
Biomech Model Mechanobiol (2016) 15:479–496
DOI 10.1007/s10237-015-0702-0

ORIGINAL PAPER

A phase-field model for fracture in biological tissues

Arun Raina1 · Christian Miehe1

Received: 28 March 2015 / Accepted: 1 July 2015 / Published online: 14 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This work presents a recently developed phas-
e-field model of fracture equipped with anisotropic crack
driving force to model failure phenomena in soft biolog-
ical tissues at finite deformations. The phase-field models
present a promising and innovative approach to thermody-
namically consistent modeling of fracture, applicable to both
rate-dependent or rate-independent brittle and ductile failure
modes. One key advantage of diffusive crack modeling lies
in predicting the complex crack topologies where methods
with sharp crack discontinuities are known to suffer. The
starting point is the derivation of a regularized crack sur-
face functional that Γ -converges to a sharp crack topology
for vanishing length-scale parameter. A constitutive balance
equation of this functional governs the crack phase-field
evolution in a modular format in terms of a crack driving
state function. This allows flexibility to introduce alterna-
tive stress-based failure criteria, e.g., isotropic or anisotropic,
whose maximum value from the deformation history drives
the irreversible crack phase field. The resulting multi-field
problem is solved by a robust operator split scheme that
successively updates a history field, the crack phase field
and finally the displacement field in a typical time step.
For the representative numerical simulations, a hyperelastic
anisotropic free energy, typical to incompressible soft bio-
logical tissues, is used which degrades with evolving phase
field as a result of coupled constitutive setup. A quantitative
comparison with experimental data is provided for verifica-
tion of the proposed methodology.
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1 Introduction

Computational modeling of fracture in soft biological tis-
sues presents a promising research area due to its scope
to help improve the understanding behind surgical treat-
ments or injuries involving mechanical stresses, e.g., balloon
angioplasty, ruptured aneurysm or ligament tear. An extra-
cellular matrix consisting of networks of elastin and collagen
fibers surrounded by smooth muscle cells and fluids consti-
tutes a major part of a tissue; see, e.g., Humphrey (2002).
Elastin networks bear long-range reversible small deforma-
tions and can endure several million deformation cycles
without undergoing fatigue as shown in Gundiah et al.
(2007). The triple-stranded helical structure of collagen fibers
endows structural integrity to soft tissues at finite deforma-
tions due to unraveling of its wavy form (Gelsea et al. 2003).
Due to this microstructural composition, soft biological tis-
sues are nearly incompressible with highly nonlinear and
anisotropic response to mechanical stimulus where more
details can be found in Rhodin (1980) and Chuong and
Fung (1984). The constitutive material modeling of bio-
logical tissues is a constantly evolving research area. See,
e.g., Demiray (1972) and Delfino et al. (1997) where an
isotropic strain energy density for soft biological tissues is
formulated or Vaishnav et al. (1973), Lanir (1979), Fung
et al. (1979) and Billiar and Sacks (2000) which addi-
tionally account for material anisotropy. Another set of
approaches are based on the structural tensors for incorporat-
ing anisotropy into polyconvex free energy functions. See,
e.g., Holzapfel et al. (2000), Menzel and Steinmann (2001)
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and Gasser et al. (2006) where the latter also accounts for
fiber dispersion obtained from the orientation distribution
function. The conditions of polyconvexity for constructing
transversely isotropic or orthotropic free energy functions
are shown in Balzani et al. (2006). These material models
for soft biological tissues represent a class of phenomeno-
logical macroscopic constitutive theories. Another class of
models, presumably more physical, takes into account the
entropic elasticity of collagen fibers arising due to their
nanoscale dimensions. These models are based on the well-
known theory of network models for rubber elasticity (see
James and Guth (1943), Flory and Rehner (1943), Arruda
and Boyce (1993), Miehe et al. (2004)) where a randomly
connected network of polymer chains is found cross-linked
at the microstructure. The micromechanically motivated net-
work models for soft biological tissues treat the collagen
fibers as wormlike chains from the statistical point of view;
see Flory (1969) for a detailed description. Some notable
applications of network models to soft matter such as bio-
logical tissues and fabrics can be found in Bischoff et al.
(2002), Kuhl et al. (2005), Alastrué et al. (2009) and Raina
and Linder (2014).

The mechanical behavior of soft biological tissues under
normal physiological loading conditions can be qualitatively
simulated with the aforementioned modeling approaches.
The successful applications of the same, particularly with
respect to human arterial walls, have been demonstrated
in the references mentioned above. However, under cer-
tain pathological conditions, the soft biological tissues may
undergo fracture which is beyond the scope of modeling
capability of those methods. One such disease is atheroscle-
rosis which affects the flow of oxygen-carrying blood through
the arteries due to narrowing of the lumen (stenosis). This
is caused by accumulation of the extracellular lipids, cal-
cium, foam cells and necrotic tissue forming a plaque-like
substance inside the artery wall as shown in Lendon et al.
(1991) and Loree et al. (1992). When undiagnosed, it can
lead to myocardial infarction, angina or smoker’s leg due to
plaque rupture which releases thrombogenic materials into
blood stream (Gertz and Roberts 1990; Loree et al. 1991).
Upon diagnosis, the treatment of advanced atherosclerosis
is generally followed by a stent implantation in the affected
artery with the balloon angioplasty procedure. The mecha-
nism of balloon angioplasty requires the concerned artery
to be subjected to supra-physiological loading which can
possibly lead to tissue degeneration and fracture (Castaneda-
Zuniga et al. 1980; Gasser and Holzapfel 2007). One refers
to the reviews by Rhodin (1980) and Silver et al. (1989)
for a detailed description of the histological and biomechan-
ical features of an artery. The experimental investigations
in Schulze-bauer et al. (2002) and Holzapfel et al. (2004)
tested layer-specific mechanical properties of the human
stenotic iliac arteries up to rupture to identify their strength

parameters and confirmed the role of different collagen
fiber orientations in different layers yielding anisotropic
behavior. Sommer et al. (2008) performed peeling tests on
medial layers of abdominal aortas to investigate phenom-
ena of artery dissection during surgical treatment. Given the
complexity of material composition and associated deforma-
tion mechanisms at hand, the numerical simulations of soft
biological tissues in the post-critical range due to fracture
are rare. Gasser and Holzapfel (2006) performed numeri-
cal simulations of arterial dissection combining transversely
isotropic energy density with extended finite element method
(Belytschko and Black 1999; Moës et al. 1999) where frac-
ture is modeled by incorporating strong discontinuities via
nodal enrichment strategies. Ferrara and Pandolfi (2008,
2010) used the cohesive damage model (Xu and Needle-
man 1994) by incorporating cohesive interface elements
along the edges of bulk finite elements to model tissue
failure due to balloon angioplasty and medial dissection
under supra-physiological loading conditions. Balzani et al.
(2012) resorted to continuum damage mechanics formulation
(Govindjee and Simo 1991) by introducing internal damage
variables along each fiber direction to simulate angioplasty-
induced rupture.

In this paper, our recent advances in the phase-field model-
ing of fracture (see, e.g., Miehe et al. (2010a, b, 2014), Miehe
and Schänzel (2014)) are used to simulate the complex frac-
ture phenomena in soft biological tissues described above.
The usual shortcomings of the classical Griffith-type theory
of brittle fracture, such as inability to determine branching
cracks, can be overcome by variational methods based on
energy minimization as suggested by Francfort and Marigo
(1998); see also Bourdin et al. (2008), Dal Maso and Toader
(2002), Buliga (1999). The regularized setting of their frame-
work considered in Bourdin et al. (2000, 2008) is obtained
by convergence inspired by the work of image segmenta-
tion by Mumford and Shah (1989). We refer to Ambrosio
and Tortorelli (1990) and the reviews of Dal Maso (1993)
and Braides (1998, 2002) for details on convergent approx-
imations of free discontinuity problems. The approximation
regularizes a sharp crack surface topology in the solid by
diffusive crack zones governed by a scalar auxiliary vari-
able. This variable can be considered as a phase field that
interpolates between the unbroken and the broken states
of the material. Conceptually similar are recently outlined
phase-field approaches to brittle fracture based on the clas-
sical Ginzburg–Landau-type evolution equation as reviewed
in Hakim and Karma (2009). These models may be con-
sidered as time-dependent viscous regularizations of the
above-mentioned rate-independent theories of energy min-
imization. The phase-field approach is embedded into the
theory of gradient-type materials with a characteristic length
scale, as outlined in Capriz (1989), Mariano (2001), Frémond
(2002) and Miehe (2011) and conceptually follows the mod-
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els of continuum damage mechanics; see, e.g., Kachanov
(1986) or Frémond and Nedjar (1996). It is to be empha-
sized here that finite element modeling of fracture such as
cohesive zone models (Xu and Needleman (1994), Ortiz
and Pandolfi (1999)), configurational-force-driven adaptive
remeshing techniques (Ortiz and Quigley (1991), Gürses
and Miehe (2009)), element enrichment techniques (Simo
et al. (1993), Oliver (1996), Linder and Armero (2007),
Linder and Raina (2013)) or nodal enrichment techniques
(Belytschko and Black (1999), Moës et al. (1999) Wells and
Sluys (2001)) suffer in three-dimensional applications with
complex crack topologies. In contrast, the phase-field-type
diffusive crack modeling is a spatially smooth continuum
formulation that avoids the modeling of discontinuities and
can be implemented in a straightforward manner as shown
in Miehe et al. (2010a, b, 2014) to model complex crack pat-
terns.

In Sect. 2, a descriptive motivation of a regularized crack
topology based on a phase field is presented in a purely
geometric setting. As a result, a crack surface functional
is defined with a constitutive law that governs the evo-
lution of the crack phase field. This crack functional is
considered as the crack surface itself which should stay
constant or grow for arbitrary loading processes. For numer-
ical simulations of interest, the crack surface potential is
discretized with finite elements with an operator splitting
strategy adopted for the evolution of the phase field. In
Sect. 3, the local crack driving force, with regard to brittle
failure in isotropic and anisotropic materials is introduced.
For anisotropy, a general orthotropic failure criterion is
developed to model fracture in soft biological tissues. The
anisotropic contributions to the free energy with comments
on its convexity are given in Sect. 4. Finally, Sect. 5 out-
lines representative numerical examples of fracture in soft
biological tissues which demonstrate the features and algo-
rithmic robustness of the proposed phase-field models of
fracture.

2 The geometric approach to phase-field fracture

We summarize the basic ingredients of a purely geometric
approach to the phase-field modeling of fracture, which was
outlined in detail in Miehe et al. (2014).

2.1 Regularization of sharp crack topology

Let B0 ⊂ Rδ be the reference configuration of a material
body with dimension δ ∈ [2, 3] in space and ∂B0 ⊂ Rδ−1

its surface as depicted in Fig. 1. We consider the crack phase
field d : B0 ×T → [0, 1] characterizing for d(X, t) = 0 the
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Fig. 1 Finite deformation of a solid with a regularized crack. The
deformation map ϕ maps at time t ∈ T the reference configuration
B0 ∈ Rδ onto the current configuration Bt . a The crack phase field
d ∈ [0, 1) defines a regularized crack surface functional Γl (d) that con-
verges in the limit l → 0 to the sharp crack surface Γ . b The level set
Γc = {X | d = c} defines for a constant c ≈ 1 the crack faces in the
regularized setting. Parts of the continuum with d > c are considered
to be free space and are not displayed

unbroken and for d(X, t) = 1 the fully broken state of the
material at X ∈ B0 and time t ∈ T . It governs the regularized
crack surface

Γl(d) =
∫
B0

{
1

2l
d2 + l

2
|∇d|2

}
dV (1)

that is formulated in terms of the crack surface density func-
tion γl(d,∇d) = d2/2l + l|∇d|2/2 per unit volume of the
solid. It is governed by the length-scale parameter l. Assum-
ing a given sharp crack topology by prescribing the Dirichlet
condition d = 1 on Γ ⊂ B0, the regularized crack phase field
d in the full domain B0 is obtained by a minimization princi-
ple of diffusive crack topology d = Arg{infd Γl(d)}, yielding
the second-order Euler equation d − l2�d = 0 in B0 with
an exponential-function-type profile of the phase field d as
visualized in Fig. 2b. We refer to Miehe et al. (2010b) for
more details.

2.2 Evolution of the regularized crack surface

Based on the global constitutive equation for the evolution of
the regularized crack surface functional postulated in Miehe
et al. (2014), a local evolution of the phase field is given
as
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Fig. 2 Sharp and diffusive crack modeling. a Sharp crack at x = 0. b
Diffusive crack at x = 0 modeled with the length scale l. Regularized
curves obtained from minimization principle of diffusive crack topol-
ogy

∫
B0

γl dV → Min! with crack surface density function γl . Thick
line crack surface density function γl (1) with regularization profile
exp[−|x |/ l] satisfying d(0) = 1, dotted line higher order regulariza-
tion approach as suggested in Borden et al. (2014)

ηḋ︸︷︷︸
evolution

= (1 − d)H︸ ︷︷ ︸
driving force

− [ d − l2�d ]︸ ︷︷ ︸
geometric resistance

(2)

in the domain B0, along with the homogeneous Neumann
condition ∇d · n0 = 0 on ∂B0 for the crack phase field. The
notation ˙(·) = d/dt (·) refers to the time derivative of the
underlying field. Here, (1 − d)H is the local crack driving
force and is further assumed to be governed by the constitu-
tive function

H = H̃(state(X, s), 0 ≤ s ≤ t)) , (3)

where state stands for additional variables determined by
the model for the anisotropic bulk response under considera-
tion, such as the local energetic state or the local stress state
in the solid. The left-hand side ηḋ of the local evolution in
(2) represents the viscous crack resistance, where η ≥ 0 is a
material parameter. The geometric crack resistance is related
to the variational derivative of the crack surface density func-
tion, i.e., d − l2�d = lδdγl(d,∇d). The Eq. (2) makes the
evolution of the crack phase field dependent on the difference
between the crack driving force and the geometric crack resis-
tance. Note carefully, that the above framework also covers
the rate-independent limit for η = 0, where the crack surface
is simply defined by an equilibrium for crack driving force
and geometric crack resistance.

2.3 Irreversibility constraint on phase-field evolution

Within this work, we focus on an irreversibility of the crack
evolution, governed by the constraint Γ̇l(d) ≥ 0 on the evo-

lution of the regularized crack surface. This is realized by
expressing the local crack driving force H by the maximum
value of the associated crack driving state function D̃

H(X, t) = max
s∈[0,t] D̃(state(X, s)) ≥ 0 , (4)

obtained in the full process history s ∈ [0, t]. This func-
tion must be a monotonous function that depends on state
variables state of the mechanical bulk response, satisfying

D̃|unbroken
state = 0 and D̃|broken

state = ∞ . (5)

Note that the above ansatz is consistent with the local evolu-
tion equation

ḋ = 1

η

〈
(1 − d)D̃ − lδdγl

〉 ≥ 0 (6)

where 〈x〉 := (x + |x |)/2 is the Macauley bracket.1 Hence,
a non-smooth evolution of the crack phase field takes place
when the driving force exceeds the geometric crack resis-
tance δdγl . For the rate-independent limit η → 0, the
associated local evolution equation is

1 Generalized Ginzburg–Landau Equation. Equation (6) was
defined in Miehe et al. (2010b) as a generalized Ginzburg–Landau equa-
tion for the phase-field evolution, when it is represented

ḋ =
〈
− 1

η
δd ψ̂tot

〉
(7)

in terms of the variational derivative of a total energy density function
ψ̂tot by the phase field d. In contrast to classical phase-field equations
as reviewed in Gurtin (1996), the above equation accounts for the irre-
versibility due to the Macauley bracket. The total energy must contain
contributions due to the degrading bulk response and the regularized
fracture surface energy. A simple example for finite elasticity at frac-
ture is

ψ̂tot(F, d) = (1 − d)2ψ̃(F) + gcγl (d,∇d) , (8)

where the parameter gc is a critical energy release rate. For this ansatz,
(7) results in the evolution Eq. (6) with the crack driving state function

D̃ = 2ψ̃(F)

gc/ l
(9)

that contains the nominal energy ψ̃(F) of the undamaged material. In
this variationally consistent setting, the crack driving state function is
derived from a total energy, see Miehe et al. (2014) for more advanced
definitions. In contrast, when starting from (2) and using (4), the defi-
nition of the crack driving is state function D̃ is not constrained to be
related to a variational derivative of an energy. This allows the incorpo-
ration of the convenient stress-based function outlined in (19) below.
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ḋ ≥ 0, [(1 − d)D̃ − lδdγl ] ≤ 0,

ḋ [(1 − d)D̃ − lδdγl ] = 0

}
(10)

2.4 Time integration and operator split

The integration of (2) in the time interval [tn, tn+1]with incre-
ment τ = tn+1 − tn > 0 gives an update for the regularized
crack surface. In what follows, all variables without a sub-
script are time discrete values at the current solution time
tn+1. A robust algorithm for the update of the phase field is
obtained by an operator splitting, keeping the driving force
H = Hn constant in the time step [tn, t]. Note that this driving
force provides the impact from the bulk response to the crack
evolution.

The above assumption covers for theone-path algorithm, a
semi-implicit time integration of the phase field, for themulti-
path algorithm, where H is corrected, an implicit update
scheme withGauss–Seidel-type iterations between the phase
field d(X, t) and the state variables state(X, t) of the bulk
response. In both cases, H = Hn induces an algorith-
mic decoupling of updates for the phase field and the bulk
response in the time interval under consideration, and is the
key ingredient of a modular implementation of phase-field
fracture. The algorithm in Table 1 provides a crack update
module applicable to a wide spectrum of problems. The one-
path algorithm for H = Hn adopted here is in line with the
treatment of Miehe et al. (2010a).

Table 1 Evolution and update of crack surface for given force H

1. Incremental update of crack surface. Semi-implicit time
integration of (2) in [tn, t] with crack driving force
H = const. gives linear update of crack surface

η(d − dn)/τ = (1 − d)H − [ d − l2�d ]

2. Finite element update of crack surface. Space discretization of
phase-field state chd := {dh,∇dh} = Bd dd and optimization
of the incremental potential

Πτ h
d (dd ) = ∫

Bh
0
πτ
d (Bd dd )dV

with the potential density function

πτ
d = η

2τ
(d − dn)2 + lγl (d,∇d) − lγl (dn,∇dn)

−[ (d − dn) − 1
2 (d2 − d2

n ) ]H
results in linear update of nodal degrees of the phase field in

[tn, t]

dd = −[Πτ h
d ]−1

,dd dd
[Πτ h

d ],dd

An incremental quadratic potential is introduced in Miehe
et al. (2014) as

Πτ
d (d) =

∫
B0

πτ
d (cd)dV = 0 (11)

in terms of the quadratic potential density per unit of the
reference volume

πτ
d (cd) = η

2τ
(d − dn)

2 + lγl(d,∇d) − lγl(dn,∇dn)

− [ (d − dn) − 1

2
(d2 − d2

n ) ]H (12)

that depends on current phase field and its gradient cd :=
{d,∇d}. The potential Πτ

d (d) must be stationary, attaining
the minimum value zero for the current phase field d. Hence,
the phase field is determined by the minimization principle

d = Arg{inf
d

Πτ
d(d)}. (13)

The corresponding Euler equation of this minimization prin-
ciple is the linear update equation for the crack phase field

η(d − dn)/τ︸ ︷︷ ︸
crack update

= (1 − d)H︸ ︷︷ ︸
driving force

− [ d − l2�d ]︸ ︷︷ ︸
geometric resistance

(14)

in the domain B0, along with the Neumann condition ∇d ·
n0 = 0 on ∂B0. Note that this provides in the one-path setting
with H = Hn a semi-implicit integration of the continuous
Eq. (2). The link to the bulk response is exclusively governed
by the driving force H. Keeping it constant, fully decouples
the update of the crack phase field from the update of the
constitutive response of the bulk.

2.5 Finite element discretization of crack phase field

The finite element implementation of the potential Πτ
d in (11)

is straightforward, yielding the space-discrete formulation

Πτ h
d (dd) =

∫
Bh

0

πτ
d (Bddd)dV = 0 (15)

based on the discretization chd(X, t) = Bd(X)dd(t) in terms
of the finite element interpolation matrix Bd and the nodal
values dd of the phase field in a typical finite element mesh.
The nodal values follow from the optimization problem

dd = Arg{ inf
dd

Πτ h
d (dd) }, (16)
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for the quadratic space-discrete potential, yielding the closed-
form update of the nodal values for the phase field

dd = −
[∫

Bh
BT
d [∂2

cdcdπ
τ
d (Bddd n)Bd dV

]−1

∫
Bh

BT
d [∂cdπτ

d (Bddd n)] dV . (17)

Reader is referred to Miehe et al. (2010b) for more details
on the finite element implementation of the phase-field frac-
ture. Note again that this solution is independent from the
finite element updates of bulk response due to the algorith-
mic decoupling within the time step under consideration. The
only interface to the bulk response is provided by the driving
force Hn that enters the potential πτ

d in (12); see Table 1.

3 Driving force for brittle failure and transition
rules

The impact from the bulk response on the crack propagation
is governed by the crack driving force H that is linked to
a constitutive crack driving state function D̃(state). Vice
versa, the crack phase field enters the state functions of the
bulk material via constitutive transition rules f̂ (state; d) f-
rom the unbroken to the broken state. This section outlines
general structures of these functions, which are specified for
a model problem in Sect. 5.

3.1 The maximum principal stress driving force
criterion

The key aspect is the modeling of the constitutive functionH,
introduced in (4), that governs the local nominal crack driving
force depending on the stress state. A brief summary of the
principal stress-based growth function developed in Miehe
et al. (2014), that depends on a spectral decomposition of the
nominal Cauchy stress of the undamaged solid material is
given below

σ =
3∑

a=1

σa na ⊗ na , (18)

where {σa} are the principal stresses and {na} the eigenvec-
tors. The crack driving state function considered is

D̃iso = ζ

〈
3∑

a=1

( 〈σa〉
σcrit

)2

− 1

〉
(19)

and models an isotropic failure surface in the principal stress
state. σcrit > 0 is a critical fracture tensile stress and ζ > 0
a material parameter that enforces the slope of the quadratic

driving force function. Note that this criterion is characterized
by a threshold, that guarantees the existence of non-damaged
zones where the crack phase field is zero. To model the fail-
ure response in anisotropic biological tissues, the criterion
(19) needs to account for the inherent tissue morphology,
giving rise to an orthotropic behavior, for accurate predic-
tion of the failure response as presented in the following
sections.

3.2 Alignment of principal orthotropy axes in soft
tissues

The histology of biological tissues makes them ideally an
orthotropic material due to the presence of two identical fiber
families with different directions a(1) and a(2) inclined at a
certain angle as discussed in detail in Sect. 4.2. To incorporate
an orthotropic failure criterion, local orthotropy axes gi are
defined in addition to the global Cartesian coordinate axes ei
for i = 1, . . . , 3 as follows,

g1 = a(1) + a(2)∣∣a(1) + a(2)
∣∣ , g2 = a(2) − a(1)∣∣a(2) − a(1)

∣∣ and

g3 = g1 × g2∣∣g1 × g2

∣∣ , (20)

which are orthonormal with unit magnitude. See Fig. 3 for an
illustration of the different coordinate systems. Based on the
local orthotropic triad {gi }i=1,3, a second-order anisotropy
tensor A is introduced as

A = a1 g1 ⊗ g1 + a2 g2 ⊗ g2 + a3 g3 ⊗ g3 (21)

e2

e1

g2
g1

e3, g3
2γ

θ
plane of

fiber families

a(1)

a(2)

Fig. 3 Illustration of the global Cartesian coordinate system spanned
by the orthonormal unit vectors {ei }i=1,3 with a local orthotropic axes
spanned by the orthogonal unit vectors {gi }i=1,3. The unit tangents a(1)

and a(2) to the two fiber families are inclined at an angle of 2γ to each
other. The 1and2 directions span the plane of fiber families (plane of
paper) and 3 direction points into the plane of the paper

123



A phase-field model for fracture in biological tissues 485

where the coefficients {ai }i=1,3 are the scaling factors along
the orthotropy axes {gi }i=1,3, respectively. The tensor A in
(21) automatically satisfies the conditions of invariance as
imposed in (24). For the plane problems of interest here, the
components of the anisotropy tensor A for an arbitrary coun-
terclockwise rotation by angle θ of orthogonal axes {gi }i=1,2

along e3 axis are given as

Ai j =
⎡
⎣a1 cos2 θ + a2 sin2 θ (a1 − a2) cos θ sin θ 0

(a1 − a2) cos θ sin θ a1 sin2 θ + a2 cos2 θ 0
0 0 1

⎤
⎦ .

(22)

It needs to be emphasized here that the above representation
recovers the case of transverse isotropy and isotropy by the
following:

– Transverse isotropy: By setting a1 = a2.
– Isotropy: By setting a1 = a2 = a3.

The coefficients {ai }i=1,3 enter as the material parameters in
the model. However, only two independent coefficients need
to be prescribed for a three-dimensional problem and only
one for a two-dimensional problem. The remaining coeffi-
cient is set to unity for the given direction of the critical
fracture tensile stress σcrit.

3.3 Anisotropic tensile stress-based driving force
criterion

In this section, we derive a general orthotropic failure crite-
rion based on the tensile part of the symmetric Cauchy stress
tensor σ . The crack driving state function in (4), alternative to
(19), with a threshold is obtained from a scalar-valued tensor
function Φ(σ+) as

D̃ani = ζ
〈
Φ(σ+) − 1

〉
with

σ+ =
3∑

a=1

〈σa〉 na ⊗ na . (23)

The argument σ+ of function Φ is characterized by a symme-
try group RO(3) ⊂ SO(3), which is a subset of the special
orthogonal group SO(3), and satisfies the following invari-
ance condition

Φ(σ+) = Φ(R σ+ RT ) ∀ R ∈ RO(3). (24)

The function Φ is restricted to quadratic terms in σ+ by
introducing a symmetric fourth-order anisotropy tensor IA
(Steinmann et al. 1994) and a specific invariant form of failure
surface as

Φ = 1

2σ 2
crit

(σ+ : IA : σ+) with

IA = 1

2
(Aik A jl + Ail A jk)ei ⊗ e j ⊗ ek ⊗ el , (25)

where σcrit is the reference uniaxial critical fracture ten-
sile stress and Ai j are the components of the second-order
anisotropy tensor A for i, j = 1, . . . , 3 introduced in (21).
The symmetry of fourth-order tensor IA with coefficients
{ai }i=1,3 > 0 ensures its positive semi-definite form and
thereby a convex failure surface resulting from (25). Expan-
sion of the first equation in (25), simplified to the case when
orthotropy axes {gi }i=1,3 and the principal axes {ni }i=1,3

coincide with the global axes {ei }i=1,3, reduces to

Φ =
( 〈σ1〉

σcrit/a1

)2

+
( 〈σ2〉

σcrit/a2

)2

+
( 〈σ3〉

σcrit/a3

)2

. (26)

Substitution of (26) in (23) yields an expression for an
orthotropic crack driving state function, similar to (19), as

D̃ani = ζ

〈
3∑

i=1

( 〈σi 〉
σcrit/ai

)2

− 1

〉
. (27)

An illustration of the failure loci is shown in Fig. 4 where
as the corresponding surface of crack driving state function
is shown in Fig. 5. Notice that for ai = 1 for i = 1, . . . , 3,
the criterion for isotropic failure surface (19) is retrieved.
The simulations presented in Sect. 5 employ the general
orthotropic failure criterion (25).

3.4 Transition rules from unbroken to fully broken
response

Depending on the crack phase field d ∈ [0, 1], constitutive
functions in the bulk undergo a phase transition from the
unbroken to the fully broken state. This includes conceptu-
ally a degradation, e.g., for the mechanical stresses, but also a
growth, e.g., for the non-mechanical fluxes at the crack faces.
A general structure of this phase transition for a generic con-
stitutive function f̂ for the bulk response is provided by a
transition rule

f̂ (state; d) = gs(d) f̃ s(state) + gc(d) f̃ c(state) (28)

that depends on the phase-field and a non-specified set
(state) of constitutive state variables for the bulk response.
Here, f̃ s(state) and f̃ c(state) are effective functions in the
unbroken and the fully broken case. The dual weight func-
tions may have the simple form

gs(d) = (1 − d)m and gc(d) = dm . (29)

123



486 A. Raina, C. Miehe

σ2σ2

σ1σ1

Dani > 0Dani > 0 σcrit/a2

σcrit/a2

σcrit/a1σcrit/a1

elastic rangeelastic range

Dani = 0Dani = 0

a1 = 2, a2 = 1 a1 = 1, a2 = 2

(a) (b)

Fig. 4 Failure surfaces for orthotropic tensile stress failure criterion
(27) in principal plane stress space for different degrees of anisotropies
with coefficients a a1 = 2, a2 = 1 and b a1 = 1, a2 = 2 used in

second-order anisotropy tensor (21) for the case when orthotropy axes
gi are coincident with the global axes ei for i = 1, . . . , 3

σ2
σ1

Dani

σcrit/a2

σcrit/a1

0

Fig. 5 The surface of orthotropic crack driving state function D̃ani
is shown in the principal plane stress space by plotting Eq. (27) with
scaling coefficients a1 = 2,a2 = 1

Here, gs(d) recovers for m = 1 the classical (1 − d)-theory
of damage and for m = 2 the variational theory of brittle
fracture in elastic solids outlined in Miehe et al. (2010b).

4 Finite elasticity coupled with phase-field fracture

This section focuses on the description of bulk response
undergoing fracture which is coupled to the phase field with
a constitutive setup of degrading energy. Section 4.1 presents
primary field variables and coupled governing equations.
Section 4.2 presents a brief overview of the tissue histol-
ogy concerning human iliac artery. The free energy function
characterizing the anisotropic behavior of the tissues is pre-
sented in Sect. 4.3.

4.1 Primary fields and governing equations

Consider the motion of a bodyB0 given by a nonlinear defor-
mation map ϕ undergoing finite strains with given body force

γ̄ per unit volume. The overall response of the body under
fracture is described by the crack phase field d and the defor-
mation field ϕ written as

ϕ :
{
B0 × T → Rδ

(X, t) �→ x = ϕ(X, t).
(30)

ϕ maps at time t ∈ T the materials points X ∈ B0 of refer-
ence configuration B0 ∈ Rδ to spatial points x ∈ Bt in the
current configuration Bt ∈ Rδ . The deformation gradient is
F = ∇ϕ(X, t) ∈ GL(δ), which is imposed to constraint
J := det [F] > 0. Furthermore, let g ∈ Sym+(δ) be the
standard metric of current configuration Bt , the pull back of
which yields the right Cauchy-Green tensor C = FT gF. A
schematic illustration of the two primary unknowns with the
corresponding boundary conditions is shown in Fig. 6. For
the soft biological tissue under consideration, the body B0

is assumed to consist of two fiber families denoted by unit
vectors a(a) for a = 1, 2 with the corresponding structural
tensors given as

M(1) = a(1) ⊗ a(1) and M(2) = a(2) ⊗ a(2). (31)

In order to construct the constitutive equations for hypere-
lastic response, an objective anisotropic free energy function
is introduced which depends on the deformation gradient F
and the structural tensors M(1,2) as

Ψ = Ψ̂ (F, M(1,2); d,∇d), (32)

and represents the energy stored per unit reference volume.
The dependence on the fracture phase field d and its gradient
∇d is considered as ageometric property and hence separated
by a semicolon. The degradation of the stored energy due to
evolving phase field d takes the form
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∇d ·n0 =0
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l

P ·n0 =T̄
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ϕ=ϕ̄
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X ∈ B0X ∈ B0

(a) (b) (c)

Fig. 6 A schematic of primary fields in body B0 undergoing fracture.
The deformation field ϕ, the fracture phase field d and the history
field H are defined on the solid domain B0. a The deformation field
is constrained by the Dirichlet- and Neumann-type boundary condi-
tions ϕ = ϕ̄ on ∂Bϕ

0 and P · n0 = T̄ on ∂BT
0 with ∂B0 = ∂Bϕ

0 ∪ ∂BT
0 .

b The fracture phase field is constrained by the possible Dirichlet-type
boundary condition d = 1 on Γ and the Neumann condition ∇d ·n0 = 0
on the full surface ∂B0. c The history field H defined in Eq. (4) is based
on the maximum of stress-based criterion in the deformation history. It
drives the evolution of the fracture phase field d via Eqs. (19) or (23)

Ψ̂ = [gs(d) + k]Ψ̃ (F, M(1,2)) (33)

following the argument in (28). Here, Ψ̃ is energy stored in
undamaged material with a specific form given in Sect. 4.3
and gs(d) is a monotonically decreasing function defined
in (29). At a fully broken state d = 1, the full degra-
dation of the energy Ψ̂ in (33) is circumvented by the
artificial elastic rest energy density kΨ̃ for small parameter
k ≈ 0.

The final sets of governing coupled equations of finite elas-
ticity with phase-field fracture are shown in Table 2 in their
strong form. The first Piola–Kirchhoff stress tensor is intro-
duced as P = [gs(d)+k] P̃ where P̃ for undamaged material
is defined in (38). Following the finite element discretization
of crack phase field in Sect. 2.5, the current deformation
field ϕ ≈ ϕh is approximated from the minimization of dis-
cretized potential density πτ

ϕ as

dϕ = Arg

{
inf
dϕ

∫
Bh

0

πτ
ϕ (Bϕdϕ) dV

}
with

πτ
ϕ = Ψ̂ (Fh, M(1,2); d) − γ̄ · ϕh (34)

given in terms of the discretized deformation gradient chϕ :=
Fh = Bϕdϕ . Here, Bϕ is a global strain displacement
matrix consisting of shape functions and its derivatives, and
dϕ ∈ Rδ is a global array of nodal position vector. A
Newton–Raphson iteration scheme is used for the solution
of the associated Euler equations of nonlinear elasticity at
finite strains as

dϕ ⇐ dϕ −
[∫

Bh
BT

ϕ [∂2
cϕcϕπτ

ϕ ]Bϕ dV

]−1

∫
Bh

BT
ϕ [∂cϕπτ

ϕ ] dV , (35)

Table 2 Coupled governing equations of finite elasticity with fracture

1. Balance of linear momentum

Div[P] + γ̄ = 0

2. Irreversible phase-field evolution

ηḋ = 〈 (1 − d)H − lδdγl 〉 ≥ 0

which updates the current nodal values of the deformation
field at time tn+1.

4.2 Morphology of human iliac artery

One of the most interesting soft biological tissues to study is
blood-carrying arteries due to their significance in medical
examination of relevant diseases as well as their similarity to
other tissues. Among the family of arteries, the elastic iliac
artery is discussed here, although other arteries such as aorta
or carotid have similar structures. A detailed discussion of
the microscopic structure and deformation mechanisms of
such tissues can be found in Rhodin (1980) and Silver et al.
(1989). For conciseness, only a brief summary is presented
here. An artery can be thought of as a composite structure
which mainly consists of three different layers: the adventi-
tia, the media and the intima. These layers are made up of
collagen fibers of type I, surrounded by a groundmatrix con-
sisting of elastin, endothelial cells, fibroblast and fibrocytes.
A schematic illustration of the arterial structure is shown in
Fig. 7. The adventitia is the outermost layer whose thick-
ness is not well defined and depends on its topographical
site and its physiological function. It is surrounded by loose
connective tissue with primary collagen fibers arranged in
a double helix structure around the circumferential direc-
tion and contributes significantly to the artery strength. The
medial layer comes next to adventitial layer and is in the mid-
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Fig. 7 Left illustration of the geometrical characteristics of an iliac
artery where three concentric layers of intima, media and adventitia
form the overall tubular structure. Middle illustration of a dissected
adventitial strip for tensile tests where fiber families a(1) and a(2) are
inclined at an angle γ to the circumferential direction. Right illustration
of a medial strip dissected radially for peeling test with a single fiber
direction a

dle of the three aforementioned layers. In the media too, the
collagen fibers form a double helix structure, however, with
a smaller pitch as compared to the adventitia, and also con-
tributes significantly to the arterial strength. The intima is the
innermost layer and mostly consists of endothelial cells. It is
observed that intima thickens and stiffens with age and these
pathological changes are often associated with the arterial
disease called atherosclerosis. It involves deposition of fatty
substances, calcium, collagen fibers, cellular waste products
and fibrin, generally referred to as atherosclerotic plaque.
This changes geometrical and mechanical properties of the
arterial wall and affects blood-carrying function by partial
blockage of the lumen. A simulation of balloon angioplasty,
which is a surgical intervention to treat atherosclerosis, is
performed in Sect. 5.3 with a real arterial cross section from
Holzapfel et al. (2004) to model tissue rupture.

4.3 Free energy functions for soft biological tissues

The microstructure of arterial walls is composed of wavy
collagen fibers embedded in a soft isotropic matrix. These
fiber families are predominantly identified by two unit fiber
directions a(1) and a(2) aligned at an angle γ with respect to
circumferential direction as illustrated in Fig. 7. An undam-
aged hyperelastic constitutive storage function for arterial
walls is postulated with the following split

Ψ̃ (F, M(1,2)) = μ

β
[(det F)−β − 1] + μ

2
(F : F − 3)

︸ ︷︷ ︸
isotropic matrix

+
2∑

a=1

Ψ̃
(a)
aniso(F, M(a))

︸ ︷︷ ︸
anisotropic fibers

(36)

where the volumetric and deviatoric parts of the isotropic
matrix are not necessarily decoupled. The volumetric part of
the isotropic matrix assures the weak compressibility of the
material in terms of low shear modulus μ ≥ 0 and parame-
ter β = 2ν/(1 − 2ν) given in terms of the Poisson ratio ν.
The deviatoric part represents the energy stored in the soft
isotropic matrix. The polyconvexity of the free energy con-
tribution corresponding to isotropic matrix in (36) is well
understood.

The anisotropic part Ψ̃
(a)
aniso in (36) is the energy stored

in wavy collagen fiber families and has been extensively
proposed in the literature. Here, we follow the potential pro-
posed in Billiar and Sacks (2000) for the anisotropic part to
write

Ψ̃
(a)
aniso(F, M(a)) = k1

k2

[
exp {k2(C : M(a) − 1)} − 1

]

− k1(C : M(a) − 1). (37)

The scalar product C : M(a) of the right Cauchy-Green
tensor C = FT F and structural tensor M(a) is the fourth
invariant which represents the square of the stretch along
the fiber directions a(a) for a = 1, 2. The additional mate-
rial parameters k1 > 0 and k2 > 0 are introduced in
(37) where the former represents fiber stiffness and latter
a dimensionless constant. The key difference of anisotropic
potential in (37) to the potentials introduced in Holzapfel
et al. (2000) and Gasser et al. (2006) lies in the energy
storage in compression of collagen fibers. Here, a very
small compressive stiffness is made available to collagen
fibers for better stability of numerical simulations at certain
deformations. The convexity of the anisotropic free energy
contribution in (37) can be easily established for any general
case by simply evaluating its Hessian to be positive semi-
definite.

The construction of the overall free energy function
(36) automatically fulfills the requirements of polyconvex-
ity, whose results of surface plots and convex contours are
shown in Figs. 8 and 9, respectively. A deformation gradient
F = diag(λ1, λ2, 1) for 0.5 ≤ λ1,2 ≤ 1.5 is used with mate-
rial parameters μ = 10 kPa, ν = 0.3, k1 = 20 kPa, k2 = 2
and γ = 40◦. The derivate of the storage function (36) with
respect to the deformation gradient F gives the undamaged

first Piola–Kirchhoff stress P̃ as

P̃ = −μ(det F)−β F−T + μF

+
2∑

a=1

2 k1
[

exp {k2(C : M(a)−1)}−1
]
(Fa(a) ⊗ a(a)).

(38)
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Fig. 8 For the anisotropic free energy function (36) smoothly contin-
uous surface plot with a softer compressive response is shown in the
stretch space {λ1, λ2}
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Fig. 9 The locally convex contours of the anisotropic free energy func-
tion (36) in the stretch space {λ1, λ2} is shown

5 Representative numerical simulations

This section presents the modeling capabilities of the frame-
work of phase-field fracture applied to the transversel-
y isotropic biological soft tissues particularly the human
iliac artery wall through representative numerical examples
shown in Sects. 5.1, 5.2 and 5.3.

5.1 Uniaxial tensile tests of iliac artery adventitial strips

Strips of artery wall from adventitia layer are dissected along
the circumferential and axial directions as shown in Fig. 7
and subjected to monotonic uniaxial loading tests in the
experimental investigations of Holzapfel et al. (2004). In
the numerical simulations presented in this section, strips
of dimensions 10 × 3 mm2 are used and subjected to a nomi-
nal strain of up to 50 %. The material parameters used are

given in Table 3 which are in close agreement with the
similar parameters used in Gasser et al. (2006). The finite
element computation is performed with approximately 30000
displacement-based (Q1) four-noded quadrilateral elements
with the plane strain assumption and different values for vis-
cosity η = 0, 10−6 and 10−5 kNs/mm2 with length scale
l = 0.06 mm. The problem setup is shown on the left
of Fig. 10 where a vertical displacement u is applied at
top and bottom surfaces in 104 solution steps up to com-
plete failure.The horizontal displacement at these surfaces is
not constrained. The resulting load-displacement curves up
to complete failure along axial and circumferential loading
directions are shown in Fig. 11a, b, respectively.

A quantitative comparison of load-displacement curves
with the experimental results validates the choice of mate-
rial parameters used in Table 3. The anisotropic response
with lower stiffness along the circumferential direction is
very well captured. The crack driving force obtained by the
anisotropic failure criterion (23) results in crack initiation
from the middle right finite element and propagation toward

Table 3 Material properties for uniaxial tensile tests in adventitial strips

No. Parameter Dimension Name Value

1. μ kPa Shear modulus 35.71

2. ν – Poisson ratio 0.45

3. γ Degree Angle 50

4. k1 kPa Fiber stiffness 1200

5. k2 – Exponent 3.5

6. ζ – Failure slope 1.0

7. σcrit kPa Critical stress 350

8. a1 – Scaling coefficient 0.7

a
(2
)a (1)

γ

γ

3 mm

10
m
m

uu

u

u

0.4 mm

a

1.2 mm

4
m
m

(a) (b)

Fig. 10 Problem setup: geometry and loading conditions for a uniaxial
tension test with fiber family a(1,2) orientation separated by angle 2γ

and b peeling test with single fiber family a
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Fig. 11 Uniaxial tension test: plots of the load at top surface of the
specimen against the applied strain for a axial direction and b circumfer-
ential direction, with different values of viscosity η. A comparison with

the respective mean experimental load–strain curves from Holzapfel
et al. (2004) is provided

(a) (b)
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Fig. 12 Uniaxial tensile test: Simulation results of loading in the axial direction are shown with a contours of crack phase field d and b contours
of principal Cauchy stress σ2, at different loading stages

left as soon as the stresses reach the failure surface. The
abrupt loss of stiffness or load-bearing capacity is shown in
the numerical load-displacement curves which is in accord
with the experimental observation. The influence of viscos-
ity parameter can be seen from the plots in Fig. 11 where
the higher viscosity slightly delays crack propagation as
expected. The resulting failure contours of crack phase field d
and maximum principal Cauchy stressσ2 are shown in Fig. 12
for axial direction on the left and right, respectively, where
the elements with d > 0.9 are blanked for visualization. The

snapshots are captured at different applied nominal strains to
show the evolution of crack phase field and stresses. Starting
as a small crack, the failure immediately propagates through
the tissue with a similar behavior observed in circumferential
direction.

5.2 Peeling test of iliac artery medial strips

Study of arterial dissection has enormous relevance of sur-
gical interest which involves tear of delicate internal lining
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of arterial wall. In this section, the experimental investiga-
tions of Sommer et al. (2008) are modeled where the strips
of medial aorta are peeled in the circumferential direction to
study their dissection properties. See Fig. 7 for an illustra-
tion of tissue morphology. In the numerical simulations of
phase-field fracture presented in this section, a medial strip
of dimensions 4 × 1.2 mm2 is used with an initial verti-
cal notch of size 0.4 mm at the top surface as illustrated on
the right of Fig. 10. The bottom surface is fixed, whereas
a horizontal displacement u = 4.5 mm is applied at the
two arms on the top surface in 103 solution steps. Contrary
to the morphology in Sect. 5.1, the medial strip along the
radial direction of the artery in this section possesses a sin-
gle fiber family a aligned perpendicular to the direction of
applied displacement u. The spatial discretization consists
of approximately 7000 displacement-based (Q1) four-noded

Table 4 Material properties for peeling test of medial strips

No. Parameter Dimension Value

1. μ kPa 16.2

2. ν – 0.4

3. k1 kPa 45.1

4. k2 – 2.1

5. ζ – 10.0

6. σcrit kPa 100

7. a1 – 1.0

quadrilateral elements with the plane strain assumption and
viscosity η = 10−5 kNs/mm2 with length scale l = 0.06
mm. The transversely isotropic form of anisotropic stress
driving force criterion (23) is employed for the evolution of
crack phase field as the peeling predominantly takes place in
a single radial plane.

The corresponding material parameters used for the peel-
ing simulation are given in Table 4 which agree closely with
the parameters in Gasser and Holzapfel (2006). The load per
unit width of one of the arms is plotted against the applied
displacement and shown on the right of Fig. 14 with a quanti-
tative comparison with experimental data from Sommer et al.
(2008). Before the crack starts to propagate from the tip of
notch, almost linear response is observed till load per unit
width of approximately 23 mN/mm, which agrees well with
the experimental results of Sommer et al. (2008) and numer-
ical results from Gasser and Holzapfel (2006) and Ferrara
and Pandolfi (2010). At this nearly constant load, the crack
continues to develop downwards vertically till the end of
simulation. The contours of the crack phase field and the
maximum principal Cauchy stress from peeling simulation
are shown in Fig. 13a, b, respectively, in the deformed con-
figuration at different stages of loading.

5.3 Inflation test of atherosclerotic iliac artery

The final example of phase-field modeling of fracture in soft
biological tissues is presented in this section where the pro-

(a)

(b)

0 d [-] 1.0

0 σ2 [kPa] 80

Fig. 13 Peeling test: contours of a crack phase field d and b maximum principal Cauchy stress σ2, shown at different dissection lengths in the
deformed configuration
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Fig. 14 Peeling test: plot of load per unit width on one side of the notch
at top surface against the applied displacement with a comparison to
mean experimental value from Sommer et al. (2008)
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Fig. 15 Inflation test: cross-sectional view of human atherosclerotic
artery with six different material layers, namely adventitia (m1), media
(m2), fibrotic media (m3), fibrous cap (m4), lipid pool (m5) and calci-
fication (m6), as given in Holzapfel et al. (2004)

cedure of balloon angioplasty for an atherosclerotic artery
is simulated. As discussed in Sect. 1, angioplasty is a surgi-
cal intervention to mechanically widen the stenotic lumen by
inflating and implanting a stent inside the artery wall. In this
section, a two-dimensional cross section of a real atheroscle-
rotic artery, obtained by high-resolution magnetic resonance
imaging, from Holzapfel et al. (2004) is taken as the starting
point for numerical analysis, which differs from a simplified
symmetric tubular structure as shown on the left of Fig. 7.
The actual cross section of a diseased artery consists of var-
ious layers, such as adventitia m1, media m2, fibrotic media
m3, fibrous cap m4, lipid pool m5 and calcifications m6, as
marked in Fig. 15. A layer of non-diseased intima is ignored,

and fibrotic intima and diseased fibrotic media are treated as
single layer, i.e., fibrotic media m3, as followed in Balzani
et al. (2012). The overall solution process for the inflation test
is divided into two stages. First, a thermal boundary value
problem is solved in Sect. 5.3.1 to interpolate fiber orienta-
tions in fibrous layers m1, . . . ,m4. Based on the computed
orientations, a mechanical boundary value problem of angio-
plasty is solved next in Sect. 5.3.2 to allow for the realistic
development of phase-field fracture.

5.3.1 Thermal boundary value problem

The complexity of the morphology of the atherosclerotic
artery requires some steps of preprocessing where the fiber
orientations inside the material layers m1,. . ., m4 need to be
computed from given boundary conditions. In order to do so,
a heat-conduction-like problem is solved with the Dirichlet
boundary conditions as shown in the following steps.

1. The geometry in Fig. 15 is first discretized with 6086
four-noded quadrilateral (Q1) elements with materials
tags m1, . . . ,m6 corresponding to each layer.

2. For all nodes i = 1, . . . , na lying on the closed
boundaries ∂1B, ∂2B and ∂3B, compute the x- and y-
components of tangent vectors with the line-weighted
averaging algorithm, which is similar to area-weighted
averaging in Max (1999), as

θ̄ iX = �i−1�Xi + �i�Xi−1

�i−1 + �i
and

θ̄ iY = �i−1�Yi + �i�Yi−1

�i−1 + �i
. (39)

A schematic of the result is shown in Fig. 16a. In Eq. (39),
�(·)k = (·)k − (·)k+1 are the x- and y-components of a
vector between nodes k and k+1 normalized by its length
�k . For further calculations, unit tangents are adopted by
normalization.

3. For the rest of nb nodes inside body B with material
tags m1, . . . ,m4, compute the tangents by solving the
corresponding thermal boundary value problem as

div(K∇θ) + Q = ρcθ̇ with θ = θ̄ on ∂B. (40)

Steady-state heat conduction (θ̇ = 0) is assumed with
zero body heat (Q = 0). Here, ρ is the mass density
and c is the specific heat. For an isotropic constant ther-
mal conductivity K = K1, the above thermal boundary
value problem (40) reduces to the homogeneous Lapla-
cian �θ = 0 with Dirichlet boundary conditions θ = θ̄

on ∂B and is solved for x- and y-components separately.
4. Project the nodal quantities θA for A = 1, . . . , na + nb

of Step 2 and Step 3 to the integration point I of those
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(a) (b) (c)

∂1B
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Fig. 16 Inflation test: a boundary ∂B = ∂1B ∪ ∂2B ∪ ∂3B of fibrous
materials used in thermal problem where tangents (39) are applied, b
solution of thermal problem (40) in the form of tangents at all nodes

representing fiber directions, c zoom of expected zone of failure with
finer mesh/fiber density from encircled part in (b)

finite element with material tags m1, . . . ,m4 using the
isoparametric projection as

θ I
X,Y =

na+nb∑
A=1

N Aθ A
X,Y , (41)

where N A are the corresponding shape functions, same
as used to define the geometry. Each pair {θ I

X , θ I
Y } are

the components of a unit tangent a defining the fiber
orientation at each quadrature point of the discretized
body B. The resulting distribution of fiber orientations in
fibrous layers m1, . . . ,m4 arranged circumferentially is
shown in Fig. 16b.

The steps (1)–(4) complete the preprocessing step of com-
puting fiber orientation distribution which is followed by the
solution of mechanical boundary value problem as shown in
the next subsection.

5.3.2 Mechanical boundary value problem

We start with the same finite element discretization as used in
the previous subsection. The layers of adventitia m1, media
m2, fibrotic media m3 and fibrous cap m4 are treated as
incompressible transversely isotropic fibrous layers where
the free energy (36) applies, with the corresponding material
parameters given in Table 5, where the critical stress val-
ues are chosen from Holzapfel et al. (2004). Only the fiber
direction a(1) := a, aligned circumferentially, is applica-
ble in (36), which is obtained from Sect. 5.3.1. The lipid
pool m5 is treated as a soft incompressible isotropic neo-
Hookean material with shear modulus μ = 0.1 kPa and
Poisson ratio ν = 0.4. The calcifications m6 are treated

Table 5 Material properties for inflation test of atherosclerotic artery

Layer μ (kPa) ν (−) k1 (kPa) k2 (−) σcrit (kPa)

m1 4.1 0.45 67 2.8 350

m2 10.6 0.45 112 2.8 202

m3 20.1 0.45 136 2.8 254

m4 22.71 0.45 175 2.8 155

as harder isotropic neo-Hookean solids with shear modulus
μ = 2 MPa and Poisson ratio ν = 0.3. Linear line ele-
ments are used on the boundary ∂2B to apply a hydrostatic
pressure load of p = 15 kPa ≈ 112.5 mmHg in 104 solu-
tion steps, which falls in the range of average physiological
pressure. The hydrostatic pressure load is non-conservative
which stays normal to the deformed surface, thereby, result-
ing into an unsymmetrical tangent moduli. To account for
the effect of surrounding tissues and fluids, the nodes on the
boundary ∂1B of the arterial wall are constrained by linear
springs with Young’s modulus E = 0.1 kPa pointing out-
wards.

In the two-dimensional numerical analysis presented in
this section, the effect of circumferential residual stresses
(Vaishnav and Vossoughi 1987) is neglected due to its sig-
nificantly lower values (Balzani et al. 2012). During the
simulation, it is observed that peak stresses develop on the
outer wall of the fibrous cap m4 where lipid pool m5 lies
in contact. The snapshots in Fig. 17 depict the contours of
crack phase field at different stages of internal pressures.
Depending upon the transversely isotropic form of driving
force (23), one can clearly observe the initiation and propa-
gation of fracture from outer wall of fibrous cap toward the
inner wall, at its thinnest cross section. The lack of availability
of experimental data presents these simulation results merely
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(a) (b)

(c) (d)

Fig. 17 Inflation test: contours of crack phase field d are shown at different inflation pressures (zoom in the inset) with the maximum damage
obtained in fibrous cap at p = 15 kPa shown in (d). Elements with d > 0.9 are blanked out for visualization

as a qualitative measure of actual fracture during angioplasty,
which can be compared with the simulation results of Fer-
rara and Pandolfi (2010) and Balzani et al. (2012). It is to
be emphasized here that the analysis presented here is only
a mechanical simulation of the actual balloon angioplasty
procedure and ignores the associated biochemical stimuli,
mass transport phenomena and three-dimensional geometri-
cal constraints.

6 Conclusion

We presented an application of recently developed ther-
modynamically consistent continuum phase-field models
for fracture to soft biological tissues with specific focus
on human iliac arteries. One of the key characteristics of
the phase-field model is the derivation of the regularized

crack surface functional, governed by a crack phase field,
which converges to sharp crack topology for vanishing
length-scale parameter. A rate-dependent incremental vari-
ational framework for the evolution of crack phase field is
employed, which is driven by the maximum stress-based
driving force from the deformation history. In addition, a
general orthotropic failure criterion is developed and used
to compute the driving forces for phase-field growth in soft
biological tissues. The construction of constitutive relations
allows the degradation of full anisotropic energy storage
function, which takes into account the contribution of col-
lagen fibers embedded in a soft surrounding matrix, with
evolving crack phase field. Representative numerical simu-
lations of fracture in soft biological tissues are run which
provide quantitative comparisons with experimental data to
confirm the accuracy and applicability of phase-field models
of fracture.
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