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Abstract Trabecula, an anatomical unit of the cancellous
bone, is a porous material that consists of a lamellar bone
matrix and interstitial fluid in a lacuno-canalicular porosity.
The flow of interstitial fluid caused by deformation of the
bone matrix is believed to initiate a mechanical response in
osteocytes for bone remodeling. In order to clarify the effect
of the lamellar structure of the bone matrix—i.e., variations
inmaterial properties—on the fluid flow stimuli to osteocytes
embedded in trabeculae, we investigated the mechanical
behavior of an individual trabecula subjected to cyclic load-
ing based on poroelasticity. We focused on variations in the
trabecular permeability and developed an analytical solution
containing both transient and steady-state responses for inter-
stitial fluid pressure in a single trabecular model represented
by amultilayered two-dimensional poroelastic slab.Based on
the obtained solution, we calculated the pressure and seepage
velocity of the interstitial fluid in lacuno-canalicular porosity,
within the single trabecula, under various permeability dis-
tributions. Poroelastic analysis showed that a heterogeneous
distribution of permeability produces remarkable variations
in the fluid pressure and seepage velocity in the cross sec-
tion of the individual trabecula, and suggests that fluid flow
stimuli to osteocytes aremostly governed by the value of per-
meability in the neighborhood of the trabecular surfaces if
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there is no difference in the average permeability in a single
trabecula.
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1 Introduction

Trabeculae are microstructural components of cancellous
bone that maintain a three-dimensional network structure
based on the applied mechanical loading. The arrangement
of the trabeculae is continually reorganized owing to bone
remodeling to satisfy mechanical demands. Figure 1 shows
the schematic of the hierarchical bone structure from the
cellular level to the organ level. Bone tissue is renewed by
osteoclastic bone resorption and osteoblastic bone forma-
tion on individual trabecular surfaces, which is called the
remodeling cycle (Parfitt 1994). Although the well-ordered
cellular behavior during the process of the remodeling cycle
is still unclear, osteocytes buried in calcified bone matrix
are believed to be responsible for regulating the activities of
osteoclasts and osteoblasts (Tatsumi et al. 2007; Bonewald
2011; Nakashima et al. 2011). From an anatomical point of
view, the osteocyte network via slender cell processes housed
in a lacuno-canalicular porosity is considered to be suitable
for sensing the surrounding mechanical environment (Cowin
et al. 1991; Sugawara et al. 2005; Himeno-Ando et al. 2012).

Experimental and theoretical studies have shown that the
flow of interstitial fluid in a lacuno-canalicular porosity is
likely to be amechanical cue initiating an osteocytic response
(Weinbaumet al. 1994;Burger andKlein-Nulend 1999; Price
et al. 2011; Kameo and Adachi 2014). The interstitial fluid
flow is triggered by deformation of the bone matrix under
external loading, which is typically cyclic because of loco-
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Fig. 1 Hierarchical bone structure from the cellular to the organ level. The individual trabeculae in cancellous bone contain a lamellar bone matrix
and interstitial fluid in a lacuno-canalicular porosity

motion and the maintenance of posture (Weinbaum et al.
1994). As shown in Fig. 1, the bone matrix of trabeculae has
a lamellar structure comprisingmineral crystals and collagen
fibers (Martin et al. 1998), formed by repeated remodeling
cycles. Thus, the mechanical properties of the bone matrix
are directional and different for each lamella. Indeed, the
dispersion in the measured values of the bone material prop-
erties (e.g., Turner et al. 1999) suggests that these properties
can vary spatially even in the same bone tissue. Among the
variousmaterial properties, the heterogeneous distribution of
permeability, whichmeasures the ability of a porousmaterial
to transmit fluid, can significantly influence the behavior of
interstitial fluid in the lacuno-canalicular porosity within the
individual trabeculae (Beno et al. 2006; Kameo et al. 2010;
Pereira and Shefelbine 2014).

For quantitative evaluation of the interstitial fluid flow in
bone tissue, Biot’s poroelastic theory (Biot 1941, 1955) has
been widely used (Cowin 1999). Poroelasticity is a contin-
uum theory that considers the mechanical behavior of fluid-
saturated porous media based on the interaction between the
deformation of the solid matrix and the flow of the internal
fluid. A number of analytical studies on fluid-saturated bones
have employed the poroelastic approach that considers bone
tissue as an isotropic material (Zhang and Cowin 1994; Zeng
et al. 1994) or a transversely isotropic material (Rémond
and Naili 2005). In other studies, a poroelastic finite ele-
ment method has been applied to quantify the fluid pressure
behavior in bone tissue (Manfredini et al. 1999;Rémond et al.
2008; Pereira and Shefelbine 2014). Rémond et al. (2008)
considered the spatial distribution of bone mechanical prop-
erties in finite element simulations to solve the poroelastic
problem associated with a hollow cylindrical osteon. In our
previous work, we derived an analytical solution containing
both transient and steady-state responses for the interstitial
fluid pressure in a two-dimensional trabecula when subjected

to cyclic loading (Kameo et al. 2008, 2009). In our analyt-
ical study, the trabecula was assumed to be a homogeneous
and isotropic material for simplicity, despite the fact that the
bone matrix is made of several lamellae.

The purpose of the present study is to clarify the effect of
the lamellar structure of the bone matrix—i.e., variations in
material properties—on the fluid flow stimuli to osteocytes
embedded in trabeculae. We used an analytical approach to
investigate the response of the interstitial fluid pressure in
the lacuno-canalicular porosity within the single trabecula
to applied cyclic loading. We focused on variations in per-
meability because it is a key factor for characterizing the
interstitial fluid flow. In our developed model, a single tra-
becula is idealized as a two-dimensional poroelastic slab
composed of multiple layers, where each layer is an isotropic
material and has a different value of permeability.We present
an analytical solution for the interstitial fluid pressure in
the single trabecula as a summation of the transient and
steady-state parts by solving the governing equations for the
quasi-static poroelasticity. Based on the obtained solution,
we demonstrate how variations in permeability influence the
pressure and seepage velocity of interstitial fluid, which are
associated with the mechanical stimuli to osteocytes.

2 Poroelastic analysis

2.1 Governing equations

We used the linear poroelasticity (Detournay and Cheng
1993; Wang 2000; Coussy 2004) to describe the solid–fluid
interaction in a single trabecula under the assumptionof small
perturbations. In particular, we focused on the quasi-static
mechanical behavior because the bone tissue within a living
body is usually subjected to low-frequency cyclic loading
from activities of daily living.
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Fig. 2 Model of a single
lamellar trabecula subjected to
cyclic loading. The trabecula is
idealized as a two-dimensional
poroelastic slab consisting of n
layers. This model represents
the longitudinal cross section of
a cylindrical trabecula
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For an isotropic poroelastic material, the total stress ten-
sor σi j and fluid pressure p satisfy the diffusion equation
obtained from the fluid continuity equation:

c∇2
(

σkk + 3

B
p

)
= ∂

∂t

(
σkk + 3

B
p

)
, (1)

where∇2 represents the Laplace operator and the summation
convention on repeated indices is adopted. In the above equa-
tion, the diffusion coefficient c and Skempton coefficient B
are given by

c = k

μ

[
2GB2 (1 − ν) (1 + νu)

2

9 (1 − νu) (νu − ν)

]
(2)

B = 1/K − 1/Ks

φ/K f + 1/K − (1 + φ)/Ks
, (3)

whereG, ν, and K are, respectively, the shearmodulus, Pois-
son’s ratio, and the bulkmodulus under the drained condition,
satisfying K = 2G (1 + ν)/3 (1 − 2ν). Ks is the solid bulk
modulus, K f is the fluid bulk modulus, φ is the porosity, k is
the intrinsic permeability, and μ is the dynamic viscosity of
the fluid. The undrained Poisson’s ratio νu can be expressed
in the following form:

νu = 3ν + αB (1 − 2ν)

3 − αB (1 − 2ν)
, (4)

where α is the Biot–Willis coefficient given by

α = 1 − K

Ks
, (5)

Another relationship between the sum of the three normal
stresses σkk and the fluid pressure p can be obtained from
the strain compatibility equations:

∇2
[
σkk + 2α (1 − 2ν)

(1 − ν)
p

]
= 0. (6)

Equations (1)–(6) constitute the set of governing equa-
tions to be solved. Seven independent material properties
are required for the poroelastic analysis: the permeability k,
fluid viscosity μ, drained shear modulus G, drained Pois-
son’s ratio ν, solid bulk modulus Ks , fluid bulk modulus K f ,
and porosity φ.

2.2 Formulation

For the model of a single lamellar trabecula indicated by
the red square in Fig 1, we considered a two-dimensional
poroelastic slab consisting of n layers with a width of L in
the x-direction and a unit thickness, as shown in Fig. 2. This
model represents the longitudinal cross section of an indi-
vidual cylindrical trabecula, which is a typical trabecula in
cancellous bone. To impose uniform external loadings, two
rigid and impermeable plates were placed at the top and bot-
tom of this sample in reference to Mandel’s problem (Wang
2000; Coussy 2004) and our previous studies (Kameo et al.
2008, 2009).Mandel’s problem is a classical problem associ-
ated with the compression of a poroelastic slab. In this study,
each layer of the poroelastic slab is assumed to be an isotropic
material with the samematerial properties except for the per-
meability k. The physical quantities associated with the i-th
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layer are identified by the subscript i . In addition to the global
coordinate system (x, y), a local coordinate xi is employed
by taking the origin at the left side of the i-th layer with a
width of li , as shown in Fig. 2.

A cyclic uniaxial load along the y-direction F (t) =
−Lσ0 sinωt is applied to the trabecular model through the
plates at time t = 0. Considering the problem symmetry,
the stress components σi j and fluid pressure p depend only
on x (or xi ) and t . Assuming no shear stresses through-
out the poroelastic slab, i.e., σxy = 0, and that the slab
edges x = 0, L are stress free, the stress equilibrium in the
x-direction requires σxx = 0. For poroelastic analysis of a
single trabecula, the term containing the fluid pressure p in
Eq. (6) is negligible because the bone matrix supports much
more of the mechanical load than the interstitial fluid (Wein-
baum et al. 1994; Kameo et al. 2008). Therefore, under a
plane stress condition in the z-direction, i.e., σzz = 0, the
sum of the three normal stresses σkk is written as follows:

σkk = σyy = −σ0 sinωt. (7)

Substituting Eqs. (7) into (1) provides the diffusion equation
for the i-th layer:

ci
∂2 pi
∂x2i

− ∂pi
∂t

= − B

3
σ0ω cosωt. (8)

When the slab edges at x = 0, L are drained, the initial and
boundary conditions for the fluid pressure p can be expressed
in the following form:

t = 0; pi = 0 (i = 1 ∼ n) (9)

x1 = 0; p1 = 0 (10)

xi = li , xi+1 = 0; pi = pi+1,

−ki
μ

∂pi
∂xi

= −ki+1

μ

∂pi+1

∂xi+1
(i = 1 ∼ n − 1) (11)

xn = ln; pn = 0, (12)

where we consider the continuity of the fluid pressure and
fluid flux at the boundaries of the layers.

By introducing the following dimensionless values

x∗
i = xi

L
, t∗ = c0t

L2 , p∗
i = pi

Bσ0/3
,

l∗i = li
L

, k∗
i = ki

k0
= ci

c0
,Ω = L2ω

c0
, (13)

with the diffusion equation and the initial and boundary con-
ditions, Eqs. (8)–(12) are rewritten as follows:

k∗
i
∂2 p∗

i

∂x∗2
i

− ∂p∗
i

∂t∗
= −Ω cosΩt∗ (14)

t∗ = 0; p∗
i = 0 (i = 1 ∼ n) (15)

x∗
1 = 0; p∗

1 = 0 (16)

x∗
i = l∗i , x∗

i+1 = 0; p∗
i = p∗

i+1,

k∗
i
∂p∗

i

∂x∗
i

= k∗
i+1

∂p∗
i+1

∂x∗
i+1

(i = 1 ∼ n − 1) (17)

x∗
n = l∗n ; p∗

n = 0. (18)

In Eq. (13), k0 and c0 represent typical values of the
permeability and diffusion coefficient that satisfy Eq. (2).
Henceforth, we omit the asterisk (*) from the dimensionless
values to simplify the notation.

2.3 Solution

We solve the initial and boundary value problems shown in
Eqs. (14)–(18) analytically by making use of the Laplace
transform technique. By taking the Laplace transform of
Eq. (14) with respect to time under the initial condition Eq.
(15), the fundamental solution for the fluid pressure can be
obtained as follows:

p̃i = Ai cosh

√
s

ki
xi + Bi sinh

√
s

ki
xi + Ω

s2 + Ω2 , (19)

where the tilde (∼) signifies the Laplace transform and Ai

and Bi are unknown coefficients to be determined from the
boundary conditions, Eqs. (16)–(18).By substitutingEq. (19)
into Eqs. (16)–(18) after taking the Laplace transform, these
equations can be expressed in matrix form:

[akl ]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1

B1
...

An

Bn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= Ω

s2 + Ω2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1
0
...

0
f2n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(k, l = 1 ∼ 2n) , (20)

where the nonzero elements among akl and fk are given by

a11 = 1

a2i,2i−1 = cosh

√
s

ki
li , a2i,2i = sinh

√
s

ki
li , a2i,2i+1 = −1

a2i+1,2i−1=√
ki s sinh

√
s

ki
li , a2i+1,2i = √

ki s cosh

√
s

ki
li ,

a2i+1,2i+1 = −√
ki+1s (i = 1 ∼ n − 1)

a2n,2n−1 = cosh

√
s

kn
ln, a2n,2n = sinh

√
s

kn
ln

f1 = −1, f2n = −1. (21)

By applying Cramer’s rule to the system of equations in
Eq. (20), the fluid pressure solution in the Laplace trans-
formed domain is obtained as follows:
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p̃i = Ω

Δ
(
s2+Ω2

)
(
Āi cosh

√
s

ki
xi + B̄i sinh

√
s

ki
xi +Δ

)
,

(22)

where Δ is the determinant of the matrix [akl ] and Āi and
B̄i are the determinants of the matrix formed by replacing
the (2i − 1)-th and 2i-th columns, respectively, of the matrix
[akl ] by the column vector { fk}. The inverse Laplace trans-
form of Eq. (22) from using the residue theorem eventually
provides the solution to the fluid pressure in the form of the
summation of the steady-state solution psteadyi and transient
solution ptransi :

pi = psteadyi + ptransi , (23)

where the first term is the sum of the residues corresponding
to the simple poles s = ±iΩ and the second term is the sum
of the residues corresponding to the roots of Δ = 0. The
steady-state solution psteadyi can be derived as follows:

p
steady
i

= Im

⎡
⎣ Āi

∣∣
s=iΩ cosh

√
iΩ
ki

xi + B̄i
∣∣
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√
iΩ
ki
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eiΩt

⎤
⎦,

(24)

where Im gives the imaginary part of the complex number.
To obtain the transient solution ptransi , it is convenient to

put s = −λ2 (λ > 0). By using this notation, Eqs. (19)–(22)
are rewritten in the following form:
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(
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ki
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i
λ√
ki
xi + D

)
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where D is the determinant of the matrix [ekl ] and Ā′
i and

B̄ ′
i are the determinants of the matrix formed by replacing

the (2i − 1)-th and 2i-th columns, respectively, of the matrix
[ekl ] by the columnvector { fk}. By taking the inverse Laplace
transform of Eq. (28) with the help of the residue theorem,
the transient solution of fluid pressure ptransi can be derived as
the sum of the residues corresponding to the roots of D = 0
as follows:

ptransi =
∞∑
j=1

−2λ j e
−λ2j t

dD
dλ

∣∣
λ=λ j

[
Ā′
i

∣∣
λ=λ j

cos
λ j√
ki
xi

+ B̄ ′
i

∣∣
λ=λ j

sin
λ j√
ki
xi

]
Ω

λ4j + Ω2
, (29)

where λ j is the j-th positive roots of D (λ) = 0. For the
calculation of the derivative inEq. (29), the following relation
can be used:

dD

dλ

∣∣∣∣
λ=λ j

=
2n∑

m=1

Mm, (30)

where Mm is the determinant of the matrix formed by replac-
ing the m-th column of the matrix [ekl ] by the derivative of
the same column with respect to λ.

2.4 Single trabecular model

Table 1 lists the material properties used in the poroelastic
modeling of a single trabecula (Smit et al. 2002; Beno et al.
2006). Among these material constants, the intrinsic perme-
ability k0 and porosity φ are especially important factors that
influence the interstitial fluid pressure and seepage velocity.
Because the values of these two factors are more sensitive to
changes in lacuno-canalicular morphology compared with
those of the other five constants, it is essential to set k0 and
φ appropriately in order to quantify the fluid flow stimuli
for osteocytes. While there is generally a positive correla-
tion between permeability and porosity (Kameo et al. 2010),
we considered variations in only permeability and ignored
variations in porosity for simplicity.

Table 1 Material properties of trabecula as poroelastic material (Smit
et al. 2002; Beno et al. 2006)

Symbol (unit) Description Value

k0 (m2) Intrinsic permeability 1.1 × 10−21

μ (Pa s) Fluid viscosity 1.0 × 10−3

G (GPa) Shear modulus 5.94

v Drained Poisson’s ratio 0.325

Ks (GPa) Solid bulk modulus 17.66

K f (GPa) Fluid bulk modulus 2.3

φ Porosity 0.05

Permeability was estimated by the method of Beno et al. (2006)
The other constants were taken from Smit et al. (2002)
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Table 2 Settings of trabecular permeability for poroelastic analysis

Normalized permeability

k∗
1 k∗

2 k∗
3 k∗

4 k∗
5 k∗

6

Case 1 0.5 0.7 0.9 1.1 1.3 1.5

Case 2 0.5 1.0 1.5 1.5 1.0 0.5

Case 3 1.5 1.0 0.5 0.5 1.0 1.5

By using seven independentmaterial properties in Table 1,
the poroelastic constants defined in Sect. 2.1 (i.e., the Biot–
Willis coefficient α [Eq. (5)], undrained Poisson’s ratio νu
[Eq. (4)], Skempton coefficient B [Eq. (3)], and typical value
of the diffusion coefficient c0 [Eq. (2)]) are, respectively,
derived as follows: α = 0.15, νu = 0.33, B = 0.35, and
c0 = 3.9 × 10−8m2/s. Considering that an individual tra-
becula in vivo has a typical width of L = 200µm and is
subjected to 1–20 Hz cyclic loading (Weinbaum et al. 1994),
the range of the dimensionless frequency Ω defined in Eq.
(13) is estimated to be between 6.5 and 130. Therefore, we
set two different values ofΩ(Ω = 10 and 100) to investigate
the role of the loading frequency.

The total number of layers that constitute a single trabec-
ula was selected as n = 6, which is within the physiological
range. Each layer was assumed to have the same width. The
spatial variations in trabecular permeability are difficult to
determine because the size of the lacuno-canalicular porosity
can vary according to osteocytic remodeling of the perilacu-
nar and pericanalicular matrix (Qing and Bonewald 2009).
Therefore, in order to investigate their effect on the behavior
of interstitial fluid, we considered three cases, all of which
have the same average permeability. Case 1 deals with a sin-
gle trabecula in which the permeability is linearly distributed
from the first layer to the sixth layer and has the following
settings: k1 = 0.5, k2 = 0.7, k3 = 0.9, k4 = 1.1, k5 = 1.3,
and k6 = 1.5. In the equilibrium state of bone remodeling, an
individual cylindrical trabecula may have an axisymmetrical
lamellar structure. In order to account for such conditions, the
other two cases consider the trabeculae with a symmetrical
distribution of permeability about the central axis x = L/2:
in Case 2, k1 = 0.5, k2 = 1.0, k3 = 1.5, k4 = 1.5, k5 = 1.0,
and k6 = 0.5; in Case 3, k1 = 1.5, k2 = 1.0, k3 = 0.5, k4 =
0.5, k5 = 1.0, and k6 = 1.5. In Case 2, the interstitial fluid
around the center of trabecula can flow through more easily
than the fluid close to the trabecular surfaces, while Case 3
represents the reverse condition. Table 2 summarizes the set-
tings of the trabecular permeability in the above three cases.

3 Results

3.1 Fluid pressure

The fluid pressure in a single trabecula under cyclic load-
ing was calculated according to Eqs. (24) and (29). Figure 3

shows the fluid pressure distributions along the x-direction
in Case 1, where the permeability was linearly distributed
(see Table 2). Figure 3a, b corresponds to the steady-
state responses for the dimensionless frequencies Ω = 10
and 100, respectively, plotted for eight equal-length phase
points in a period. Figure 3c, d corresponds to the tran-
sient responses for Ω = 10 and 100, respectively, plotted
at t∗ = 0, 0.01, 0.1, and 1. All of the figures exhibit asym-
metrical fluid pressure distributions about the central axis
x∗ = 0.5 owing to the spatial gradient of permeability. As
shown in Fig. 3a, b, increasing the dimensionless frequency
Ω caused the fluid pressure profile in steady state to trans-
form from a parabolic shape to a trapezoidal shape. Thus, the
fluid pressure gradient around the trabecular surfaces built
up because of the increase in Ω . The fluid pressure gradient
at the edge x∗ = 0, where the value of permeability was
smaller, was larger than that at the other edge x∗ = 1 when
the loading frequency was constant.

As shown in Fig. 3c, d, the transient stage was observed
after cyclic loading was applied, and it decayed within the
time t∗ = 1. The magnitude of the transient response was
related to the fluid pressure profile in steady state at the phase
point 0 because the sum of the transient and steady-state fluid
pressures at t∗ = 0must be null by the initial conditions, Eqs.
(9), (15). Figure 3c, d indicates that the effect of the transient
response is more important at low loading frequencies than
at high loading frequencies.

Figures 4 and 5 show the fluid pressure distributions in the
steady state along the x-direction in Cases 2 and 3, respec-
tively, where the permeability was symmetrically distributed
(see Table 2). In these figures, part (a) corresponds to the
result for the dimensionless frequency Ω = 10 and part (b)
corresponds to the result for Ω = 100. As shown in Figs. 4a
and 5a, the maximum values of both the fluid pressure and
its spatial gradient for Ω = 10 were larger in Case 2, where
the value of permeability close to the trabecular surfaces was
less than that around the center of trabecula. On the other
hand, for the loading frequency Ω = 100, the peak values
of the fluid pressure in Cases 2 and 3 were almost the same,
whereas the fluid pressure gradient around the trabecular sur-
faces was larger in Case 2 than in Case 3, as shown in Figs. 4b
and 5b.

3.2 Seepage velocity

The seepage velocity in poroelastic materials is one of the
mechanical properties that quantifies the fluid flow at the
macroscopic scale. In the context of bone poroelasticity, the
seepage velocity represents the average velocity of interstitial
fluid in a lacuno-canalicular porosity and is closely associ-
ated with the mechanical stimuli to osteocytes during the
bone remodeling process. According to Darcy’s law, the x
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Fig. 6 Seepage velocity distribution in steady state along x-direction
for a Ω = 10 and b Ω = 100: Case 1 (k∗

1 = 0.5, k∗
2 = 0.7, k∗

3 =
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4 = 1.1, k∗
5 = 1.3, k∗

6 = 1.5); Case 2 (k∗
1 = 0.5, k∗

2 =

1.0, k∗
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4 = 1.5, k∗
5 = 1.0, k∗

6 = 0.5); Case 3 (k∗
1 = 1.5, k∗

2 =
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3 = 0.5, k∗
4 = 0.5, k∗

5 = 1.0, k∗
6 = 1.5) and constant permeabil-

ity k∗
i = 1.0 (i = 1 ∼ 6) as reference

component of the seepage velocity for the i-th layer vi is
given by

vi = − 1

φ

ki
μ

∂pi
∂xi

. (31)

If we introduce the following dimensionless seepage velocity

v∗
i = vi

Bσ0k0/3μLφ
, (32)

this quantity can be expressed as

v∗
i = −k∗

i
∂p∗

i

∂x∗
i
. (33)

By substituting Eqs. (23) into (33) with the help of Eqs. (24)
and (29), the solution for the dimensionless seepage velocity
can be obtained. In this study, we focused only on the seepage
velocity behavior in the steady state.

Figure 6 shows the seepage velocity distributions in the
steady state along the x-direction in Cases 1–3 at the fluid
pressure peak. Figure 6a corresponds to the result for the
dimensionless frequencyΩ = 10, and Fig 6b corresponds to
the result forΩ = 100. In both parts of the figure, the profile
of the seepage velocity in the single trabecula with constant
permeability, i.e., k∗

i = 1.0 (i = 1 ∼ 6), is presented as a
reference result. As shown in Fig. 6a, the seepage velocity for
Ω = 10 was almost linearly distributed across the trabecula,
and its maximum value was observed at the edge x∗ = 1
in Case 1. When the loading frequency was Ω = 100, as
shown in Fig. 6b, the seepage velocity around the center
of trabecula was negligible for all permeability values. The
distribution curves in Cases 1 and 2 overlapped near the edge
x∗ = 0, and the curves in Cases 1 and 3 also overlapped in
the neighborhood of the other edge x∗ = 1. The maximum
seepage velocity was larger in Case 3 than in Case 2, in
contrast to the results for the fluid pressure gradient presented
in the previous section.

4 Discussion

We developed an analytical solution for the interstitial fluid
pressure in the lacuno-canalicular porosity within a sin-
gle trabecula modeled as a two-dimensional multilayered
poroelastic material subjected to cyclic loading, in which
each layer has a different value of permeability. Based on the
obtained transient and steady-state solutions, we investigated
the effect of variations in permeability on the behavior of
interstitial fluid. Poroelastic analysis showed that a hetero-
geneous distribution of permeability produces remarkable
variations in the fluid pressure and seepage velocity in the
cross section of the individual trabecula.

The trabecular permeability depends on both the dimen-
sions of the lacuno-canalicular porosity and its microstruc-
ture, such as the tortuosity, bifurcation, and the density of the
pericellular matrix (Beno et al. 2006; Kameo et al. 2010).
Measuring the exact value of the intrinsic permeability is
extremely difficult because the lacuno-canalicular porosity
has a complex three-dimensional structure with a diameter of
only several hundred nanometers. Despite extensive research
to determine the bonepermeability, the estimated range based
on theoretical and experimental approaches is quite broad:
from 10−26 to 10−18 m2 (Zhang et al. 1998; Smit et al. 2002;
Beno et al. 2006; Oyen 2008; Gailani et al. 2009; Kameo
et al. 2010). In our study, we set the approximate median
value of k0 = 1.1 × 10−21 m2 as the representative perme-
ability, which was determined based on the method proposed
by Beno et al. (2006). The magnitude of the trabecular per-
meability k0 is reflected in the dimensionless frequency Ω ,
as shown in Eqs. (2) and (13). As the order of magnitude
of permeability increases or the dimensionless frequency Ω

decreases, the peak fluid pressure decreases due to rapid leak-
age from the trabecular surfaces. On the other hand, as the
order of permeability decreases orΩ increases, the fluid pres-
sure response approaches undrained behavior; this leads to
no flow in the whole region except for the neighborhood of
the trabecular surfaces.
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Computer simulations have beenutilized in order to under-
stand how the bone permeability affects mechanical stimuli
at the cellular level (Manfredini et al. 1999; Rémond et al.
2008; Pereira and Shefelbine 2014). Rémond et al. (2008)
investigated the effect of spatial gradients of the permeability
on the interstitial fluid flow using poroelastic finite element
analysis of an osteon in cortical bone. They reported that per-
meability gradients do not cause a notable variation of the
fluid velocity distribution, in contrast to our results shown
in Fig. 6. Although this has interesting implications for cel-
lular mechanosensing, such behavior of the interstitial fluid
can only be observed when the permeability is sufficiently
large (∼10−18 m2), i.e., under nearly drained conditions. As
shown in Fig. 6, the seepage velocity is generally influ-
enced by the permeability distribution, and its sensitivity
depends on the rate of loading relative to the permeability,
which was defined as the dimensionless frequency Ω in this
study.

The seepage velocity of the interstitial fluid can be con-
sidered as a characteristic of the mechanical stimuli to
osteocytes embedded in trabeculae. This quantity is related
to the fluid pressure gradient, which is a driving force of the
fluid flow according to Eq. (31). As noted in the previous
section, the distribution of the seepage velocity in the single
trabecula does not coincidewith that of the fluid pressure gra-
dient because the permeability is not constant. The applied
loading frequency is one of the most important factors that
affect the behavior of the interstitial fluid. Figure 6 shows
that as the dimensionless frequencyΩ increases, the seepage
velocity and thus the mechanical stimuli to osteocytes close
to the trabecular surfaces increases, while the flow around
the center of trabecula decreases. Considering the in vivo
experimental results, which showed that a more significant
bone ingrowth was induced at higher loading rates (Gold-
stein et al. 1991), the results obtained in the current analytical
study imply that osteocytes buried in the neighborhood of the
trabecular surfaces primarily work as mechanosensory cells
during the bone remodeling process.

Comparing the seepage velocity near the surfaces between
three cases of trabeculae in Fig. 6 indicates that themaximum
seepage velocity and thus the maximum fluid flow stimuli to
osteocytes are mostly governed by the value of permeabil-
ity in the neighborhood of the trabecular surfaces if there
is no difference in the average permeability in a single tra-
becula. In particular, large mechanical stimuli for osteocytes
could be found around trabecular surfaces with relatively
large permeability. According to the Frost’s mechanostat
theory (Frost 1987, 2003), the single trabecula in Case 3,
i.e., the trabecula in which the permeability close to the tra-
becular surfaces is relatively large, has a higher potential
for bone formation via trabecular surface remodeling. These
results suggest that the bone resorption and formation on
the trabecular surface can be influenced by the changes in

the dimension and microstructure of the neighboring lacuno-
canalicular porosity as well as the changes in the trabecular
volume or external loads. Even as the capability of osteo-
cytes to remove old mineral and to deposit new mineral is
still under discussion (Qing and Bonewald 2009), it is possi-
ble that osteocyte mechanotransduction via interstitial fluid
flow and the subsequent trabecular bone adaptation to the
mechanical loads is regulated to some extent by osteocytic
remodelingof the lacuno-canalicular porosity. Indeed, signif-
icant differences in the structural architecture of the osteocyte
networks in the parietal bone (flat bone) and tibia (long bone)
have been previously noted (Himeno-Ando et al. 2012); and
this experimental fact suggests a strong correlation between
the architecture of the lacuno-canalicular porosity and the
physiological loading patterns to these bones.

In the present analysis, we modeled a single trabecula as
a two-dimensional poroelastic slab with isotropic material
properties, for the sake of simplicity. However, an indi-
vidual trabecula in vivo has a cylindrical morphology, and
the mechanical behavior can be regarded as transversely
isotropic (Turner et al. 1999; Rémond and Naili 2005;
Rémond et al. 2008) owing to the component mineral crys-
tals and collagen fibers. Furthermore, we assumed only that
permeability is not constant among the poroelastic material
properties listed in Table 1, even though the permeability
k is closely related to the porosity φ (Kameo et al. 2010).
Nevertheless, this poroelastic analysis provides fundamental
knowledge on interstitial fluid behavior under physiologi-
cal cyclic loading when permeability is spatially distributed
in a single trabecula. By setting the appropriate distribu-
tion of permeability in an individual trabecula based on
experimental findings, the current theoretical analysis would
help understand the relationship between the macroscopic
loads applied to the trabecula and the resulting microscopic
mechanical environment of osteocytes within the trabecula,
which is in turn associated directly with bone remodeling.
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