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Abstract Mechanical stresses due to blood flow regulate
vascular endothelial cell structure and function and play a
key role in arterial physiology and pathology. In particular,
the development of atherosclerosis has been shown to corre-
late with regions of disturbed blood flow where endothelial
cells are round and have a randomly organized cytoskele-
ton. Thus, deciphering the relation between the mechanical
environment, cell structure, and cell function is a key step
toward understanding the early development of atheroscle-
rosis. Recent experiments have demonstrated very rapid
(∼100ms) and long-distance (∼10µm) cellular mechan-
otransduction in which prestressed actin stress fibers play a
critical role. Here, we develop a model of mechanical signal
transmission within a cell by describing strains in a network
of prestressed viscoelastic stress fibers following the applica-
tion of a force to the cell surface. We find force transmission
dynamics that are consistent with experimental results. We
also show that the extent of stress fiber alignment and the
direction of the applied force relative to this alignment are
key determinants of the efficiency ofmechanical signal trans-
mission. These results are consistent with the link observed
experimentally between cytoskeletal organization, mechan-
ical stress, and cellular responsiveness to stress. Based on
these results, we suggest that mechanical strain of actin stress
fibers under force constitutes a key link in the mechanotrans-
duction chain.
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1 Introduction

Vascular endothelial cells, the cells that line the innerwalls of
blood vessels, are constantly subjected tomechanical stresses
due to blood flow. These stresses regulate many aspects of
cell structure and function and play a role in the development
of atherosclerosis (Hahn and Schwartz 2009; Davies 2008;
Chien 2007). In arterial regions of branching and bifurcation
where blood flow is disturbed, endothelial cells are gener-
ally round with isotropic cytoskeletal organization (Malek
et al. 1999; Flaherty et al. 1972; Wong et al. 1983), and they
exhibit a pro-inflammatory phenotype that is susceptible to
atherosclerosis (Chatzizisis et al. 2007; Caro et al. 1969).
In contrast, in regions of undisturbed flow, endothelial cells
are elongated and exhibit cellular alignment and cytoskeletal
polarization in the primary flow direction (Malek et al. 1999;
Flaherty et al. 1972; Wong et al. 1983). These cells are also
associated with an anti-inflammatory and atheroprotective
phenotype (Davies 2008). These two different endothelial
cell phenotypes can be reproduced in vitro by subjecting
the cells to either low or reversing shear stress (a form of
disturbed flow) or to high and non-reversing shear stress
(representative of undisturbed flow) (Dewey et al. 1981;
Helmlinger et al. 1991;Galbraith et al. 1998;Chatzizisis et al.
2007). Despite these observations, the relationship between
flow-derived mechanical stresses, endothelial cell cytoskele-
tal organization (or cell shape), and cellular susceptibility to
atherosclerosis remains to be elucidated.

How cells respond to mechanical cues is a subject of
intense research interest (Orr et al. 2006; Hoffman et al.
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2011). Key questions include how cells sense mechanical
stimuli, how mechanical signals are transmitted within cells,
and how these signals ultimately regulate gene expression
and protein synthesis. Several candidate mechanosensors
have been identified including the cell membrane (Haidekker
et al. 2000), the glycocalyx (Tarbell and Pahakis 2006; Flo-
rian et al. 2003), mechanosensitive ion channels (Barakat
et al. 2006; Sukharev et al. 2001), focal adhesion sites and
associated proteins (Geiger et al. 2009; Choquet et al. 1997;
Friedland et al. 2009), and cell–cell adhesion complexes
(Leckband et al. 2011; Tzima et al. 2005; Yonemura et al.
2010). The principal mechanotransduction mechanisms pro-
posed thus far involve mechanochemical conversion by one
of these structures and subsequent transmission of the result-
ing chemical signal to target intracellular sites via either
reaction–diffusion cascades or molecular translocation. One
issue, however, is that these processes are relatively slow.
The largest reported diffusion coefficient of proteins in the
cytoplasm is ∼60µm2/s (Costa et al. 2006), which yields a
minimum diffusion time across a typical cell length (20µm)
of ∼6s. Translocation of proteins via molecular motors
requires comparable transmission times of a few seconds
(Ashkin et al. 1990). Recent experiments, however, have
demonstrated that a force exerted on the cell surface can
induce a biological response across the cell within ∼300ms
(Na et al. 2008; Poh et al. 2009), a time too short to be
explained by either reaction–diffusion cascades or molec-
ular translocation. More specifically, upon application of a
force, there is very rapid activation of the mechanosensi-
tive proteins Src (Na et al. 2008) and Rac (Poh et al. 2009),
dissociation of protein complexes in the nucleus (Poh et al.
2012), as well as displacement of cytoplasmic and nucleolar
structures (Hu et al. 2003, 2005). The mechanisms by which
very rapidmechanical signal transmission occurswithin cells
remain to be elucidated.

There is mounting evidence that very rapid long-distance
mechanical signal transmission requires an intact cytoskele-
ton (Na et al. 2008; Poh et al. 2009;Hu et al. 2005;Wang et al.
2009). A force applied to a network of cytoskeletal fibers is
transmitted through the fibers at the elastic wave speed, on
the order of 30 m/s (Na et al. 2008). At this speed, the force
would be transmitted across a cell in∼1µs, a virtually instan-
taneous response compared to anyof the timescales discussed
above. So, the cytoskeleton provides a pathway for transmit-
ting amechanical signal virtually instantaneously throughout
a cell. Furthermore, the observation that the binding of spe-
cific proteins to actin stress fibers depends on the extent of
stretch of the fibers (Sawada and Sheetz 2002; Colombelli
et al. 2009) suggests that the role of the cytoskeleton in
mechanotransduction may extend beyond rapid force trans-
mission to direct mechanochemical conversion.

Theoretical models, based on various approaches such
as the shear lag model (Wang and Suo 2005) and a mod-

ified continuous approach (Blumenfeld 2006), have shown
that non-uniform long-distance propagation of forces can
be mediated by the deformation of cytoskeletal fibers, but
these models do not address the dynamics associated with
this propagation. In light of the experimental observation
that rapid transmission ofmechanical signals in cells depends
specifically on prestressed actin stress fibers (Na et al. 2008),
Hwang and Barakat proposed a model for mechanical sig-
nal transmission through a single, prestressed, viscoelastic
stress fiber (Hwang and Barakat 2012). They showed that
when stress fiber viscoelasticity is taken into account, the
timescale for stress fiber deformation can be on the order
of 1–10ms, approaching that observed experimentally. They
also showed that fiber prestress leads to two very different
timescales for signal transmission, depending on whether
the force is applied in the longitudinal or transverse direc-
tion relative to the fiber, thus potentially allowing the cell to
distinguish between these two different directions of force
application.

In the present work, we extend the single-fiber model of
Hwang and Barakat to study mechanical signal transmission
through a system of several stress fibers. We wish to particu-
larly study the dependence ofmechanical signal transmission
on the extent of stress fiber alignment in order to explore
if different cytoskeletal configurations as seen in elongated
versus round endothelial cells transmit mechanical signals
differently. We hypothesize that the relevant parameter for
mechanical signal transmission through the cytoskeleton is
not the force, which is virtually instantaneously transmitted
within the cell, but rather the force-induced strain, whose
development is delayed due to the viscoelasticity of stress
fibers. In this new paradigm, the mechanical signal would
induce protein activation not through stress but rather through
strain, which has already been proposed as a possible mech-
anism for protein activation (Sawada and Sheetz 2002; Han
et al. 2004). Our results demonstrate that strain-mediated
mechanical signal transmission through actin stress fibers
allows a cell to integrate information derived from both the
nature of the applied external force and the organization of
the stress fibers. These findings have interesting implications
for potential links among arterial flow-induced stresses on
endothelial cells, endothelial cell shape, and endothelial cell
phenotype.

2 Methods

2.1 Simplified model of a single stress fiber

Following the previous work (Hwang and Barakat 2012;
Hwang et al. 2012), wemodel actin stress fibers as uniformly
prestressed viscoelastic filaments that link cell membrane
proteins such as integrins/focal adhesions to other focal adhe-
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(a)

(b)

Fig. 1 a Schematic of an actin stress fiber that directly connects a
membrane protein such as an integrin or a focal adhesion at one end to
an intracellular structure such as the nucleus at the other end. b (i) The
simplified two-fiber network in the context of the cell: The two fibers are
linked at amovingnodemodeling amembrane protein (filled circle), and
they connect to distinct intracellular structures (crosses) at the other end.
(ii) Directionally aligned network (δ = 0◦). (iii) Isotropically aligned
network (δ = 90◦)

sions or to intracellular structures such as the nucleus. As
depicted in Fig. 1a, we consider a stress fiber of length L ,
cross-sectional area A, second moment of area I , density
ρ, internal viscosity γ , elastic modulus E , and prestress σp.
The stress fiber is surrounded by a cytoplasm of viscosity
μ that resists fiber transverse and longitudinal motion with
drag coefficients Cv and Cl, respectively.

The single stress fibermodel ofHwang andBarakat (2012)
led to partial differential equations that describe stress fiber
movement. Application of a force Fv orthogonal to the stress
fiber axis at a point not far from themembrane protein results
in a transverse displacement wv governed by the follow-
ing momentum balance, derived from the equilibrium of
moments:

ρA
∂2wv

∂t2
= ∂

∂x

(
σpA

∂wv

∂x

)

− ∂

∂x

(
E I

∂3wv

∂x3
+ γ I

∂4wv

∂x3∂t

)

−Cvμ
∂wv

∂t
+ Fv. (1a)

In this expression, stress fiber inertia is balancedby the restor-
ing forces due to prestress σp and flexural rigidity E I , the
internal damping force due to the flexural material viscosity
γ I , the cytosolic drag force, and the external force Fv. Note
that the restoring force due to prestress is proportional to
∂wv/∂x , the bending moment in the beam is proportional to

∂2wv/∂x2, and the restoring force by bending rigidity is pro-
portional to ∂3wv/∂x3. As in Hwang and Barakat (2012), we
consider a stress-free boundary condition at the membrane
protein and a pinched boundary condition at the other end of
the stress fiber:

∂wv

∂x

∣∣∣
x=0

= ∂3wv

∂x3

∣∣∣
x=0

= 0, (1b)

wv|x=L = ∂2wv

∂x2

∣∣∣
x=L

= 0. (1c)

In the case of a longitudinal force Fl along the stress fiber
axis, the longitudinal displacementwl of the fiber is governed
by the momentum balance:

ρA
∂2wl

∂t2
= ∂

∂x

(
E A

∂wl

∂x
+ γ A

∂2wl

∂x∂t

)
− Clμ

∂wl

∂t
+ Fl.

(2a)

Here, fiber inertia is balanced by the restoring force due to
the elastic modulus E , the internal damping force due to the
material viscosity γ , the cytosolic drag on the fiber, and the
external force Fl. As in the case of transverse motion, we
consider a stress-free boundary condition at the membrane
protein and zero displacement at the other end of the stress
fiber:

∂wl

∂x

∣∣∣
x=0

= 0, (2b)

wl|x=L = 0. (2c)

For the case ofmultiple stress fibers thatwewish to investi-
gate here, it is desirable to explore possible simplifications of
this model. In the previous work (Hwang and Barakat 2012),
it was shown that the bending stiffness is negligible com-
pared to the stiffness due to prestress (E I/L2 ∼ 10−4σpA)
and that the dynamics of motion are predominantly deter-
mined by the fiber internal viscosity, whereas the cytosolic
drag and fiber inertia terms are negligible:

τfiberv = γ I/L2

σpA
∼ 10−4 s; τ

drag
v = Cvμ

σpA/L2 ∼ 10−5 s;

τ inertiav =
√

ρ

σp
L ∼ 10−6 s, (3)

τfiberl = γ A

E A
∼ 1s; τ viscl = Clμ

E A/L2 ∼ 10−5s;

τ inertial =
√

ρ

E
L ∼ 10−6 s, (4)

where τfiberv , τ dragv , and τ inertiav (respectively, τfiberl , τ dragl , and
τ inertial ) are the characteristic delay in transverse (respec-
tively, longitudinal) motion associated with internal fiber
viscosity, cytosolic drag, and inertia. It should be noted here
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that for the cytosolic drag term, we have considered cytoplas-
mic viscosities typically reported in the literature (10−3 Pa s;
see Table 1). Wang and Suo (2005) considered the poten-
tial additional contribution of surrounding cytoskeleton; this
effect has not been taken into account in the present work.

Therefore, the equations of motion (1) and (2) can be sim-
plified as follows:

σpA
∂2wv

∂x2
− γ I

∂5wv

∂x4∂t
+ Fvδ(x) = 0, (5a)

E A
∂2wl

∂x2
+ γ A

∂3wl

∂x2∂t
+ Flδ(x) = 0. (5b)

The fact that stress fiber inertia is negligible suggests that
wave perturbations in the deformation field are damped by
fiber internal viscosity. In support of this notion, the previous
results for a single stress fiber (Hwang and Barakat 2012)
show that force transmission dynamics are indeed domi-
nated by spatially monotonic deformation of stress fibers.
Therefore, the structure of the deformation field does not
change significantly in time, and further simplification (see
the “Appendix” for details) yields:

σpA

L
wend
v (t) + γ I

L3

dwend
v (t)

dt
= Fv, (6a)

E A

L
wend
l (t) + γ A

L

dwend
l (t)

dt
= Fl, (6b)

wherewend
v andwend

l , respectively, denote the transverse and
longitudinal displacements of the free end of the stress fiber.
Thus, the single stress fiber can be modeled simply as a two-
dimensional anisotropic Kelvin–Voigt body, in agreement
with recent experimental observations (Kumar et al. 2006).
To examine the validity of the two ODEs (6a) and (6b), we
compare the results obtained with these ODEs to the results
obtainedwith the full PDEmodel (Hwang andBarakat 2012).
The ODEmodel predicts that when a steady transverse force
Fv is applied to the fiber, the resulting average strain of the
fiber is:

εv ≈ −wend
v (t)

L
= Fv

σpA

(
1 − e−t/τv

)
, (7a)

where

τv ≡ γ

σp

(
I

L2A

)
. (7b)

Similarly, the average strain under an axial force Fl is:

εl ≈ −wend
l (t)

L
= Fl

E A

(
1 − e−t/τl

)
, (8a)

where

τl ≡ E

γ
. (8b)

The time constants (7b) and (8b) are consistent with the
timescales obtained by dimensional analysis in the previous
work (Hwang and Barakat 2012). Moreover, the time evolu-
tion of themechanical signal dynamics described by (7a) and
(8a) is remarkably similar to the dynamics described by the
full PDEs, for both steady and oscillatory forces. The order
of magnitude of the average strain is also well reproduced by
the ODEs.

2.2 The two-fiber system

In this article, we focus primarily on a system of two stress
fibers linking amembraneprotein (movingnode) to two intra-
cellular sites (two fixed nodes) as represented in Fig. 1b,
panel (i). This provides a simple model to study the role of
cytoskeletal alignment, parameterized by the angle δ between
the two fibers. As shown in Fig. 1b, when δ is small, the two
fibers are aligned (panel ii), while when δ ≈ 90◦, there is
no preferential direction, and the stress fiber organization is
nearly isotropic (panel iii). In the context of arteries, the first
case represents undisturbed flow regions of the arterieswhere
endothelial stress fibers are highly aligned, whereas the sec-
ond case describes disturbed flow regions where stress fibers
are randomly oriented. Although the two-fiber system may
appear very simple, we show in the last section of Sect. 4 that
its behavior is indeed representative of that of more com-
plex stress fiber networks. Thus, the two-fiber system can be
viewed as the simplest stress fiber network that nonetheless
captures the behavior of more complex networks that exist
in cells.

Given the simplification that inertia and cytoplasmic drag
are negligible, the following balance of forces must be
enforced at the moving node M :

F f 1→M + F f 2→M + Fext = 0, (9)

whereFext is the external force applied at nodeM andF fi→M

is the force applied to M due to the deformation of fiber fi ,
where i = 1 or 2. We also note that due to the moment-free
nature considered at the stationary nodes M1 and M2 [see
Eq. (1)], the entire system is torque-free. Applying ODEs
(6a) and (6b) to the fiber fi yields the components of F fi→M

transverse and longitudinal to the fiber, Fv
fi→M and F l

fi→M :

Fv
fi→M = σpA

L

(
wv

Mi
−wv

M

)+ γ I

L3

d

dt

(
wv

Mi
−wv

M

)
, (10a)

F l
fi→M = E A

L

(
wv

Mi
−wl

M

)
+ γ A

L

d

dt

(
wv

Mi
−wl

M

)
, (10b)
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where wl
M and wv

M are the displacements of node M in
the longitudinal and transverse fiber directions, respectively.
Since the opposite node in each fiber is a fixed node,wMi = 0
and the force depends only on wM . Substituting these equa-
tions into the balance of force (9) leads to the following
system of linear differential equations of the motion of
node M :

�
dwM

dt
= −KwM + Fext, (11a)

where K and � are, respectively, the stiffness and damping
matrices:

K = 2

⎡
⎣

σpA
L sin2

(
δ
2

)+ E A
L cos2

(
δ
2

)
0

0
σpA
L sin2

(
δ
2

)+ E A
L cos2

(
δ
2

)
⎤
⎦ ,

(11b)

� = 2

⎡
⎣

γ I
L3 sin

2(δ)+ γ A
L cos2(δ) 0

0 γ I
L3 cos

2(δ)+ γ A
L sin2(δ)

⎤
⎦ , (11c)

where δ is the angle between the two fibers.
Equations (11b) and (11c) show that the two axes of sym-

metry of the two fibers (the x- and y-axes) are the eigen
directions of the system:Only an external force applied along
one of these axes will result in a displacement along the same
direction as the force. In this case, Eq. (11a) can be analyti-
cally solved, and the displacement of the moving node is:

wM =
(

wx
M

w
y
M

)
=

(
Fx
ext/Kxx (1 − exp(−t/τx ))

Fy
ext/Kyy(1 − exp(−t/τy))

)
, (12)

where τx ≡ Γxx/Kxx , τy ≡ Γyy/Kyy and Kxx , Kyy , Γxx ,
and Γyy are the nonzero entries of the matrices K and Γ

defined in (11b) and (11c). τx , τy , Kxx , and Kyy are the
characteristic times and stiffnesses of the system associated
with the eigen directions.

3 Results

The model parameter values for the mechanical and geomet-
rical properties of stress fibers are derived from the literature
(Table 1).

To determine the mechanical behavior of the two-fiber
system, we compute the effect of a known force on the stress
fiber strain ε defined as:

ε(x) = dwM

dx
. (13a)

The strain reduces to a vector because the stress fibers are
modeled as one-dimensional beams whose sectional defor-
mations are neglected.

Table 1 Values of mechanical and geometrical parameters

Value Source

R (m) 10−7 Deguchi et al. (2006)

Kumar et al. (2006)

A (m2) π × 10−14 A = πR2

I (m4) π/4 × 10−28 I = ∫
r2dA

ρ (kg/m3) 103 Na et al. (2008)

E (Pa) 106 Deguchi et al. (2006)

Lu et al. (2008)

σp (Pa) 3 × 105 Deguchi et al. (2006)

γ (Pa s) 4 × 106 Kumar et al. (2006)

µ (Pa s) 10−3 Hwang and Barakat (2012)

Cv 1 Hwang and Barakat (2012)

Cl 0.8 Hwang and Barakat (2012)

As discussed in Sect. 2, the strain is approximately uni-
form in x along onefiber, sowewill only consider the average
strain in the fibers:

ε = wM

L
, (13b)

where wM is the displacement vector of the membrane pro-
tein. As shown in equation (11), the strain depends on the
force direction θ = arctan(−Fx

ext/F
y
ext) and on stress fiber

alignment as specified by the angle δ.
We consider an external force ofmagnitude 600pN,which

allows comparison of the model results to experimental
results obtained using magnetocytometry. In the experi-
ments, a stress of ∼20Pa is applied to 4.5-µm-diameter
beads bound to membrane integrins (Na et al. 2008; Hu
et al. 2004; Wang and Ingber 1994). The force applied on
the bead is then Fbead ≈ 1270pN. The adhesion density at
the cell surface is typically d = 0.15adhesions/µm2 (Davies
et al. 1993, 1994). If 20 to 30% of the bead is embedded
in the membrane, the bead surface area available for bind-
ing to membrane proteins is 0.8 − 1.2πr2, where r is the
bead radius and the number of cell–bead adhesions would
be ∼0.8–1.2π r2d. This yields a typical force per adhesion
of Fext = Fbead/πr2d ≈ 600pN. Varying the force ampli-
tude does not change the qualitative behavior of the results as
Eq. (11a) is linear, so that the computed strains scale directly
with the magnitude of the applied force.

3.1 Mechanical signal transmission in aligned fibers

We begin by examining the case of two perfectly aligned
stress fibers (δ = 0◦) stimulated either along or orthogonal
to the direction of fiber alignment as depicted schemati-
cally in Fig. 2a. In response to a constant force of 600 pN
applied as a step function, both the transverse and longitu-
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(a) (b) (c)

Fig. 2 Signal transmission dynamics in a network of two perfectly
aligned stress fibers (δ = 0◦) stimulated with an external force in either
the transverse direction (blue) or the longitudinal direction (magenta).
a Schematic of the system: We apply an external force Fext at the mem-
brane end of the fibers, and we track the time evolution of the resulting
strain in the fibers. b Strain as a function of time when a step force of
600pN is applied. c Amplitude of strain versus log of frequency for a
non-reversing oscillatory force (α = 0.5, β = 0.75, F0 = 600pN). f0
is a reference frequency taken to be 1Hz

dinal strains reach a plateau after an initial transient phase
(Fig. 2b). The steady-state transverse strain (plateau value) is
approximately three times higher than the steady-state lon-
gitudinal strain, and it is attained in only a few milliseconds
versus 10–20s for the longitudinal strain. These differences
in the magnitude of the strains and in the associated dynam-
ics are attributable to the fact that stress fiber prestress is the
primary determinant of fiber transverse movement, whereas
fiber elasticity is the primary determinant of longitudinal
movement (σp = E/3 (Table 1)) and are consistent with the
previous work on a single stress fiber (Hwang and Barakat
2012).

To more closely mimic physiological conditions in the
arterial system, we examine the response of the two aligned
fiber model to an oscillatory force of the form:

Fext = F0 (α sin(2π f t) + β) , (14)

where f is the oscillation frequency and α and β are coef-
ficients that modulate the amplitude, maximum, and mean
of the applied force. In particular, if β > α > 0, the force
does not change sign in time, characteristic of undisturbed
flow zones, whereas if α > β > 0, the force changes sign
periodically, a feature typical of disturbed flow regions.

We first consider a non-reversing oscillatory force (α =
0.5, β = 0.75), typical of undisturbed flow regions in arter-
ies. Since the equations are linear, the resulting strain also
oscillates with frequency f . Figure 2c shows the amplitude
of this strain εampl as a function of frequency, where εampl

is defined as follows:

εampl ≡ max[t0,t0+1/ f ] (||ε(t)||) − min[t0,t0+1/ f ] (||ε(t)||) , (15)

where t0 is sufficiently large for steady state to be reached.
These results demonstrate that the system of two aligned

(a) (b)

Fig. 3 Steady-state strain in the directions longitudinal (a) and trans-
verse (b) to the top fiber as a function of the angle between the fibers,
δ, for different force directions—θ = 0◦ (solid blue line), θ = 45◦
(solid cyan line), θ = 90◦ (solid magenta line), θ = 135◦ (dashed cyan
line), and θ = 180◦ (dashed blue line). The insets depict the configu-
rations studied. The gray zones represent the envelope of values of the
strain when the force direction spans the entire [0◦, 360◦] interval. The
steady-state strain is defined as the strain at t → ∞ when a force of
600pN is applied to the fiber in a step manner

fibers is a low-pass filter whose cutoff frequency depends
on the direction of force application. The cutoff frequency
is significantly lower in the longitudinal direction than in
the transverse direction. This difference in cutoff frequencies
correlates with the timescale of the strain response to a step
force (Fig. 2b). Interestingly, under physiological conditions,
f ≈ 1 Hz (heart rate), the longitudinal signal is cut off,
whereas the transverse signal is not.

The results in Fig. 2b, c show that application of either
a step or oscillatory force to a system of two aligned
stress fibers leads to drastically different signal transmission
dynamics depending on whether the force is exerted along
the axis or normal to the axis of fiber alignment. Interest-
ingly, we obtain displacement values w = εL of the order of
0.1µm, in agreement with various experimental results (Hu
et al. 2004, 2003; Na et al. 2008).

3.2 Effect of fiber alignment on signal transmission
efficiency

Figure 3 illustrates the dependence of the steady-state lon-
gitudinal and transverse strains, εax(t∞) and εtr(t∞), respec-
tively, in the top fiber of the network on both fiber alignment
(δ) and force direction (θ ). Although only the strain values
in the top fiber and for δ ∈ [0◦, 180◦] and θ ∈ [0◦, 180◦] are
shown, the strains for all other δ and θ values and the strains
in the bottom fiber can be readily deduced using symmetry
arguments.

We consider that the steady-state strain in a stress fiber
is a measure of the efficiency of mechanical signal trans-
mission in that fiber. The results show that an external force
applied in a given direction θ is transmitted with variable
efficiency depending on the fiber alignment angle δ. For
instance, at θ = 45◦, the longitudinal strain in the top
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stress fiber is highly sensitive to fiber alignment and even
changes sign, going from tension (positive strain) at small
δ to compression (negative strain) at large δ (Fig. 3a). Fig-
ure 3 also shows that for a given stress fiber alignment (fixed
δ), the transmitted strain ranges from compressive to ten-
sile depending on the direction of the external force. The
overall sensitivity of transmission efficiency to force direc-
tion is illustrated by the gray zones in Fig. 3a, b, which
represent the envelope of strain values when the force direc-
tion spans the entire [0◦, 360◦] range. The longitudinal strain
(Fig. 3a) is most sensitive to force direction when the fiber
organization is isotropic (δ = 90◦), whereas transverse strain
(Fig. 3b) is more sensitive to force direction when the fibers
are aligned (δ = 0◦ and δ = 180◦). These results show
that the extent of stress fiber alignment regulates the effi-
ciency of mechanical signal transmission and the sensitivity
of the stress fibers to the direction of the externally applied
force.

3.3 Effect of fiber alignment on signal transmission
dynamics

Experiments suggest that actin stress fibers mediate very
rapid transmission of mechanical signals within cells
(Na et al. 2008). We wish to explore how stress fiber
alignment modulates the dynamics of mechanical signal
transmission andhow thismodulation is affected by the direc-
tion of the externally applied force. To this end, we compute
the characteristic time for strain development in the two-fiber
network in both the longitudinal and transverse directions as
a function of both the stress fiber alignment angle δ and the
angle of force application θ (Fig. 4). For a constant force
applied as a step function, the characteristic response time T
is defined such that:

ε (T ) ≤ 1√
2
max
t

(ε (t)) . (16a)

For an oscillatory force, T is defined as the cutoff period such
that:

A (ε (FT )) ≤ 1√
2
max

τ
(A (ε (Fτ ))) , (16b)

where Fτ is a force of frequency 1/τ as defined by Eq. (18)
and A is the amplitude. The cutoff period and the characteris-
tic response time are equivalent as they both characterize the
dynamics of the system. Note that when fibers are aligned
(δ = 0◦ or δ = 180◦) and a force is applied along the
direction of alignment (θ = 90◦ or θ = 0◦, respectively),
εtr = 0 and the characteristic time cannot be defined. Simi-
larly, when the fibers are aligned (δ = 0◦ or δ = 180◦) and
a force is applied orthogonal to the direction of alignment

(a) (b)

Fig. 4 Characteristic time of strain dynamics in the directions longi-
tudinal (a) and transverse (b) to the top fiber as a function of the angle
between the fibers, δ, for different force directions—θ = 0◦ (solid blue
line), θ = 45◦ (solid cyan line), θ = 90◦ (magenta solid line), θ = 135◦
(dashed cyan line), and θ = 180◦ (dashed blue line). The insets depict
the configurations studied. Tre f is a reference period, Tref = 1s. The
gray zones delimit the regions of rapid force transmission, taken as
0.1Tref (100ms)

(θ = 0◦ or θ = 90◦, respectively), εax = 0 and the corre-
sponding characteristic time cannot be defined. As in Fig. 3,
we limit the study to the top fiber and to δ ∈ [0◦, 180◦] and
θ ∈ [0◦, 180◦]. Information on the bottom fiber and all other
δ and θ values can be obtained from symmetry considera-
tions.

Figure 4a indicates that a longitudinal strain can only be
transmitted rapidly (gray zone) in the case of highly aligned
configurations (δ ≈ 0◦ or δ ≈ 180◦) stimulated by a force
acting normal to the stress fibers. Fiber alignment is also nec-
essary for rapid transmission of transverse strains (Fig. 4b);
however, a broader range of force directions allows these
dynamics. As suggested by the stiffness and damping matri-
ces (11b) and (11c), the x- and y-axes (axes of symmetry of
the fibers) are eigen directions of the system, associated with
two characteristic times whose interplay drives the dynam-
ics of the system. Figure 4 shows that in the case of two
aligned fibers, the timescales for signal transmission along
the two eigen directions are very different with τl = τx ≈ 5s
and τv = τy ≈ 1ms. Thus, longitudinal strain dynamics are
dominated by a slow timescale for all forces that have a non-
negligible component in the longitudinal direction, and only
the curves θ = 0◦ for δ = 0◦ and θ = 90◦ for δ = 180◦
are in the gray zone. On the other hand, the transverse strain
is associated with rapid dynamics, and a broader range of
external force directions can be rapidly transmitted. When
the angle δ between the two fibers increases, the difference
between the timescales decreases, and at δ = 90◦, the two
timescales are equal with τx = τy ≈ 1s, and the overall
dynamics of the system are slow.

Thus, the results in Fig. 4 suggest that rapid mechanical
signal transmission is only possible when fibers are sig-
nificantly aligned. Furthermore, the narrow range of force
directions inducing rapid longitudinal strain suggests that
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(a) (b)

Fig. 5 Ratio of the steady-state strain in the top fiber to that in the
bottom fiber in the longitudinal direction (a) and the transverse direction
(b) as a function of the fiber alignment angle δ for force directions
θ = 1◦ (blue), θ = 30◦ (cyan), θ = 60◦ (magenta), and θ = 89◦ (red)

longitudinal strain is not a robust mediator of rapid mechan-
ical signal transmission.

3.4 Spatial distribution of an applied force–strain
differences between fibers

We have thus far presented results only for the top fiber,
since the results for the bottom fiber can be deduced from
symmetry arguments. However, it is instructive to compare
signal transmission through the top and bottomfibers in order
to develop an appreciation for the spatial distribution of an
applied force. To this end, we study the ratio of the steady-
state longitudinal strain in the top fiber to that in the bottom
fiber, rax, and the equivalent ratio for transverse strain, rtr ,
i.e.,:

rax = ε
up
ax (t∞)

εdownax (t∞)
, rtr = ε

up
tr (t∞)

εdowntr (t∞)
. (17)

Figure 5 represents rax and r−1
tr as a function of the fiber

alignment angle δ for different force directions. For clarity,
we plot r−1

tr instead of rtr to avoid infinite values and we
restrict the representation to θ ∈ [0◦, 90◦]. The symmetry of
the system makes it straightforward to deduce the results for
a broader range of θ , i.e., r(θ + 180) = r(θ)−1. A negative
ratio value means that the top fiber is in compression, while
the bottomfiber is in tension. Figure 5 shows that themechan-
ical signal in the top and bottom fibers can differ significantly
(|r | << 1). The strain in one fiber can be negligible com-
pared to that in the other fiber (|r | ≈ 0), and one fiber can be
in compression, while the other is in tension (r < 0). Thus,
force transmission can be strongly heterogeneous in space,
of which the implications will be considered in Sect. 4.

The spatial heterogeneity in force transmission depends
strongly on stress fiber alignment angle, δ, and on force direc-
tion, θ . Unless the fibers are perfectly aligned (δ = 0◦), the
strains are different in the two fibers and |r | �= 1. We also
note a plateau in the longitudinal strain ratio for intermediate
values of θ , so that over a broad range of stress fiber align-

(a)

(b)

(c)

Fig. 6 Non-reversing (a) and reversing (b) force over a period T . c
Ratio of the maximum strain in the top fiber when a reversing force is
applied to the maximum strain in the same fiber in response to a non-
reversing force. The force is applied in the directions θ = 0◦ (solid
lines) or θ = 90◦ (dashed lines) at a frequency of f = 0.1Hz (blue),
f = 1Hz (cyan), and f = 10Hz (magenta)

ment angles δ, the longitudinal strain ratio is independent of
δ and depends only on force direction angle θ . This plateau
is absent in the case of the transverse strain ratio. Another
significant difference between the transverse and longitudi-
nal cases is the localization of the maximum strain. For the
range of force directions θ represented in Fig. 5, |rax| < 1 so
that the longitudinal strain in the top fiber is smaller than that
in the bottom fiber. The opposite is true for the transverse
strain.

3.5 Role of force profile: reversing versus non-reversing
forces

Experiments both in vivo and in vitro have shown that dif-
ferent shear stress profiles elicit different endothelial cell
behavior. In particular, it has been suggested that atheroscle-
rosis develops preferentially in zones of disturbed flowwhere
the shear stress is low or reversing, whereas regions of
high, non-reversing shear appear to be protected (Caro et al.
1969; Chatzizisis et al. 2007). To study possible differences
in how forces characteristic of disturbed and undisturbed
flow regions are transmitted, we consider an oscillatory non-
reversing force FA and a reversing force FB . These forces
are defined by Eq. (18), where we choose F0 = 600 pN,
(αA, βA) = (0.5, 0.75), and (αB, βB) = (0.75, 0.5). Thus,
max(FA) = max(FB) = 375 pN, min(FA) = 75 pN and
min(FB) = −75 pN, and the sign of FA does not change
in time, whereas the sign of FB does. Figure 6a depicts the
two applied force profiles over a period of oscillation T . We
denote as εA and εB the norms of the fiber strains resulting
from stimulation by the non-reversing force FA and by the
reversing force FB , respectively, and we plot the ratio of the
maximumof εB to themaximumof εA over a period (Fig. 6b).
Since the input forces FA and FB have the same maximum, a
difference in the maximum of the resulting strains indicates a
difference in signal transmission between the non-reversing
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and reversing cases. Interestingly, Fig. 6b shows that the ratio
is always smaller than one, suggesting that a reversing force is
less efficiently transmitted than a non-reversing force. When
the fibers are isotropically organized (δ = 90◦), the ratio
does not depend on force direction and is small. As the fibers
become more aligned, however, the ratio takes on a broader
range of values depending on force direction. In the perfectly
aligned configurations (δ = 0◦ and δ = 180◦), the sensitivity
to θ is maximum, and the ratio reaches its minimum if the
force is applied along the fiber axis and its maximum (equal
to one) if the force is applied transverse to the fibers. These
observations hold for all frequencies tested, 0.1 ≤ f ≤ 10
Hz. However, as frequency increases, the minimum value
of the ratio decreases and the stress fibers need to be more
aligned to allow the ratio to approach unity.

The results of Fig. 6 are related to the existence of the
two timescales τx and τy introduced above. As previously
discussed, the oscillatory part of the signal is cut off when
its frequency is greater than the inverse of the characteris-
tic timescale of the system. As for the constant part of the
signal, its transmission does not depend on frequency. Since
the reversing force has a smaller constant component (β)
and a larger oscillatory component (α), its transmission is
more impacted by the cutting off of the oscillatory part of
the signal than the non-reversing force. This cutting off of
the oscillations occurs for configurations associated with a
large timescale, i.e., for all force directions when the fiber
configuration is isotropic and for forces in the direction of
the fibers when they are aligned.When β decreases, the force
becomes totally reversing and, in configurations associated
with a characteristic time of deformation greater than the
period of force oscillations, the stress fiber strain tends to
zero.

4 Discussion

Consistent with previous experimental results (Hu andWang
2006; Hu et al. 2003; Na et al. 2008; Poh et al. 2009), the
present model predicts that rapid long-distance force trans-
mission depends centrally on stress fiber prestress. Stress
fiber displacement in response to an externally applied force
comparable to that used in previous experiments (Wang and
Ingber 1994) is found to be in good agreement with exper-
imental results (Hu et al. 2003, 2004), w = εL ∼ 0.1µm
(Fig. 3). The model also predicts the dynamics observed
experimentally, in particular strain development within tens
of milliseconds following application of a step force (Na
et al. 2008), as well as low-pass filter behavior (Hu andWang
2006). Consistent with (Hu et al. 2004), the model predicts
that in the case of an elongated morphology (aligned fibers),
rapid dynamics are observed when forces are applied orthog-
onal to the stress fiber axis, while forces exerted along the

stress fiber axis are associated with slow dynamics (Fig. 4).
Thus, the present model provides a theoretical framework
that explains various experimental results.

4.1 Prestressed stress fibers mediate rapid mechanical
signal transmission

Experiments have shown that the application of a step force to
integrins induces very rapid (within 300ms) activation of the
mechanosensitive protein Src at discrete intracellular sites as
far away as 20µm from the site of force application (Na et al.
2008). Intracellular diffusive transport and protein translo-
cation via molecular motors would require several seconds
to cover this distance, so these more traditional pathways
for intracellular signaling fail to explain the experimental
results (Naet al. 2008). In contrast, ourmodel predicts that the
timescale for strain development in prestressed actin stress
fibers ranges from a few milliseconds to a few seconds. For
certain stress fiber configurations that are subjected to forces
in particular directions, strains are transmitted within several
hundred milliseconds (gray zones in Fig. 4), in line with the
experimental observations on Src activation (Na et al. 2008).
These findings are consistent with the hypothesis advanced
in this paper that strain transmission is amechanism for stress
fiber-mediated mechanotransduction.

Interestingly, there are key limitations to this rapid strain
transmission pathway. The present results indicate that only
highly aligned stress fibers stimulated by a force sufficiently
orthogonal to the direction of alignment of the fibers would
allow strain transmission on this short timescale. In the arte-
rial physiological context of an oscillatory force of period T ,
this implies that a force sufficiently orthogonal to the fibers is
efficiently transmitted within a cell even for high oscillation
frequencies on the order of a kilohertz, whereas a force along
the fibers is cut off when the oscillation frequency exceeds
0.1 Hz. This observation is in agreement with experimental
results (Hu et al. 2004; Hu and Wang 2006).

An interesting prediction of themodel is that the definition
of a sufficiently orthogonal forcing is very strict in the case
of a longitudinal strain, as a force only a few degrees away
from the orthogonal fails to induce rapid longitudinal strain.
On the other hand, a force at an angle of up to 50◦ away
from the orthogonal direction can still elicit rapid transverse
strain. The very narrow range of conditions allowing rapid
longitudinal strain suggests that downstream signaling events
that need to be robustly rapidwould need to rely on transverse
rather than longitudinal strain of the fibers.

The model predictions can, in principle, be tested experi-
mentally by culturing cells on patterned surfaces that allow
control of cytoskeletal organization and subsequently sub-
jecting the cells to oscillating forces at controlled directions
and frequencies.
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4.2 Stress fibers: a critical link in the
mechanotransduction chain?

Over the past years, many studies have focused on under-
standing how cells sense and respond to mechanical forces.
An emerging paradigm is that mechanical forces change the
chemical landscape of the cell by either altering intracel-
lular reaction kinetics, uncovering cryptic binding sites, or
bringing together molecules that would otherwise be apart
(Hoffman et al. 2011; Vogel 2006; Janmey 1998). In particu-
lar, several proteins that localize to focal adhesions including
p130Cas (Sawada et al. 2006), zyxin (Lele et al. 2006) or talin
(Rio et al. 2009) have been shown to change their activity
under force. Some of these proteins have also been shown to
link to stress fibers in a manner dependent upon stress fiber
stretch, and it has been suggested that protein-binding affin-
ity to stress fibers is altered by tension (Sawada and Sheetz
2002; Yoshigi et al. 2005; Colombelli et al. 2009). Ourmodel
indicates that the force-induced strain in stress fibers is not
localized to the portion of the stress fiber in contact with focal
adhesions but is rather distributed throughout the length of
the stress fiber. Thus, we propose thatmechanochemical con-
version may occur anywhere along the stress fiber length and
not only at focal adhesions. This prediction is supported by
recent experiments showing activation of the protein c-Src
along stress fibers through binding to the mechanosensitive
protein AFAP (Han et al. 2004). Activation of Src following
application of a stress of 20Pa bymagnetic tweezers (Na et al.
2008) shows that the level of mechanical strain predicted by
our model is sufficient to elicit such biological response. A
mechanism that explains stress fiber strain perception by pro-
teins has been suggested for zyxin. Zyxin, which has been
implicated in the stabilization of stress fibers (Smith et al.
2010), has several LIM domains, which may act as a ruler
to measure the distance between binding sites (Schiller and
Fässler 2013), so that the extent of zyxin binding to a stress
fiber would be directly related to the strain in the stress fiber.

The present results show the potential richness of the stress
fiber mechanotransmission pathway. In our model, the extent
(Fig. 3) and dynamics (Fig. 4) of strain that a protein linked
to a stress fiber would experience depend on the direction of
the external force, the extent of stress fiber alignment, and the
way the protein binds to the stress fiber, since whether a pro-
tein undergoes transverse or longitudinal strain depends on
how the protein is attached to the fiber. If the protein activity
increases with stress fiber longitudinal strain, then its average
activity would be greater in aligned stress fiber networks sub-
jected to force in the direction of alignment, a configuration
characteristic of atheroprotected regions, than in isotropic
stress fiber networks subjected to low, direction-changing,
or reversing forces (Fig. 3a). The opposite would be true
if the protein was responsive to transverse strain (Fig. 3b).
These examples show how the biological activity of a pro-

tein that is sensitive to stress fiber strain can potentially be
modulated by mechanical cues applied at the cell membrane
and how different proteins that have different functions can
be modulated differently.

The fact that the dynamics of strain development in
stress fibers can range from milliseconds to several sec-
onds depending on stress fiber organization and on force
direction (Fig. 4) may provide cells with the ability for tem-
poral orchestration of responses to mechanical stimulation.
In endothelial cells, relatively rapid force-induced responses
including activation of mechanosensitive ion channels and of
integrins aswell asmobilization of intracellular calciumhave
been shown to occur over timescales ranging from a fraction
of a second to several seconds after the onset of the mechan-
ical stimulus (Kholodenko et al. 2010). These timescales are
consistent with the results of the present model.

In considering stresses and strains in stress fibers, it is
useful to think about the localization of stress fibers within
cells. There is ample evidence that stress fibers are present in
the basal regions of cells where they connect focal adhesion
sites. In the case of endothelial cells in vivo, basal stress fibers
would not experience blood flow-derived forces directly but
would rather be subjected to stretch due to the periodic cir-
cumferential expansion of compliant blood vessels. Thus,
unlike the situation considered in the current model, basal
stress fibers are expected to be subjected to external strains
rather than external forces. On the other hand, there is evi-
dence that in various cell types including endothelial cells,
the apical cell surface exhibits focal adhesion-type structures
that have been labeled “apical plaques” and that connect api-
cal stress fibers (Conforti et al. 1992; Kano et al. 1996; Katoh
et al. 2008). Blood flow would directly subject these apical
stress fibers to external forces as formulated in the present
paper.

4.3 Cell polarization under force: the strain track

A prominent response of endothelial cells to shear stress
is cellular polarization and alignment in the direction of
shear (Dewey et al. 1981; Helmlinger et al. 1991). Several
mechanisms have been proposed to explain this polariza-
tion, including shear rate-dependent gradients of chemical
cues around the cell (Shamloo et al. 2008) and shear stress-
dependent activation of small GTPases at focal adhesions
that triggers cytoskeletal remodeling (Shyy and Chien 2002;
Li et al. 1999). Our model shows that an external force
induces a spatially heterogeneous strain in the stress fiber
network (Fig. 5). As discussed above, this can in turn induce
directional heterogeneity of protein activation. Since this
heterogeneous strain contains information on force direction-
ality, we propose stress fiber strain as a candidate mechanism
through which a force can trigger early events in cell polar-
ization.
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4.4 Low-level stress fiber strain as a key feature
of disturbed flow regions

It has been experimentally observed that cells respond dif-
ferently to different types of forces. For instance, endothelial
cells subjected to high, non-reversing shear stress exhibit a
stress fiber architecture that is aligned in the direction of
the applied force, and these cells exhibit a quiescent, anti-
inflammatory, and atheroprotective phenotype. In contrast,
cells subjected to low or reversing shear stress adopt an
isotropic stress fiber organization and express an inflamma-
tory phenotype that favors the development of atherosclerosis
(Chatzizisis et al. 2007; Malek et al. 1999; Hahn and
Schwartz 2009). Our results demonstrate that a reversing
force elicits smaller stress fiber strain than a non-reversing
force (Fig. 6). At physiological frequencies, the strain dif-
ference can be as large as 30% even for the mild reversal
considered in Fig. 6. Our model also predicts that a low non-
reversing shearwould lead to a small strain of the stress fibers.
Thus, our results indicate that low-level stress fiber strain is
a common feature of both reversing and low shear flows. As
discussed above, this may impact the activity of many pro-
teins and subsequent signaling pathways and may play a role
in the cell’s adoption of an atheroprone or atheroprotective
phenotype.

4.5 The two-fiber system is representative of more
complex stress fiber networks

To investigate how representative the simple two-fiber system
studied above is representative of more complex stress fiber
networks, we study strain transmission through a network of
four stress fibers of identical mechanical properties as rep-
resented in Fig. 7a. The four stress fibers link a membrane
protein (moving node M in Fig. 7a) to distinct intracellular
sites (fixed nodes M1, M2, M3, and M4 in Fig. 7a). Extension
of the analysis described for the two-fiber system [Eqs. (9)–
(12)] yields ordinary differential equations governing the
displacement of the moving node:

�
dwM

dt
= −KwM + Fext, (18a)

where K and � are, respectively, the stiffness and damping
matrices:

K =
4∑

i=1

[
kv sin2(δi )+kl cos2(δi ) (kl−kv) sin(δi ) cos(δi )

(kl−kv)sin(δi ) cos(δi ) kv cos2(δi ) + kl sin2(δi )

]
,

(18b)

� =
4∑

i=1

[
γv sin2(δi )+γl cos2(δi ) (γl−γv) sin(δi ) cos(δi )

(γl−γv)sin(δi ) cos(δi ) γv cos2(δi ) + γl sin2(δi )

]
,

(18c)

(a)

(b) (c)

Fig. 7 a Schematic of a network of four fibers linking a membrane
protein (moving node M) to intracellular structures (fixed nodes Mi ).
b Four-fiber network characteristic stiffnesses K1 and K2 (blue and
red dots, respectively) and two-fiber network characteristic stiffnesses
divided by two (cyan and black solid lines) as a function of the isotropy
index q. c Four-fiber network (blue and red dots) and two-fiber network
characteristic times of deformation τ1 and τ2 as a function of the isotropy
index q. τre f = 1s

where kl = E A
L , kv = σpA

L , γl = γ A
L , γv = γ I

L3 , and δi is the
angle between the x-axis and the fiber fi .

Random four-fiber configurations are generated by choos-
ing random values of the angles δi . The isotropy of the
network is assessed by computing the isotropy index q,
defined as the mean angular distance between a fiber and
the mean fiber direction:

q = < |δ̃i− < δ̃i >i∈[1,4] | >i∈[1,4]
45

, (19)

where δ̃i + ni × 180◦, with ni = 0 or ni = 1. The values of
ni are chosen so that all δ̃i lie in an interval of length 180◦.
If the four fibers are perfectly aligned, q = 0, whereas in
the isotropic case where the angle between two fibers is 90◦,
q = 1. Note that this is also true for the system of two fibers.

Wedefine the characteristic stiffnesses, K1 and K2, and the
characteristic times, τ1 and τ2, associated with the deforma-
tion of the two- or four-fiber network as the eigenvalues of the
stiffnessmatrix K [Eqs. (11b) and (18b)] and of K−1Γ where
Γ is the damping matrix [Eqs. (11c) and (18c)]. Figure 7b,
c shows, respectively, the characteristic stiffnesses and the
characteristic times of the four-fiber network stiffness matrix
(dots in Fig. 7b,c) and of the two-fiber system equation (solid
line in Fig. 7b,c). The results for the four-fiber system are
noisy because several four-fiber configurations correspond
to a given isotropy index. However, the noise is small com-
pared to the dependence of the results on the isotropy index.
This dependence is very well fitted by the results obtained
for the two-fiber system. The magnitude of the characteristic
stiffnesses is the only major difference between the two-fiber
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and the four-fiber systems. Indeed, more fibers resist the sys-
tem deformation in the four-fiber network; consequently, the
characteristic stiffnesses are twice those of the two-fiber sys-
tem.

Given that the characteristics of strain transmission are
driven by the eigenvalues of the stiffness and damping matri-
ces, the consistency of the dependence of characteristic times
and stiffnesses on stress fiber organization shows that the
results of the two-fiber model can indeed be used to charac-
terize the behavior of more complex networks.

5 Conclusions

We have developed a model to study the transmission of
mechanical signals in a network of prestressed viscoelas-
tic actin stress fibers. To understand the correlation between
external force characteristics, stress fiber alignment, and
expression of atheroprotective or atheroprone genes,we stud-
ied simple systems of fibers whose unique parameters are the
alignment of the fibers and the external force characteristics.
We showed that the dynamics of force transmission in the
fibers are consistent with experimental results obtained by
applying forces to cells using magnetic tweezers, and we
proposed that strain-dependent binding of proteins to stress
fibers may explain cell polarization and differences in cell
function in disturbed versus undisturbed flow regions. We
thus propose that stress fiber strain may be an intermediate
mechanism to translate a force signal applied to the cell into
a chemical signal, via the activation of strain-dependent pro-
teins within the cell.

Although the networks considered in the present work
are very simple, we expect them to capture the essential
features of mechanical signal transmission through more
complex stress fiber networks. In fact, the theoretical frame-
work developed here can be readily expanded to allow the
study of two- and three-dimensional networks of arbitrary
complexity. Such a study, however, awaits quantitative exper-
imental data on the topology of stress fiber networks in cells.
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Appendix

Results obtained with a single stress fiber (Hwang and
Barakat 2012) suggest that stress fiber inertia is negligible, so
that wave perturbations in the deformation field are damped
byfiber internal viscosity. In support of this notion, the results
show that force transmission dynamics are indeed dominated

by spatially monotonic deformation of stress fibers. There-
fore, the structure of the deformation field does not change
significantly in time, and displacement of the fiber can be
written as:

wv(x, t) = av(t)ψv(x), (20a)

wl(x, t) = al(t)ψl(x). (20b)

Substituting Eqs. (20a) and (20b) into Eqs. (1a) and (1b) and
integrating these equations over the spatial domain yield:

σpA

L

(∫ 1

0

d2ψv(x̂)

dx̂2
dx̂

)
︸ ︷︷ ︸

C1,v

av(t)

+ γ I

L3

(
−

∫ 1

0

d4ψv(x̂)

dx̂4
dx̂

)
︸ ︷︷ ︸

C2,v

dav(t)

dt
+ Fv = 0, (21a)

E A

L

(∫ 1

0

d2ψl(x̂)

dx̂2
dx̂

)
︸ ︷︷ ︸

Cl

al(t)

+ γ A

L

(∫ 1

0

d2ψl(x̂)

dx̂2
dx̂

)
︸ ︷︷ ︸

Cl

dal(t)

dt
+ Fl = 0, (21b)

where x̂ is defined as x/L .
Equations (20a) and (20b) can be used to relate the dis-

placement of the free end of the fiber to the time functions av
and al: wend

v (t) = av(t)ψv(0) and wend
l (t) = al(t)ψl(0) and

wl(t) = al(t)ψl(0). Rearranging equations (21) with Ĉ1,v =
C1,v/ψv(0), Ĉ2,v = C2,v/ψv(0) and Ĉl = Cl/ψl(0), we
obtain the following ordinary differential equations (ODEs)
that describe the motion of the free end of the fiber (x = 0):

σpA

L
Ĉ1,vw

end
v (t) + γ I

L3 Ĉ2,v
dwend

v (t)

dt
+ Fv = 0, (22a)

E A

L
Ĉlw

end
l (t) + γ A

L
Ĉl

dwend
l (t)

dt
+ Fl = 0. (22b)

An order of magnitude analysis on the three constants Ĉ1,v,
Ĉ2,v, and Ĉl reveals that theirmagnitudes are O(1).We detail
the analysis for the case of Ĉ1,v:

Ĉ1,v = 1

ψv(0)

∫ 1

0

d2ψv(x̂)

dx̂2
dx̂ = 1

ψv(0)

dψv(x̂)

dx̂

∣∣∣
x̂=1

, (23)

given that the boundary condition at x = 0 imposes that
dψv(x̂)/dx̂ |x̂=0 = 0. The derivative of ψv at x̂ = 1 can be
approximated by (ψv(1)−ψv(0))/(1−0), whereψv(1) = 0.
Substituting this into Eq. 23 yields Ĉ1,v = O(1).

Because forces associated with prestress, elasticity, and
material viscosity act against the direction of the externally
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applied force, their signs should be negative, and it is rea-
sonable to approximate Ĉ1,v = Ĉ2,v = Ĉl = −1. Hence,
the transverse and longitudinal motions of the free end are
governed by the two ODEs given by Eqs. 5a and 5b.
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