high
turnover rates present in the endocortical region (Fig. 9d),
i.e. due to the morphological influence of microstructure on
the rate of loss. This proposed mechanism is consistent with
the observation that distinct conditions exhibit endocorti-
cal bone loss, whether mechanical loading is disrupted or
not.

4.2 Model formulation of morphological feedback

In the cell population model of Pivonka et al. (2013), the
morphological influence of the tissue microstructure was
included through the specific surface of the tissue (Mar-
tin 1984; Lerebours et al. 2015) normalised by its initial
value. This normalisation allowed to maintain the same cell
behaviour in both cortical and trabecular bones. However,
it leads to a turnover rate that is initially independent of
bone volume fraction, and so the same in cortical and tra-
becular bone. The morphological feedback proposed in the
present model differs by (i) avoiding a dependence on an
initial reference state (i.e. absence of normalisation to allow
microstructure-dependent turnover rates) and (ii) by refer-
ring to turnover rate (a dynamic biological quantity) instead
of specific surface (a morphological characterisation of the
microstructure).

While specific surface can be estimated directly from
high-resolution scans of bone tissues (Chappard et al. 2005;
Squire et al. 2008; Lerebours et al. 2015), quantitative
links between SV and cell numbers remain unclear (Martin
1972; Parfitt 1983; Pivonka et al. 2013). The direct ref-
erence to turnover rate, in the present model, makes the
modelmore accurate, due to the straightforward link between
turnover rate and cell populations (see Eq. (13)). Unfortu-
nately, turnover rate is rarelymeasured experimentally by cell
counts or volumes of bone resorbed and re-formed. It is most
commonly characterised by measurements of serum concen-
trations of bone resorption and/or formation markers (Szulc
et al. 2006; Burghardt et al. 2010; Malluche et al. 2012),
which are difficult to relate quantitatively to cell numbers or
bone volume at a particular bone site. While the phenom-
enological relationship χBV( fbm) that we assumed between
turnover rate and microstructure remains to be studied quan-
titatively, such a relationship has been suggested in several
studies (Felsenberg and Boonen 2005; Burghardt et al. 2010;
Malluche et al. 2012).
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4.3 Nature of the mechanical stimulus

The nature of the mechanical stimulus sensed by bone cells
and transduced into signals prompting resorption or forma-
tion has been amatter of discussion formanyyears.Anumber
of computational studies simulating mechanical adaptation
of bone microstructure suggested that the strain energy den-
sity could be a good candidate. Ruimerman et al. (2005)
tested several mechanical stimuli and concluded the SED
gave best results when comparing simulations outcomeswith
biological parameters such as porosity, trabecular number
or adaptability to external loading. However, Levenston and
Carter (1998) argued that the drawback of using the SED
is that it does not lead to a different response when bone
is stimulated in tension or in compression. In the litera-
ture, most computational models use the SED because it
is a scalar representing both microstructure and mechanical
loading (Fyhrie and Carter 1986; Mullender et al. 1994; Van
Rietbergen et al. 1999; Van Oers et al. 2008; Scheiner et al.
2013). Quantitative criteria based on experimental observa-
tions are still lacking, especially ones testing the tensorial
aspects of mechanical loading conditions. For our purpose of
studying tissue-scale average changes in bone volume frac-
tion, these tensorial aspects are likely to be secondary. Hence,
we have based our mechanical stimulus on the strain energy
density (see below for a discussion of the scale). We note
here that other mechanical quantities have also been pro-
posed and studied for their magnitude and possible influence
onto osteocytes, such as fluid shear stress and fluid pressure
in the lacuno-canalicular system (Knothe Tate et al. 1998;
Burger et al. 2003; Tan et al. 2007; Bonewald and Johnson
2008; Adachi et al. 2009b).

Mechanical adaptation also relies on the comparison of the
currentmechanical statewith a reference state. The definition
of this reference state remains unclear (Frost 1987;Carter and
Beaupré 2001). Our choice is to take as mechanical reference
state the initial distribution of the strain energy density in the
midshaft femur. This choice introduces amemory of the stim-
ulus “normally” experienced in a certain region of the tissue.
This memory effect leads to a position-dependent reference
state which can be interpreted as taking into account differ-
ent sensitivities of the mechano-sensing cells depending on
where they are located (Skerry et al. 1988; Turner et al. 2002;
Robling et al. 2006).

4.4 Neutral axis and site-specific bone adaptation

A common issue in models of mechanical adaptation is the
risk to resorb too much bone in regions that are naturally
unloaded. Such regions may exist when bending moment is
large enough with respect to compressive or tensile forces. In
the humanmidshaft femur, a neutral axis runs approximately
along the antero-posterior axis (Lanyon and Rubin 1984;

Cordey and Gautier 1999; Thomas et al. 2005; Martelli et al.
2014). To prevent excessive resorption in such regions, some
models have considered torsional loads (Van der Meulen
et al. 1993; Carpenter and Carter 2008), average values of
periodic dynamic loads under which the neutral axis moves
(Van der Meulen et al. 1993; Carter and Beaupré 2001),
or a residual background of mechanical stimulus modelling
muscle twitching and other background mechanical forces
(Mittlmeier et al. 1994; Carpenter and Carter 2008).

Such additional features were not introduced explicitly in
our model. The strength of the mechanical stimulus around
the neutral axis remained weak in our simulation of mechan-
ical disuse (Fig. 8a). This is due to the fact that stimulus
sensitivity is prescribed according to the initial state. The
neutral axis did not move substantially during the simulation,
and so the difference in strain energy density remained small.
Resorption around the neutral axis was pronounced in our
simulation of osteoporosis (Figs. 8b, c and9) due to hormone-
induced remodelling imbalance. Resorption was limited by
the duration of the simulated osteoporosis (40years) and the
calibration of the overall bone loss according to experimental
data.

The bending moment exerted onto the femur at the mid-
shaft creates a strong asymmetry in the local mechanical
state. Over time, this asymmetry leads to a cortical wall thick-
ness which differs between the y-axis (antero-posterior axis)
and the z-axis (lateral–medial axis), as seen in Fig. 9a. Asym-
metries in cortical wall thickness and bone volume fraction,
in osteoporotic patients, are commonly observed (Fig. 8d)
(Feik et al. 2000; Thomas et al. 2005; Zebaze et al. 2010).

4.5 Microscopic versus tissue-scale mechanical
regulation

Mechanical deformations of bone matrix can be sensed by
osteocytes at the microscopic, cellular scale by deformation
of the cell body, transmitted either through direct contact
with the matrix or through changes in fluid flow or hydro-
static pressure (Weinbaum et al. 1994; Knothe Tate 2003;
Adachi et al. 2009b, a; Bonewald 2011). However, osteocytes
are highly connected to one another and to other cells in the
vascular phase by an extensive network (Marotti 2000; Ker-
schnitzki et al. 2013; Buenzli and Sims 2015). While signal
transmission mechanisms in this network remain to be deter-
mined, it is possible that the network integrates deformations
of both the matrix and vascular phases before transducing
them into a biochemical response, enabling amechanical sen-
sitivity of the network to tissue-average stresses and strains.

The uncertainty of the scale at which mechanical stimulus
is sensed in bone has motivated many computational studies
to estimate stress concentration effects in bone microstruc-
tures (Hipp et al. 1990; Kasiri and Taylor 2008; Gitman et al.
2010). However, few studies have explored the changes that
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occur during simulated bone loss when using microscopic or
tissue-scale mechanical stimulus.

Our simulations of osteoporosis show that most of the dif-
ference between the mechanical stimulus at the microscopic
and tissue scales occurs near the endosteum and neutral axis
(Fig. 9b, c). Changes in bone volume fraction were similar in
both simulations. Stress concentration effects captured in the
microscopic mechanical stimulus (but not in the tissue-scale
mechanical stimulus) resulted in maintaining a region of low
porosity ( fbm � 0.1) near themedullary cavity and inwiden-
ing the transition between endocortical and intracortical bone
volume fractions (Fig. 10).

Osteoporotic human femurmidshafts exhibit a wide range
of variability, reflecting the multiple factors influencing bone
loss (Feik et al. 1997, 2000; Thomas et al. 2005; Zebaze
et al. 2010). The expansion of the medullary cavity and thin-
ning of the cortical wall are commonly reported, but other
changes in midshaft tissue microstructures have been stud-
ied less systematically. Depending on the subject and their
specific condition, the transition between porous endocorti-
cal bone and dense intracortical bone may be sharp or wide,
and highly porous microstructures near the endosteum may
be found or not (Feik et al. 1997, Figure 6).

Our model possesses several limitations which prevent at
this stage to draw definite conclusions about the mechanical
regulation of the tissue. The mechanical state is calculated
only based on bone volume fraction. Other microstructural
parameters such as the connectivity of the microstructure are
not accounted for. Loss of connectivity is observed in osteo-
porotic trabecular bone (Parfitt et al. 1987; Mosekilde 1990;
Raisz and Seeman 2001), which could lead to mechanical
disuse and so increase in resorption. Periosteal apposition is
often reported and believed to result from a compensation of
endocortical bone loss in osteoporotic patients (Szulc et al.
2006; Russo et al. 2006; Jepsen and Andarawis-Puri 2012).
Our simulations assumed the periosteal surface to be fixed,
which could limit the expansion rate of the medullary cavity.
Finally, our simulation of osteoporosis assumed a constant
level of physical activity. A reduction in physical activity
with age could further limit the preservation of bone matrix
by mechanical feedback.

5 Summary and conclusions

In this paper, a novel spatio-temporal multiscale model of
bone remodelling is proposed. This model bridges organ,
tissue and cellular scales. It takes into account biochemi-
cal, geometrical and biomechanical feedbacks. The model is
applied to simulate the evolution of a human femur midshaft
scan under mechanical disuse and osteoporosis. It enables us
to investigate how these scales and feedbacks interact during
bone loss. Our numerical simulations revealed the following
findings:

– Endocortical bone loss during both osteoporosis and
mechanical disuse is driven to a large extent by site-
specific turnover rates.

– Mechanical regulation does not influence significantly
the expansion rate of the medullary cavity.

– Mechanical regulation helps preserve cortical bone near
the periosteum. It explains site-specific differences in the
bone volume fraction distribution in the midshaft cross
section during osteoporosis such as increased porosity
near the neutral axis, and thicker cortical wall along the
medial–lateral axis of the femur midshaft, due to the
anisotropy of the mechanical stimulus in the presence
of bending moments.

– The inclusion of stress concentration effects in the
mechanical stimulus sensed by the bone cells has a pro-
nounced effect on porosity in the endocortical region.

Our methodology provides a framework for the future devel-
opment of patient-specificmodels to predict loss of bonewith
age or deregulating circumstances.
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Appendix 1: Complements on themodel description

Differentiation rates and signalling molecules in the cell
populations model

In Sect. 2.3, we presented the simplified equations of the
bone cells population model. Here are the developments of
these equations.

DOCu

(
MCSF,RANKL(Ψ, PTH)

)
= DOCuπ

act(MCSF
kMCSF
OCu

)
πact(RANKL

kRANKLOCu

)
,

DOCp

(
RANKL(Ψ, PTH)

) = DOCpπ
act(RANKL

kRANKLOCp

)
,

AOCa(TGFβ) = AOCaπ
act(TGFβ

kTGFβ
OCa

)
,

DOBu(TGFβ) = DOBuπ
act(TGFβ

kTGFβ
OBu

)
,

DOBp(TGFβ) = DOBpπ
rep(TGFβ

kTGFβ
OBp

)
. (23)

In those equations, several signalling molecules play a role:
TGFβ, RANK, RANKL, OPG, MCSF and PTH. The concentra-
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tions of these molecules follow the principles of mass action
kinetics of receptor–ligand reactions. Due to the separation
of scale between the cells differentiation and apoptosis rates
and the receptor–ligand binding reactions, we solve them in
a quasi-steady-state hypothesis:

PTH(r, t) =
{
PPTH, without deregulation

POPPTH, with simulated OP
, (24)

TGFβ(r, t) = Pext
TGFβ + nboneTGFβ kres OCa

DTGFβ
, (25)

RANK(r, t) = NRANK
OCp

OCp, (26)

OPG(r, t) =
POPG + βOPG

OBa
OBa π rep

(
PTH
kPTHOB

)

βOPG
OBa

OBa π rep
(
PTH
kPTHOB

)
/OPGsat + DOPG

, (27)

RANKL(r, t) =
βRANKL
OBp

OBp + βmech
RANKL(Ψ )

1 + kRANKLRANK RANK + kRANKLOPG OPG
(28)

×
{
DRANKL+

βRANKL
OBp

OBp

NRANKL
OBp

OBp πact
(
PTH
kPTHOB

)
}−1

.

Model parameter values

Table 1 lists all the parameters of the model.
Most model parameters were calibrated and validated

in previous studies. The stiffness tensors cmicro
bm and cmicro

vas
arising in the micromechanical theory were measured by
mechanical experiments (Ashman et al. 1984; Murdock
1996); see also (Fritsch and Hellmich 2007). The secretory
rate kform(volume of bone matrix formed per osteoblast per
day) was measured in animal models (Marotti and Zallone
1976; Jones 1974). The value used here is based on osteonal
data from dogs, rescaled to match human osteon dimensions
(Buenzli et al. 2014). The resorption rate kres (volume of bone
matrix resorbed per osteoclast per day) was estimated based
on the progression speed of a cortical BMU in bone and the
average number of OCa per BMU (Buenzli et al. 2014).

The OBa and OCa cell densities are calibrated in our model
to give rise to site-specific turnover rates in steady state in
agreement with experimental measurements (see Sect. 2.3).
The parameters λ and κ related to the strength of mechanical
adaptation and the parameter POPPTH related to the rate of bone
loss during osteoporosis were calibrated in Sect. 2.6 based
on experimental data.

The densities and dynamical behaviours of the precursor
cell types (OBp, OBu, OCp and OCu) and of the biochemical
signalling molecules (TGFβ, PTH, RANK, RANKL, OPG and
MCSF) depend on all the remaining parameters, which repre-
sent binding reaction rates, differentiation rates, proliferation
rates and apoptosis rates (seeTable 1). These parameterswere
validated qualitatively in previous studies (Pivonka et al.

2008; Buenzli et al. 2012; Pivonka et al. 2013), i.e. they
give rise to physiologically expected qualitative behaviours
of themodel.Aquantitative calibration of these parameters to
physiological values of precursor cell densities and molecule
concentrations was not done due to the lack of experimen-
tal data. However, such a quantitative calibration is not an
issue since it can be done without altering the time evolu-
tion of the model so long as the densities of the active cells
(OCa, OBa) remain properly calibrated in Sect. 2.3. Indeed,
in our simulations, both the signalling molecules and pre-
cursor cell densities (OCu, OCp, OBu, OBp) are effectively in
a quasi-steady at all times, the former by model assump-
tion (see Sect. 6.1) and the latter due to the slow evolution
of bone adaptation (years) compared to the faster bone cell
dynamics (days, weeks). To increase the value of density or
concentration of a component by a factorα, onemay increase
its production rate by the factor α or reduce its elimination
rate by the factor 1/α. To maintain the system’s behaviour
with this new value of density or concentration, it suffices to
adjust the sensitivity of interactionswith this componentwith
the relevant parameters (such as binding reaction rate para-
meters). For example, to double the concentration of TGFβ

without affecting how it signals OCa, OBu and OBp, one may
double nboneTGFβ or halve DTGFβ (see Eq. (25)) and then dou-

ble kTGFβ
OCa , kTGFβ

OBu and kTGFβ
OBp so that the ratios TGFβ/kTGFβ

OCa ,

TGFβ/kTGFβ
OBu and TGFβ/kTGFβ

OBp in Eq. (23) have the same val-
ues. A similar approach was used in Buenzli et al. (2014)
to calibrate the cell populations within a single BMU. This
approach is also used in Sect. 6.3 below.

Recalibration of the model

Since OCu and OBu vary with fbm so as to retrieve experi-
mentally valid turnover rates, someother parameters required
modification compared with previous versions of the cell
population model in which OCu and OBu were constant and
uncalibrated (Buenzli et al. 2012; Pivonka et al. 2013).

By comparing the cell densities between this model and
the previously published one (Buenzli et al. 2012), we can
determine scaling coefficients which allows a systematic
calibration of πact

(
TGFβ

kTGFβOCa

)
and πact

(
RANKL
kRANKLOC

)
. Indeed, these

functions depend on the active and precursor cell densities.
In the original models, the constants in these functions were
calibrated such as to obtain a strong biochemical feedback
response. Maintaining this strong biochemical response is
the aim of this re-calibration.

The calibration is realised at fbm =0.90. Both the turnover
rate value and the values of kres and kform have been changed
according to the literature. Hence, by isolating OBa and OCa
in the two new constraints of the steady state, the active
osteoblast and active osteoclast read:
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Table 1 Nomenclature
Symbol Description Value

χBV Turnover rate Extrapolated function of fbm from Parfitt
(1983)

OBu Uncommitted osteoblasts Given function of fbm, determined to
fulfil the steady state

OCu Uncommitted osteoclasts Given function of fbm, determined to
fulfil the steady state

kform Daily volume of bone matrix formed per
osteoblast

150µm3/day (Buenzli et al. 2014)

kres Daily volume of bone matrix resorbed per
osteoclast

9.43× 103 µm3/day (Buenzli et al. 2014)

λ Strength of the mechanical transduction in
formation

0.5 (parametric study)

κ Strength of the mechanical transduction in
resorption

18pM/day (with μmicro
bm ), 19pM/day (with

μ tissue) (Parametric study)

cmicro
bm Stiffness tensor of the bone matrix phase

⎛
⎜⎜⎜⎜⎜⎝

28.4 11.0 10.4 0 0 0
11.0 20.8 10.3 0 0 0
10.4 10.3 18.5 0 0 0
0 0 0 12.9 0 0
0 0 0 0 11.5 0
0 0 0 0 0 9.3

⎞
⎟⎟⎟⎟⎟⎠
GPa

(Ashman et al. 1984, Fritsch and
Hellmich 2007)1

cmicro
vas Stiffness tensor of the vascular phase 2.3 ·

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
GPa

(Murdock 1996)

Nx Normal force −700 N (see Sect. 2.1)

M Bending moment 50 Nm (see Sect. 2.1)

DOCu Differentiation rate of OCu into OCp 0.42/day (Pivonka et al. 2013)

DOBu Differentiation rate of OBu into OBp 0.7/day2

DOCp Differentiation rate of OCp into OCa 2.1/day

DOBp Differentiation rate of OBp into OBa 0.166/day

POBp Proliferation term of OBp 3.5× 10−3/day

AOCa Apoptosis rate of OCa 5.65/day

AOBa Apoptosis rate of OBa 0.211/day

kTGFβ
OCa

Parameter for TGFβ binding on OBu and
OCa

5.63× 10−4 pM

kTGFβ
OBp

Parameter for TGFβ binding on OBp 1.89× 10−3 pM

kPTHOB Parameter for PTH binding on
OB (activator)

150pM

kPTHOB Parameter for PTH binding on
OB (repressor)

0.222pM

kRANKLOCp
Parameter for RANKL binding on OCp 16.65pM

NRANK
OCp

Number of RANK receptors per OCp 1× 104

kMCSF
OCu

Parameter for MCSF binding on OCu 1× 10−3 pM (Pivonka et al. 2013)

PPTH Systemic concentration of PTH 2.907pM

POPPTH PPTH when simulated osteoporosis 2.954 pM (Parametric study)

DOPG Degradation rate of OPG 0.35/day

βOPG
OBa

Production rate of OPG per OBa 1.63× 108/day
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Table 1 continued
Symbol Description Value

OPGsat Saturation of OPG 2× 108 pM

DRANKL Degradation rate of RANKL 10/day

βRANKL
OBp

Production rate of RANKL per OBp 1.68× 105/day

kRANKLOPG Parameter for RANKL binding on OPG 1× 10−3/pM

kRANKLRANK Parameter for RANKL binding on RANK 0.034/pM

DTGFβ Degradation rate of TGFβ 2/day

nboneTGFβ Density of TGFβ stored in the bone matrix 1× 10−2 pM

δ Scaling parameter for the calibration of
χBV

0.255 (Appendix section “Recalibration
of the model”)

γ Scaling parameter for the calibration of
OBa

1.132 (Appendix section “Recalibration
of the model”)

β Scaling parameter for the calibration of
OCa

0.090 (Appendix section “Recalibration
of the model”)

1Note that in comparison with Scheiner et al. (2013), the x- and z-axes are switched.
2Unless otherwise specified, parameter values are taken from Buenzli et al. (2012)

OCnew
a = χnew

BV

knewres
= β · OCa (29)

OBnew
a = knewres · OCnew

a

knewform
= γ · OBa (30)

if δ is the coefficient of proportionality between the new bone
turnover rate and the previous one, β = δ · kres/knewres and
γ = δ · kform/knewform. These coefficients are introduced in
the determination of TGFβ and OPG. Previously, TGFβ was
(Buenzli et al. 2012):

TGFβ = Pext
TGFβ + nboneTGFβ kres OCa

DTGFβ
(31)

The new one becomes:

TGFβnew = Pext
TGFβ + nboneTGFβ knewres OCnew

a · δ−1

DTGFβ
(32)

The same manipulation is realised on the determination
of OPG. The factor βOPG

OBa
OBa in Eq. (27) becomes βOPG

OBa

OBnew
a γ −1.

Appendix 2: Update frequency of mechanical state
in the numerical algorithm

In our model, to simulate osteoporosis and the change of
porosity with time, we need to solve the temporal equa-
tions of the bone cell populations model, Eqs. (14)–(17) and
Eq. (12). Those equations via the mechanical feedback are
correlated with the spatial Eqs. (2) and (42). Knowing the
porosity distribution is required to determine the stress and
strain distributions. Hence, we have a semi-coupled algo-
rithm (Fig. 2).

However, due to the separation of time scale, we can
decompose the problem into two parts. Indeed, it takes more

Fig. 11 The evolution of the bone matrix volume fraction for differ-
ent time steps. Note that this RVE is in the intracortical region which
undergoes first resorption and then formation due to the redistribution
of the mechanical loads

time for the microstructure to change significantly enough
to influence the bone cell populations model. Therefore, we
solve the bone cell populations model for a duration Δt,
assuming the mechanical feedback to be constant in this time
interval. Then, we recalculate the stress and strain distribu-
tions based on the newporosity distribution, and this becomes
the new mechanical feedback.

A sensitivity analysis of the solution in the time stepΔt of
evolution of cell densities and bonematrix volume fraction is
required. For very small time steps (Δt ≤ 1day), one would
expect the algorithm to converge to the exact solution. On
the other hand for very large time steps (Δt ≥ 5years), a
large deviation from the exact solution is expected. Figure 11
shows the evolution of the bone matrix volume fraction for
one selected RVE (y = 0, z = −10mm) in the cross section.
These simulations show that time steps of Δt = 250days, 1
and 2years lead to very similar evolution of the bone matrix
volume fraction. On the other hand,Δt = 5years and 10years
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lead to strong deviations from the smaller time increments.
For all the simulations of 40years of osteoporosis, we used
a time step of 2years.

Appendix 3: Generalised Beam theory for inhomo-
geneous materials

In the following, we represent the governing equations using
a Cartesian (x , y, z) coordinate system. The x-axis repre-
sents the beam axis and coincides with the direction of the
vascular pores (i.e. Haversian systems). The y and z coordi-
nates describe a material point in the cross section (Fig. 1c).
The origin of the system is known as the normal force cen-
tre: NC. Since our cross sections are inhomogeneous all the
quantities, including the stiffness, are functions of y and z.

First, based on the constitutive relation: Hooke’s law, we
determine the strain and stress relation:

σ tissue(y, z, t) = C
tissue(y, z, t) : εtissue(y, z, t) (33)

where σ tissue(y, z, t) and εtissue(y, z, t) are the “tissue” stress
and strain and Ctissue(y, z, t) the tissue stiffness matrix. The
stiffness matrix is determined at the tissue scale, and the
explanation is presented in Sect. 2.1.

Based on the Bernoulli hypothesis, the strain distribution
appears to be a plane and remains plane even after deforma-
tion. This is whywe can decompose the strain by introducing
three constants: ε1, κ3 and κ2.

εtissuexx (y, z, t) = ε1(t) − κ3(t)y + κ2(t)z. (34)

By introducing this relation into Hooke’s law, we obtain:

σ tissue
xx (y, z, t) = C

tissue
xx (y, z, t) (ε1(t) − κ3(t)y + κ2(t)z)

(35)

Because we assume the shear force to be null, the stress ten-
sor is reduced to one component: σ tissue

xx (y, z, t). And with
Bernoulli hypothesis, the strain tensor contains only one
component. Hence, the stiffness matrix can be replaced by
the component Ctissue

xx (y, z, t).
Here we can see that if we determine the strain constants,

we would know the stress distribution. The mechanical load-
ings, the inputs of thismodel, allowus to determine the strain.
Indeed, the cross section is supposed to be under a normal
force: N and a bendingmoment M here divided in two bend-
ing moments: My and Mz , such as M m̂ = My ŷ + Mz ẑ.

By definition of the stress, we have the relations:

N =
∫

σ tissue
xx (y, z, t)dA (36)

My =
∫

z · σ tissue
xx (y, z, t)dA (37)

Mz = −
∫

y · σ tissue
xx (y, z, t)dA (38)

By introducing the static moments of first and second order:
E A, ESy , ESz , E Iyy , E Izz , E Iyz , the equations become the
following constitutive relation:

⎡
⎣ N
My

Mz

⎤
⎦ =

⎡
⎣ E A ESy ESz
ESy E Iyy E Iyz
ESz E Iyz E Izz

⎤
⎦

⎡
⎣ε1

κ2
κ3

⎤
⎦ (39)

where:

E A =
∫

C
tissue
xx (y, z, t)dA

ESy =
∫

C
tissue
xx (y, z, t) · ydA

E Iyy =
∫

C
tissue
xx (y, z, t) · y2dA

ESz =
∫

C
tissue
xx (y, z, t) · zdA

E Izy =
∫

C
tissue
xx (y, z, t) · yzdA = E Iyz

E Izz =
∫

C
tissue
xx (y, z, t) · z2dA

If we chose the origin of the coordinate system at the
normal centre (NC) of the cross section, the coupling terms
between extension and bending vanish since they become
null by definition of the NC:

ESy =
∫

C
tissue
xx (y, z, t) · ydA = 0 (40)

ESz =
∫

C
tissue
xx (y, z, t) · zdA = 0 (41)

The constitutive relation can be simplified as:

⎡
⎣ N
My

Mz

⎤
⎦ =

⎡
⎣E A 0 0

0 E Iyy E Iyz
0 E Iyz E Izz

⎤
⎦

⎡
⎣ε1

κ2
κ3

⎤
⎦ (42)

Determination of the normal force centre NC

The special location of the origin of the coordinate system
for which the coupling terms (ESy and ESz) between exten-
sion and bending become zero is by definition called the
normal force centre NC. The result of this definition is that
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an axial force N which acts at the NC only causes straining
and no bending. The coupling terms are also referred to as
weighted static moments or weighted first order moments.
To find the position of the coordinate system for which the
coupling terms become zero requires a tool.

Assume a temporary coordinate system: y− z fromwhich
the porosity distribution is known. The shift in origin of this
coordinate system with respect to the y–z coordinate system
through the unknown NC is denoted with yNC and zNC . The
temporary coordinate system can be expressed in terms of
the y–z coordinate system as:

y = y + yNC z = z + zNC

Hence:

ESy =
∫

C
tissue
xx (y, z, t) · ydA

=
∫

C
tissue
xx (y, z, t) · ydA + yNC

∫
C
tissue
xx (y, z, t)dA

= ESy + E A · yNC (43)

ESz =
∫

C
tissue
xx (y, z, t) · zdA

=
∫

C
tissue
xx (y, z, t) · zdA + zNC

∫
C
tissue
xx (y, z, t)dA

= ESz + E A · zNC (44)

By definition, ESy and ESz with respect to the y–z coordi-
nate system are zero fromwhich the unknown position of the
NCwith respect to the known position of the y– z coordinate
system can be found:

yNC = ESy
E A

(45)

zNC = ESz
E A

(46)

To conclude, here is the step-by-step methodology we are
using to find the stress and strain distribution in the cross
section:

1. Localise the normal centre (NC) by computing the inte-
grations: E A, ESy , ESz .

2. Compute the integrations: E Iyy , E Izz and E Iyz .
3. Determine the cross-sectional forces: N , My and Mz .
4. Calculate the cross-sectional deformations: ε1, κ2 and κ3

based on Eq. (42).
5. Find the strain distribution based on the kinematic rela-

tion, Eq. (34). Here it is important to remember to use
the coordinate centred in NC.

6. Find the stress distribution based on Hooke’s law,
Eq. (33).

The initial cross section is extracted from a microradi-
ograph, as it is explained in Sect. 2.4; the mechanical loading
is not symmetrical. Hence, the position of the NC is chang-
ing. This is why we need to localise it after each step.
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