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Abstract The remarkable mechanical properties of carti-
lage derive from an interplay of isotropically distributed,
densely packed and negatively charged proteoglycans; a
highly anisotropic and inhomogeneously oriented fiber net-
work of collagens; and an interstitial electrolytic fluid. We
propose a new 3D finite strain constitutive model capable
of simultaneously addressing both solid (reinforcement) and
fluid (permeability) dependence of the tissue’s mechanical
response on the patient-specific collagen fiber network. To
represent fiber reinforcement, we integrate the strain ener-
gies of single collagen fibers—weighted by an orientation
distribution function (ODF) defined over a unit sphere—
over the distributed fiber orientations in 3D. We define the
anisotropic intrinsic permeability of the tissue with a struc-
ture tensor based again on the integration of the local ODF
over all spatial fiber orientations. By design, our modeling
formulation accepts structural data on patient-specific colla-
gen fiber networks as determined via diffusion tensor MRI.
We implement our new model in 3D large strain finite ele-
ments and study the distributions of interstitial fluid pressure,
fluid pressure load support and shear stress within a cartilage
sample under indentation. Results show that the fiber network
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dramatically increases interstitial fluid pressure and focuses
it near the surface. Inhomogeneity in the tissue’s composi-
tion also increases fluid pressure and reduces shear stress in
the solid. Finally, a biphasic neo-Hookean material model,
as is available in commercial finite element codes, does not
capture important features of the intra-tissue response, e.g.,
distributions of interstitial fluid pressure and principal shear
stress.

Keywords Cartilage · Constitutive modeling · Finite
element simulation · Porous media · Collagen fiber ·
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1 Introduction

Cartilage, a complex, multi-phase material, comprises (by
percentage wet weight) fluid and electrolytes (68–85 %),
collagen fibers (15–25 %), proteoglycans (5–10 %) and chon-
drocytes (<0.01 %) (Mow et al. 2005; Athanasiou et al.
2010). The predominantly type II collagen fibers exhibit a
high level of structural organization usually consisting of
three sub-tissue zones starting from the surface to the sub-
chondral bone: The superficial zone has fibers which are
predominantly tangential to the articular surface, the mid-
dle zone has fibers which are isotropically distributed and
oriented, and the deep zone has fibers which are oriented
predominantly perpendicular to the underlying bone (Mow
et al. 2005; Pierce et al. 2013b). Mechanical properties
of the solid phase derive from an interplay of isotropi-
cally distributed, densely packed and negatively charged
proteoglycans (Hascall 1977; Muir 1983), and the highly
anisotropic and inhomogeneously oriented fiber network of
collagens. These two components also influence permeation
of the fluid phase. The densely packed proteoglycans give an
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extremely low permeability, while the collagenous fiber net-
work gives an anisotropic and inhomogeneous permeability.

Diffusion tensor imaging (DT-MRI or DTI) is a mag-
netic resonance imaging (MRI) technique, which allows the
microstructure of soft biological tissues, particularly carti-
lage, to be probed by determining the local mobility of water
molecules, i.e., the local diffusivity characteristics (Basser
et al. 1994). In fact, the anisotropic diffusion of water in
cartilage, as captured by DT-MRI, reflects the general ori-
entation of the collagen fibers within the network (Filidoro
et al. 2005; Meder et al. 2006; Abdullah et al. 2007; de Visser
et al. 2008a, b). Mathematically, this diffusion process can
be formulated as a conditional probability density function
P(x, x0), which specifies the probability of a water molecule
to displace from its initial positionx0 to positionx in the given
diffusion time δ (e.g., in s). In classic DT-MRI, the averaged
diffusion probabilities within a single voxel are modeled to
be Gaussian, i.e., the diffusion propagator is given as

P (ξ) =
(

4πb−1δ
)−3/2 |D|−1/2 exp

{
−bξTD−1ξ

4δ

}
, (1)

where ξ = x−x0 is the relative molecule displacement (e.g.,
in mm), D is the voxel’s diffusion tensor (dimensionless) and
b is the b-value used in the imaging protocol (s/mm2) (Basser
et al. 1994; Price 2009; Pierce et al. 2010).

Despite the extreme complexity of the fundamental mech-
anisms underlying cartilage function, computational mod-
eling can bring biological and medical data together with
physics and engineering science into a patient-specific simu-
lation environment. To facilitate finite element (FE) analysis
of this complex soft tissue and hence further interdiscipli-
nary studies, we propose a quasi-static, two-phase model with
individually incompressible phases under isothermal condi-
tions and without mass exchanges.

We model the proteoglycan solid as neo-Hookean and
define a compaction point as the state in which all trans-
portable fluid is pressed out of the tissue. To model mechan-
ical contributions from the collagen fiber network, we inte-
grate the strain energies of single collagen fibers—weighted
by an orientation distribution function (ODF) defined over a
unit sphere—over the distributed fiber orientations in 3D. We
define the anisotropic intrinsic permeability of the cartilage
solid matrix with a consistent spatial structural tensor based
on the initial Darcy permeability, an isotropic deformation
dependence, and again on the integration of the local ODF
over all (normalized) spatial fiber orientations.

To increase the fidelity of our simulations, we define
material parameters as constants and compositional para-
meters as functions of the normalized tissue thickness, and
we use structural parameters to characterize local (element-
wise) ODFs. We calibrate our model by fitting data from

the cartilage mechanics literature and determine the element-
wise ODFs directly from sample-specific DT-MRI data. We
specifically develop our modeling formulation to accept
structural data on the patient-specific collagen fiber network
as determined via DT-MRI (Pierce et al. 2010).

Several continuum constitutive models, based on ODFs
and created for solids (and even cartilage), are proposed in
the mechanics literature. Miehe et al. (2004) introduced a
micro-mechanically motivated network model for the elastic
response of rubbery polymers by homogenizing the response
of microscopic free energies, oriented using a probability dis-
tribution function defined over a unit sphere, to determine the
macroscopic total free energy. This model was subsequently
extended to include the description of time-dependent vis-
coelastic effects (Miehe and Göktepe 2005). Particularizing
ODFs to model distributions of collagen fibers, Topol et al.
(2014) explored issues associated with ODFs for which the
different fiber orientations at a given location may have dif-
ferent natural (stress-free) configurations.

Regarding the constitutive modeling of cartilage specifi-
cally, Lei and Szeri (2006) developed a 3D poroelastic model
using arbitrary ODFs to realize structural anisotropy due to
inhomogeneity in the distribution and orientation of fibers
(while the permeability remained isotropic). The authors
implemented their model in ABAQUS (Dassault Systèmes,
Vélizy-Villacoublay, FR) using 2D axisymmetric elements,
but never in 3D. Federico and Gasser (2010) proposed a
constitutive model for biological tissues, which superposes
elastic strain-energy potentials related to a matrix and a rein-
forcing continuous infinity of fiber families represented by a
probability density function defined on the unit sphere. The
authors modeled cartilage as a strictly incompressible, pure
solid and used estimates for the material and structural para-
meters to demonstrate the constitutive model in 3D finite
elements.

Ateshian et al. (2009) modeled the solid matrix of carti-
lage with a continuous fiber angular distribution, where fibers
can only sustain tension, swelled by the osmotic pressure
of a proteoglycan ground matrix. The authors particularized
their constitutive model to focus on the tissue’s equilibrium
response to mechanical and osmotic loading, when flow-
dependent and flow-independent viscoelastic effects have
subsided; thus, they specialized the framework of triphasic
theory for charged hydrated tissues to equilibrium condi-
tions under finite deformation. This model is available for
use in FEBio (Maas et al. 2012). In fact, several combina-
tions of existing 3D multi-phasic constitutive models can
be combined in a modular way using FEBio with consti-
tutive equations for solute diffusivity and the mechanical
effects of mechanochemical interactions (Maas et al. 2012).
Tomic et al. (2014) implemented the model from Federico
and Grillo (2012) into FEBio and exercised it modeling
an unconfined compression test of articular cartilage. This
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poroelastic constitutive model includes both an ODF describ-
ing statistically oriented fibers contributing to the elastic
properties and an anisotropic permeability tensor obtained
by upscaling the flow properties (Federico and Grillo 2012).
Taffetani et al. (2014) generalized the angular distribution
function proposed by Ateshian et al. (2009) and included
this in a multi-constituent constitutive model that accounts
for the nonlinear, porous and viscous aspects of cartilage. The
authors implemented their constitutive model in ABAQUS
and used 2D axisymmetric elements to simulate nanoinden-
tation tests on cartilage.

Mechanisms for maximizing fluid pressure are important
for normal tissue function because increased fluid pressure
improves surface frictional properties (Ateshian et al. 1998),
enhances load support and shields the solid matrix from
load. In previous work (Pierce et al. 2013b), we tested the
following hypotheses found in the cartilage mechanics liter-
ature: (1) the through-the-thickness structural arrangement
of the collagen fiber fabric adjusts fluid permeation to main-
tain fluid pressure and optimize tissue function (Federico
and Herzog 2008); (2) the inhomogeneity of mechanical
properties through the cartilage thickness acts to main-
tain fluid pressure at the articular surface (Krishnan et al.
2003). To determine the effects of the collagen fiber net-
work and through-the-thickness tissue inhomogeneity (of
tissue constituents) independently, we selectively simpli-
fied our previous constitutive model by removing either the
fiber network, or the tissue inhomogeneity, or both. Therein,
we captured the anisotropic and nonlinear response of the
dispersed collagen fiber fabric using a strain-energy func-
tion extended to consider the dispersion of the collagen
fiber orientation (Gasser et al. 2006; Pierce et al. 2010).
Furthermore, we assumed that each of the three sub-tissue
zones was individually homogeneous, leading to a piece-
wise constant through-the-thickness description of both the
fiber network and the model parameters. In that work, both
through-the-thickness inhomogeneity of the collagen fiber
distribution and of the material properties served to main-
tain fluid pressure, but depth-dependent model parameters
appeared to have a larger effect on fluid pressure retention in
the tissue sample, and on the advantageous pressure distrib-
ution (Pierce et al. 2013b).

In the present study, we implement our new constitutive
formulation in 3D large strain finite elements and re-simulate
the previous mechanical indentation tests to study the dis-
tributions of interstitial fluid pressure, fluid pressure load
support and principal shear stress within the cartilage sample
under indentation with a plane-ended, 1 mm diameter cylin-
drical indenter. With our new model, we have improved the
representation of both the collagen fiber network and the
depth-dependent tissue composition (varies continuously).
To demonstrate our new constitutive model, we retest our
original hypotheses. Our results show that the fiber network

dramatically increases interstitial fluid pressure and focuses
it near the surface tissue. Inhomogeneity in the tissue’s com-
position also increases fluid pressure, although to a lesser
extent than the fiber network, and also reduces principal shear
stress in the solid. Finally, a biphasic neo-Hookean mater-
ial model, as is available in commercial FE codes, does not
capture important features of the intra-tissue response, e.g.,
distributions of interstitial fluid pressure and principal shear
stress.

2 Constitutive model

Our constitutive model is based on four main assumptions.
First, we assume that the cartilage tissue consists of two
phases: a porous solid skeleton saturated by a pore fluid.
This assumption implies that under physiologic loading con-
ditions, the magnitude of the swelling strain due to Donnan
osmotic pressure (resulting from changes in the total ion con-
centration of the tissue) is relatively small in comparison
with the tissue strains, so that we are justified in approximat-
ing the physiologic response using a biphasic model (Soltz
and Ateshian 2000). Second, we assume that both phases are
individually incompressible, see, e.g., (Jurvelin et al. 1997;
Bachrach et al. 1998; Soltz and Ateshian 1998; Wong et al.
2000; Humphrey 2002; Park et al. 2003; Huang et al. 2005).
Our third assumption is that mass exchanges between the
solid and the fluid constituents can be neglected (immiscibil-
ity). Finally, we assume that dynamic effects are negligible
(quasi-static), so we restrict both phases to exclude inertial
terms.

We describe articular cartilage as a biphasic continuum
ϕ = ϕS + ϕF, which consists of a porous solid phase ϕS

saturated with the fluid phase ϕF, the latter representing the
interstitial water. The solid phase represents an incompress-
ible tissue with an isotropic and statistically regular pore
distribution and with an imbedded reinforcing collagen fiber
network. To describe this biphasic system, we use the theory
of porous media within a superimposed, continuum mechan-
ical framework, see e.g., Bowen (1980, 1982), Ehlers (1989,
1993), de Boer (2000) and Pence (2012).

We represent the microscopic tissue structure with a sta-
tistical distribution of the constituents over a representative
elementary volume by their average volume fractions nα .
The volume fractions nα refer the volume elements dvα of
the individual constituents ϕα to the bulk volume element dv

with

nα(x, t) = dvα

dv
,

k∑
α=1

nα(x, t) =
k∑

α=1

ρα

ραR = 1, α ∈ {S, F} , (2)
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Fig. 1 Schematic representation of the true cartilage structure (multi-
photon microscopy image), its representation using volume fractions
and the corresponding homogenization within the theory of porous
media

where x is the position vector of the spatial point (reference
position X), t is the time, and S and F denote the solid and
fluid, respectively. The volume fractions nα in (2)1 satisfy the
saturation condition (2)2 for k constituents ϕα . Moreover, the
partial density ρα = nα ραR of the constituent ϕα is related to
the real density of the materials ραR involved via the volume
fractions nα , see (2)2. We further partition the solid volume
increment dvS into the volume fraction of fiber network ν

relative to total solid and that of isotropic matrix (1 − ν).
See Fig. 1 for a schematic representation of the constitutive
modeling approach, illustrating the true cartilage structure,
its representation using volume fractions and the correspond-
ing homogenization within the theory of porous media. For
an extended explanation of the kinematics of porous media,
see de Boer (2000) or Ehlers (2002).

2.1 Fluid and elastic solid contributions to the stress

We propose the constitutive relation for the total Cauchy
stress tensor as

σ = −p I + 2 ρS FS
∂	S

∂CS
FT

S = −p I + σ S
E, (3)

where p is the fluid pressure, I is the second-order identity
tensor, FS = ∂xS/∂XS is the deformation gradient of the
solid, CS = FT

S FS is the right Cauchy–Green tensor and σ S
E

is the effective Cauchy stress tensor, see e.g., Bishop (1959)
or Skempton (1960).

We use an additive decomposition of the superimposed
solid Helmholtz free-energy function 	S into an isotropic
matrix part 	S

IM, and a transversely isotropic fiber network
part 	S

FN as

	S = (1 − ν)	S
IM (JS, I1) + ν	S

FN (CS), (4)

where ν is the volume fraction of the collagen fiber network
to the total solid, JS = det FS is the Jacobian and I1 = trCS

is the first invariant of CS.
In the case of volumetric compression, a compaction point

must be introduced defining the state where no further com-
pression can occur, i.e., all fluid is pressed out of the tissue,

and all pores are closed, see e.g., Wilson et al. (2007) and Fed-
erico and Grillo (2012). We use a strain-energy function
based on Simo and Pister (1984) to capture the response
of the isotropic (largely) proteoglycan solid matrix, which
has been extended to include compaction effects as (Bluhm
2002; Pierce et al. 2013a, b)

	S
IM (JS, I1) = 1

ρS
0S

[
U (JS) + 1

2
μS(I1 − 3)

]
, (5)

where

U (JS) = χS
cp

[
1

2
(log JS)2 + ζ S

]
− μS log JS, (6)

and where we use the abbreviations

χS
cp = λS

⎡
⎢⎣1 + JS

cp

⎛
⎜⎝1 +

(
JS

cp

)2

1 − JS
cp

⎞
⎟⎠

⎤
⎥⎦

−1

,

ζ S = JS
cp log JS + 1 − JS

cp

JS
cp − 2

×
[

log
JS

cp − JS

JS (JS
cp − 1) − JS

cp
− log

(
1 − JS

cp

)]
. (7)

In (5)–(7) μS is Lamé’s second parameter (a stress-like
material parameter corresponding to the shear modulus of
the underlying matrix in the reference configuration), λS

is Lamé’s first parameter (a stress-like material parameter,
which degenerates to a non-physical, (positive) penalty para-
meter used to enforce incompressibility, cf. Pence 2012), and
nS

0S ≤ JS
cp ≤ 1 defines the point of compaction for the tissue,

where nS
0S is the solid volume fraction in the reference con-

figuration and it is generally not possible to “squeeze out’ all
of the fluid from the tissue.

To capture the anisotropic and nonlinear response of the
dispersed collagen fiber network, suppose that a distribution
of fibers is embedded in this isotropic matrix, and that each
fiber deforms with the matrix. Let ρ(M) be the angular den-
sity of fibers (the ODF) so that (Miehe et al. 2004; Lei and
Szeri 2006)

1

4π

∫




ρ(M) d
 = 1, (8)

where 
 = M ∈ R
3 : |M| = 1 is the unit sphere.

For a single fiber of reference angular orientation M, the
fourth pseudo-invariant I4 is the square of the stretch of this
fiber in the direction m = FSM, i.e., I4(M) = λ2(M) =
M · CSM. We define the strain energy of a single collagen
fiber as (Holzapfel et al. 2000)
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w(I4) = k1

2k2

{
exp[k2(I4 − 1)2] − 1

}
H(I4 − 1), (9)

where k1 > 0 is a stress-like material parameter, k2 > 0 is a
dimensionless parameter and H is a Heaviside step function
evaluated at (I4 − 1), i.e., the collagen fibers only engage
under stretches greater than unity. The form of this strain-
energy function is based on the experimentally supported
assumption that energy is required to straighten a (wavy)
collagen fiber, and that once straightened, a fiber has a strong
stiffening response under tension, cf. Sun et al. (2002).

The strain energy in the increment d
 is thus ρ(M)w(I4)
d
. Assuming that all of the collagen fibers have the same
properties, i.e., the same form for w(I4), we calculate the
total strain-energy function (over all orientations) as

	FN(C,M) = 1

ρS
0S

∫




ρ(M)w(I4) d
. (10)

Within the FE method, we evaluate such integrals numer-
ically following the method suggested by Bažant and Oh
(1986) (see ‘Appendix 1’ for details). The formulation can
readily be generalized to account for different types of colla-
gen fibers, cf. Sáez et al. (2012) and Holzapfel et al. (2014).

2.2 Viscoelasticity of the solid constituents

We calculate the viscous contribution to the total stress state
in the Lagrangian configuration using the second Piola–
Kirchhoff effective stress tensor SS

E = JSF
−1
S σ S

EF
−T
S of the

solid. For clarity in what follows, we drop the superscript S
and the subscript E and denote the second Piola–Kirchhoff
effective stress tensor of the solid by S. We specify the sec-
ond Piola–Kirchhoff effective stress by summing the matrix,
fiber network and viscoelastic contributions as

S =
∑

γ=IM,FN

(
Sγ + Qγ

)
, (11)

where SIM = 2ρS
0S∂	IM/∂CS is the matrix, and SFN =

2ρS
0S∂	FN/∂CS is the fiber network contribution to the sec-

ond Piola–Kirchhoff effective stress S, respectively, and Qγ

represent the viscoelastic contributions where we assume
γ ∈ {IM, FN} time-dependent processes.

To determine the time-dependent (viscous) response of
the matrix and the fiber network, we consider a partition of
the closed time interval t ∈ [0+, T ] and focus attention on
a typical time subinterval [tn, tn+1], with �t = tn+1 − tn
characterizing the associated time increment, cf. Herrmann
and Peterson (1968), Taylor et al. (1970), Simo (1987) and
Holzapfel (1996). Assume now that at times tn and tn+1 all
relevant kinematic quantities are given, and that the stress
Sn at time tn is also specified uniquely via the associated
constitutive equation.

All that remains is the computation of the second Piola–
Kirchhoff stress tensor Sn+1 at time tn+1 [the algorithmic
stress tensor generalized from (11)], which we calculate as

Sn+1 =
∑

γ=IM,FN

(
Sγ, n+1 + Qγ, n+1

)
. (12)

The stress contributions SIM, n+1 and SFN, n+1 describe the
total elastic response computed from the given strain mea-
sures at tn+1. The terms Qγ, n+1 in (12) represent the
non-equilibrium stresses at time tn+1.

We assume that the transient behaviors, introduced by Qγ

in (11), satisfy the evolution equations

Q̇γ + Qγ

τγ

= βγ Ṡγ , (13)

where the dot denotes the material time derivative, βγ is a
dimensionless strain-energy factor controlling the magnitude
of the viscous component response and τγ is the associ-
ated relaxation time. Using the mid-point rule, we arrive at
a second-order accurate recurrence update formula for the
non-equilibrium stresses as

Qγ, n+1 = βγ exp
(−�t/2τγ

)
Sγ, n+1 + Hγ, n, (14)

with

Hγ, n = exp(−�t/2τγ )

× [
exp

(−�t/2τγ

)
Qγ, n − βγ Sγ, n

]
. (15)

We determine the algorithmic history term Hγ, n, γ ∈
{IM, FN}, at time tn , from the known stresses Qγ and Sγ

at tn (for numerical purposes, we have assumed Q0+
γ = O),

see Holzapfel (1996), Holzapfel and Gasser (2001). At ther-
modynamical equilibrium, Qγ = O, which means that only
the elastic response remains.

2.3 Corresponding permeability

The diffusion of interstitial fluid within cartilage, as visu-
alized, e.g., by DT-MRI, is principally influenced by the
general orientation of the (largely type II) collagen fibers
(Filidoro et al. 2005; Meder et al. 2006; Abdullah et al. 2007;
de Visser et al. 2008a, b). In short, the presence of the col-
lagen fibers restricts the diffusion of interstitial fluid within
cartilage, leading to a correspondingly higher diffusivity in
directions parallel to local fiber orientations.

In order to use a material objective measure of the fluid
velocity with respect to the solid velocity, we introduce
the seepage velocity wFS, which describes the difference in
velocity between the fluid phase x′

F and the solid phase x′
S as
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wFS = x′
F − x′

S. We determine the filtration velocity nF wFS

as [cf. Pierce et al. (2013a, 2013b)]

nF wFS =
(
nF
)2

R−1
F

(
−grad p + ρFR b

)
, (16)

whereRF is a positive-definite material parameter tensor rep-
resenting the intrinsic hydraulic resistance of the cartilage
solid matrix and b is the body force per unit mass. We pro-
pose the anisotropic intrinsic permeability of the cartilage
solid matrix KF as (cf. Ricken and Bluhm 2010; Pierce et al.
2013a)

KF =
(
nF
)2

R−1
F = k0S

(
nF

1 − nS
0S

)m

H,

H = 1

4π

∫




ρ(M)

I4(m)
m ⊗ m d
,

(17)

where H is a spatial structure tensor defined by the integra-
tion of ρ(M) over all (normalized) spatial fiber orientations
m̂ = λ−1FSM (with λ = |m|), k0S [m4/N s] is the initial
Darcy permeability and m is a dimensionless parameter con-
trolling the general isotropic deformation dependence of the
permeability, see also, e.g., Eipper (1988). Inclusion of the
volume fraction nF relates to the change of permeability
caused by the change of pore space, where nS

0S denotes the
reference solid volume fraction. Here we useH, via ρ(M), to
define the range of permeabilities resulting from ideal align-
ment of collagen fibers to an isotropic distribution of the
collagen fibers.

3 Methods: representative example

3.1 DT-MRI experiment

We use DT-MRI data generated in our previous work (Pierce
et al. 2010), which we briefly outline here for completeness.
Previously we harvested the left patella of a healthy 27-year-
old male within 24 h from death and stored it in physiologic
solution for 36 h at 4 ◦C. Prior to MRI examination we cut
a cuboid sample from the central part of the lateral facet of
the patellar cartilage. The sample fit into a glass vessel of
4 mm internal diameter which, in turn fit tightly into a 5 mm
birdcage coil used for the MRI experiments. The cuboid sam-
ple constitutes ∼2.8×2.8×2.6 mm in cartilage, and another
∼1 mm in bone thickness, to ensure that the corners of the
sample serve to fix it within the glass vessel. We performed
the MRI experiments with a 17.6 T scanner (UltraStabilized
magnet system, Brucker BioSpin, Rheinstetten, Germany)
using a one channel 5 mm birdcage coil provided by the man-
ufacturer. We immersed the sample and vessel in physiologic
solution maintained at 17–19 ◦C and imaged the assembly

(a) DT-MRI

(b) Problem definition

Fig. 2 a Grayscale representation of the first principal eigenvalues of
the DT-MRI data, a small fissure close to the cartilage-bone transition is
indicated by the white arrow (Pierce et al. 2010). Principal diffusion in
water is represented using white voxels, while regions with negligible
water content are represented as black voxels. Intermediate values span
the range from black towhite; b schematic diagram of a near 2-D inden-
tation test replicating the intra-tissue deformation that occurs during 3D
indentation with a plane-ended cylindrical indenter, where PBS + PI
indicates Phosphate Buffered Saline plus Protease Inhibitors (adapted
from Bae et al. 2006)

through the cartilage thickness and diagonal to the square
footprint in order to maximize the imaged volume. The total
acquisition time of the DT-MRI experiment is ∼140 min For
more details on the MRI experiments and protocols refer
to Pierce et al. (2010), Raya et al. (2011, 2013).

3.2 Implementation of DT-MRI data

The measurement process outlined above yields a set of
diffusion-weighted images, which enable us to reconstruct
a voxel grid of diffusion tensors for the imaged volumetric
slice. Figure 2a depicts the first principal eigenvalues of the
tensor field, the rectangular gray area is the articular car-
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tilage layer and the noisy black area directly below is the
subchondral bone (Pierce et al. 2010). The cartilage-bone
sample is surrounded by water (solid white, representing a
higher diffusivity) and is enclosed in a cylindrical container
(solid black border). Based on this data we infer the sample-
specific geometric boundaries as well as the fiber distribution
in the cartilage region. To remain consistent with our previ-
ous work (Pierce et al. 2010), we follow the same procedure
to obtain a structured FE mesh: we first locate the geometric
boundaries as sub-voxel-accurate zero-crossings of the sec-
ond spatial derivative (Laplacian of Gaussian filter), then we
use the voxel grid from the DT-MRI experiment as struc-
tured mesh. Along the boundaries of the cartilage region we
use a semiautomatic process to transition from the structured
voxel grid to the natural cartilage boundary while maintain-
ing good element aspect ratios. Finally, the obtained 2D mesh
is extruded to generate a 3D mesh of 20-node brick elements,
representing the volume of the imaged DT-MRI slice.

By construction, one tensor per element is available within
the ‘inner’ regions of the mesh, i.e., there is a one-to-one map-
ping from diffusion tensors to elements. Due to geometrical
constraints on the FE mesh, this one-to-one mapping breaks
down along the boundary. For every element in these ‘outer’
regions of the mesh we perform a weighted interpolation of
the element’s four nearest diffusion tensors in the voxel grid
using a Log-Euclidean framework (Arsigny et al. 2006).

Recalling from the introduction that the directional dif-
fusion properties of water in cartilage are induced by the
orientation of the collagen fibers, the element-wise tensor
data naturally maps to the model’s ODF for the fiber network.
We first convert the diffusion probability density function (1)
to spherical coordinates (r, θ, φ), then marginalize out the
radius r (see ‘Appendix 3’ for details). An analytical form of
the required ODF results as

ρ (M,D) = sin θ

|D|1/2 (MTD−1M
)3/2 , (18)

where (M) = (cos θ sin φ, sin θ sin φ, cos φ)T and D is the
symmetric, positive-definite diffusion tensor for a specific
element. The factor sin θ is introduced by the change from
Cartesian to spherical variables to account for the fact that
the surface element on the sphere is not uniform across the
entire domain.

3.3 Material, compositional and structural parameters

Table 1 gives a summary of the required material, composi-
tional and structural parameters—values used to approximate
the response of the human patellar cartilage through the tissue
thickness—and corresponding units, c.f. Pierce et al. (2013a,
2013b).

Table 1 Required material, compositional and structural parameters—
values used to approximate the response of the human patellar cartilage
through the tissue thickness—and corresponding units

Unit

Material parameter

ρFR 9.9 × 102 kg/m3

ρSR 1.5 × 103 kg/m3

μS 2.3 × 105 N/m2

k1, k2 4.3 × 105, 40 N/m2, –

βIM, τIM 1.0, 1 –, s

βFN, τFN 2.2, 100 –, s

Compositional parameter

nS
0S(z∗) 0.15 + 0.15(z∗) –

ν(z∗) 0.43(z∗)2 − 0.60(z∗) + 0.85 –

JS
cp(z

∗) 0.36 + 0.11(z∗) –

k0S(z∗) 1 × 10−15 − 0.9 × 10−15(z∗) m4/Ns

m(z∗) 3.0 + 5.0(z∗) –

Structural parameter

D DT-MRI –

The parameter z∗ ∈ [0, 1] is the normalized tissue thickness, where
zero refers to the articular surface and one refers to the interface with
subchondral bone. Note that the structural parameter D for the orienta-
tion distribution function ρ(M,D) is determined directly from DT-MRI
data for the specific sample analyzed, as discussed in the Sect. 3.2

Material parameters are intrinsic to the properties of the
tissue constituents. Here we specify ρFR as the mass density
of water at 37.1 ◦C and calculate ρSR using data from Basser
et al. (1998). We specify the average equilibrium shear mod-
ulus μS of patellar cartilage based on the cartilage mechanics
literature (Zhu et al. 1986, 1993; Mow et al. 2005). To spec-
ify the stiffening response of a single collagen fiber, i.e., k1

and k2, we draw on the work of García and Cortés (2007),
Pierce et al. (2009). In light of the lack of direct data on
the viscoelastic response of the proteoglycan matrix and the
type II collagen fibers individually, we estimate βIM based
on unpublished experience with experiments and specify βFN

using data from Li and Herzog (2004). We infer from the lit-
erature that the parameters τIM and τFN must lie in the range
0.21–1.03 s ∼ τIM < τf ∼40–675 s (DiSilvestro and Suh
2001; Charlebois et al. 2004; García and Cortés 2007; Pierce
et al. 2009).

Compositional parameters refer to the local distribution
of constituents within the tissue. Following the approach
from Wilson et al. (2007), we specify compositional para-
meters as functions of the local, normalized tissue thickness
z∗ ∈ [0, 1], where z∗ = 0 refers to the articular surface and
z∗ = 1 refers to the interface with the subchondral bone. We
specify the reference solid volume fraction nS

0S(z∗) based on
data from Mow et al. (2005). To determine the volume frac-
tion of the collagen fiber network to the total solid ν(z∗) we
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fit data from both Mow et al. (2005) and Athanasiou et al.
(2010). Lacking experimental data we assume a linear distri-
bution for the point of compaction for the solid JS

cp(z
∗) and

follow arguments from Pierce et al. (2013b). To determine
the initial Darcy permeability k0S(z∗) we assume a linear
relationship and fit data from Krishnan et al. (2003) which
we (slightly) adjust to data ranges from Mow et al. (2005).
Similarly, we assume a linear relationship for the parame-
ter controlling the general isotropic deformation dependence
of the permeability m(z∗) based on data from both Chen
et al. (2001) and Mow et al. (2005). Finally, we determine
the structural parameter D required for the ODF ρ(M,D)

directly from DT-MRI data on the specific sample analyzed,
as discussed in the Sect. 3.2.

3.4 Finite element simulations

We perform ‘near’ 2-D indentation tests to study the intra-
tissue Green–Lagrange strain, interstitial fluid pressure,
principal shear stress and fluid pressure load support distribu-
tions resulting in the cartilage sample due to indentation with
a plane-ended, 1 mm diameter cylindrical indenter, cf. Pierce
et al. (2013b). Following Bae et al. (2006), a vertical bisec-
tion during 3D indentation of the cartilage surface using a
plane-ended cylinder would reveal rectangular cut-planes for
both the indenter and the sample. Therefore, an indentation
test using the simpler geometry of a rectangular prismatic tip
compressing a rectangular sample, with a constrained side to
prevent out-of-plane motion, would exhibit the main features
of intra-tissue deformation in the 3D counterpart (Bae et al.
2006), cf. Fig. 2b.

To model the test setup, we fix all displacement degrees
of freedom for nodes coincident with the subchondral bone
interface, and set the corresponding fluid flux normal to this
surface to zero. We apply symmetry boundary conditions to
both cross-sectional surfaces of the tissue, one side repre-
senting the imaging plane of the experimental setup and the
other resulting from the relative thickness of the FE model.
At the contact interface with the impermeable indenter (at
the left surface in Fig. 2a) we prescribe the axial surface dis-
placement to cause 1 % global tissue strain in 150 s and set
the corresponding fluid flux normal to this interface to zero.
We specify all remaining nodes in contact with the physio-
logic solution as free to displace and set the corresponding
fluid pressure to zero.

To study the effects of the collagen fiber network and
through-the-thickness tissue inhomogeneity (of mechanical
properties) independently, we follow the methodology of
our previous work (Pierce et al. 2013b) and complete finite
deformation contact simulations of the indentation experi-
ment using four models—Model 1: patient-specific collagen
fiber network, inhomogeneous compositional parameters;
Model 2: patient-specific collagen fiber network, homoge-

neous compositional parameters; Model 3: no collagen fiber
network, inhomogeneous compositional parameters; and
Model 4: no collagen fiber network, homogeneous compo-
sitional parameters. Models with inhomogeneous composi-
tional parameters use the through-the-thickness parameters,
as detailed in Table 1, while homogeneous models use con-
stant mean parameters throughout the entire mesh. We define
the fluid pressure load support RF

i at a tissue point in the i-
direction as RF

i = −p/(−p + (σ S
E )i i ), i.e., pressure divided

by the total normal stress, where (σ S
E )i i is the i i-component

of the effective solid Cauchy stress tensor (Pierce et al.
2013a, b).

Each simulation employs 1938 20-node hexahedral ele-
ments of the Taylor–Hood type, with quadratic shape func-
tions for solid displacements and bilinear shape functions for
saturation pressure. We complete all simulations in the FE
program ParFEAP (University of California at Berkeley, CA,
United States) using a total Lagrangian formulation and the
included Newton–Raphson algorithm. To implement the con-
stitutive equations, we require elasticity tensors for both the
isotropic matrix and fiber network contributions to the solid
extra stress as well as the derivative of the filtration velocity
nF wFS with respect to both the deformation gradient FS and
the material gradient of the interstitial fluid pressure grad p
(see ‘Appendix 2’ for details on the last).

4 Results

Figure 3 depicts simulation results for the indentation experi-
ment with an impermeable, plane-ended cylinder of diameter
1 mm compressing the cartilage sample to 1 % global strain
in 150 s. Specifically, the first [(a), (c), (e), (g)] and sec-
ond [(b), (d), (f), (h)] columns depict the interstitial fluid
pressure and the principal (maximum) shear stress, respec-
tively. As for the rows, Row 1 [(a), (b)] corresponds to
Model 1—patient-specific collagen fiber network, inho-
mogeneous compositional parameters; Row 2 [(c), (d)]:
Model 2—patient-specific collagen fiber network, homoge-
neous compositional parameters; Row 3 [(e), (f)]: Model 3—
no collagen fiber network, inhomogeneous compositional
parameters; and Row 4 [(g), (h)]: Model 4—no collagen fiber
network, homogeneous compositional parameters.

Figure 4 depicts simulation results plotted along the z-
axis in Fig. 2b, i.e., through the tissue thickness along the
main axis of the indenter, for the indentation experiment.
Specifically, Fig. 4(a) depicts the interstitial fluid pressure;
(b) the principal shear stress; and (c) the fluid pressure load
support; where Models 1, 2, 3 and 4 are consistent with the
earlier descriptions in this section.

Figure 5 depicts simulation results plotted along the
dashed line in Fig. 2b, i.e., through the tissue thickness at the
edge of the indenter, for the indentation experiment. Simi-
larly, Fig. 5(a) depicts the interstitial fluid pressure; (b) the
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(a) Model 1 (b) Model 1

(c) Model 2 (d) Model 2

(e) Model 3 (f) Model 3

(g) Model 4 (h) Model 4

Fig. 3 Simulation results for the indentation experiment with an
impermeable, plane-ended cylinder of diameter 1 mm compressing
the cartilage sample to 1 % global strain in 150 s. Column 1 intersti-
tial fluid pressure; Column 2 principal shear stress. Row 1 Model 1
(patient-specific collagen fiber network, inhomogeneous compositional
parameters); Row 2 Model 2 (patient-specific collagen fiber network,
homogeneous compositional parameters); Row 3 Model 3 (no colla-
gen fiber network, inhomogeneous compositional parameters); Row 4
Model 4 (no collagen fiber network, homogeneous compositional para-
meters)

principal shear stress; and (c) the fluid pressure load support;
where again Models 1, 2, 3 and 4 are consistent with the
earlier descriptions.
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Fig. 4 Simulation results plotted along the z-axis in Fig. 2b, i.e.,
through the tissue thickness along the main axis of the indenter, for
the indentation experiment with an impermeable, plane-ended cylin-
der of diameter 1 mm compressing the cartilage sample to 1 % global
strain in 150 s: a interstitial fluid pressure; b principal shear stress;
c fluid pressure load support; where, Model 1 patient-specific colla-
gen fiber network, inhomogeneous compositional parameters; Model
2 patient-specific collagen fiber network, homogeneous compositional
parameters;Model 3 no collagen fiber network, inhomogeneous compo-
sitional parameters; Model 4 no collagen fiber network, homogeneous
compositional parameters

Reviewing quantitative values in the simulation results,
the maximum interstitial fluid pressure at the indentation
surface is 11.0 kPa for Model 1 (maximum among mod-
els); 10.1 kPa for Model 2 (a drop of −8.18 % relative
to Model 1); 4.10 kPa for Model 3 (−62.7 % relative to
Model 1); and 3.46 kPa for Model 4 (−68.5 % relative to
Model 1). Reviewing the principal shear stress similarly,
the maximum intra-tissue value is 8.64 kPa for Model 2
(maximum among models); 8.41 kPa for Model 1 (a drop
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Fig. 5 Simulation results plotted along the dashed line in Fig. 2b, i.e.,
through the tissue thickness at the edge of the indenter, for the indenta-
tion experiment with an impermeable, plane-ended cylinder of diameter
1 mm compressing the cartilage sample to 1 % global strain in 150 s:
a interstitial fluid pressure; b principal shear stress; c fluid pressure
load support; where, Model 1 patient-specific collagen fiber network,
inhomogeneous compositional parameters; Model 2 patient-specific
collagen fiber network, homogeneous compositional parameters;Model
3 no collagen fiber network, inhomogeneous compositional parameters;
Model 4 no collagen fiber network, homogeneous compositional para-
meters

of −2.66 % relative to Model 2); 2.78 kPa for Model 3:
(−67.8 % relative to Model 2); and 3.68 kPa for Model 4
(−57.4 % relative to Model 2).

5 Discussion

We propose a new 3D finite strain model capable of simulta-
neously addressing both solid (reinforcement) and fluid (per-

meability) dependence of the tissue’s mechanical response
on the patient-specific collagen fiber network. We repre-
sent fiber reinforcement as an inhomogeneous, dispersed
network, where the fluid permeability is intimately depen-
dent on this network and on a fixed intrafibrillar water
portion. Our approach, in which the model parameters are
physically motivated, implements image-based morpholog-
ical data in a computational setting. We demonstrate the
modeling approach by retesting two hypotheses from the
cartilage mechanics literature on a specific sample of car-
tilage. Following our previous work (Pierce et al. 2013b),
we select indentation to 1 % global strain in 150 s because it
allows some time for loss of fluid pressure (for testing the
two hypotheses) while still being in the early time response
relevant from a physiologic perspective (mechanical equi-
librium generally occurs on a timescale of thousands of
seconds) (Ateshian et al. 1997; Pierce et al. 2009).

Discussing the results specifically, Figs. 3a, c, e, g, 4a
and 5a compare the interstitial fluid pressure distributions
under the indenter predicted by the four models. Figures 4a
and 5a compare this through the thickness of the tissue both
along the main axis of the indenter and at the edge of the
indenter—i.e., along the dashed line in Fig. 2b—respectively.
In our numerical solution for the distribution of pressure,
we set the filtration velocity to zero in the directions nor-
mal to impermeable surfaces. This solution should give us
grad p, normal to these surfaces, which is numerically zero
[cf. (16) in the absence of significant body forces]. In prac-
tice, the solution may not give exactly grad p equals zero,
normal to these surfaces, because we evaluate the equations
at Gauss quadrature points and project this solution to the
nodes. Nonetheless, the main gradient in pressure is par-
allel to the impermeable surfaces within the limitations of
the FE method (cf., e.g., Fig. 3a). Overall, Model 1 retains
the highest interstitial fluid pressure among the four mod-
els, and the fluid pressure is concentrated in the superficial
zone and particularly the articular surface. Not surprisingly,
the fluid pressure is higher directly underneath the edge of
the indenter versus underneath its center. Otherwise, Figs. 4a
and 5a show similar trends in fluid pressure versus normal-
ized tissue depth. The result for Model 1, in the context
of the full results, demonstrates that both the fiber network
and the tissue’s inhomogeneity modulate the fluid pressure
distribution to maintain fluid pressure beneath the contact
surface and thus enhance load support and surface frictional
properties. Model 2 demonstrates a similar fluid pressure
profile, although at a slightly lower (≈ −8 %) pressure at
the articular surface and a significantly lower pressure near
the subchondral bone. Models 3 and 4 show dramatic drops
in interstitial fluid pressure (≈ −63 and ≈ −69 %, respec-
tively), and nearly identical fluid pressure profiles with the
pressure relatively constant throughout the thickness of the
tissue.
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Column 2 of Figs. 3b, d, f, h, 4b and 5b compare the
principal (maximum) shear stress distributions in the tissue
solid predicted by the four models. Inappropriate mechan-
ical loading of the joint causes cartilage degradation, and
studies implicate shear forces as a critical component in the
destructive cycle (Smith et al. 2000). We study the principal
shear stress in the solid because destructive effects are known
to be associated with shear stress in particular (Smith et al.
2000, 2004; Wang et al. 2010a, b; Zhu et al. 2010; Bader et al.
2011). The principal shear stress distributions through the tis-
sue thickness for both Models 3 and 4 are significantly lower
(≈60 % reduction in peak values) relative to Models 1 and
2, which are similar. Thus, collagen network reinforcement
significantly increases the shear stress in the cartilage tissue.
This is likely due to the fact that we apply the same fixed
global strain to all models, although the relative stiffness of
the materials differs. Hence, it will take larger forces to com-
press Models 1 and 2 versus Models 3 and 4, thus leading
to higher stresses. Generalizing, the solid extra stress results
between fiber network-reinforced and unreinforced models
should be viewed with caution as the fiber-reinforced mate-
rial is relatively stiffer. Interestingly, Models 1 and 2 show
the highest shear stress in the middle zone along the main
axis of the indenter, cf. Fig. 4b. Clark and Simonian (1997)
hypothesize that (1) the earliest change in the collagen matrix
structure is loosening of the cross-links between large fib-
rils (which themselves remain intact initially), and that (2)
this interfibrillar loosening mechanism initiates in the mid-
dle zone of cartilage rather than at the surface. During later
stages of degeneration, the collagen fiber network becomes
less organized, disrupting even the solid matrix and finally
effecting the gross cartilage volume. Finally, Models 1 and 2
show an ≈3 % difference in peak shear stress near the artic-
ular surface underneath the edge of the indenter, cf. Fig. 5b.
These results may indicate that inhomogeneity in the mate-
rial parameters through the thickness of the cartilage serves
to reduce the detrimental effects of intra-tissue shear stress.

Figures 4c and 5c compare the fluid pressure load support
distributions under the indenter predicted by the four models.
Overall, the models including the fiber network (Models 1
and 2) generally have better fluid pressure load support.
While Model 1 has the highest interstitial fluid pressure, the
fluid pressure load support in the superficial zones of Mod-
els 1 and 2 is similar, while this is lower in Models 3 and
4. Surprisingly, the trend in the deep zones is different. Here
the fluid pressure load support of Models 1 and 3 is similar,
and this is lower in Models 2 and 4. These results may indi-
cate that the collagen fiber network may serve to increase
fluid pressure load support near the articular surface, while
inhomogeneity in the material parameters in the deep zone
may serve to increase fluid pressure load support near the
subchondral bone.

Overall, the results of this study support both hypotheses.
For the tissue sample investigated, the through-the-thickness
inhomogeneity of both the collagen fiber network and of the
material parameters serve to influence the interstitial fluid
pressure distribution and maintain fluid pressure near the car-
tilage surface. More specifically, our results demonstrate that
the fiber network dramatically increases interstitial fluid pres-
sure, and focuses it near the surface. This is important because
increased fluid pressure at the articular surface reduces the
coefficient of friction of the interface, thus improving motion
and reducing wear (Ateshian et al. 1998). Furthermore, inho-
mogeneity in the material parameters increases fluid pressure
and reduces principal shear stress in the solid. According to
these results, inhomogeneity in the orientation of the fiber
network through the thickness of the cartilage appears to
have a larger effect than inhomogeneity of the material para-
meters on this cartilage sample’s advantageous distribution
of interstitial fluid pressure in response to mechanical load-
ing. Additionally, a biphasic neo-Hookean material model,
as is available in commercial FE codes such as ABAQUS,
does not capture important features of the tissue response:
e.g., distributions of interstitial fluid pressure and principal
shear stress.

In our previous study, Pierce et al. (2013b), our results
supported both hypotheses, but we concluded that inhomo-
geneity in the material parameters (vs. the collagen fiber
network) through the thickness appeared to have a larger
effect on fluid pressure retention and distribution in this tissue
sample. Conversely, the results of our current study indicate
that of the two sources of inhomogeneity probed, inhomo-
geneity in the orientation of the fiber network through the
thickness of the cartilage appears to have the larger effect on
the tissue’s advantageous distribution of fluid pressure. We
attribute the difference in outcomes to three improvements
in the fidelity of the constitutive model. First, we improved
the representation of collagen network in two ways: (1) a
more accurate implementation of DT-MRI data and hence
likely a better representation of the local collagen network
throughout the tissue; (2) an improved formulation for the
mechanical response of the fibers themselves, whereby only
fibers truly in tension contribute to the total strain energy.
Second, we improved the representation of inhomogeneity
in the model parameters where these are now continuous
through the thickness. In the previous work this inhomogene-
ity was represented as piece-wise constant (homogeneous
within each of the three tissue zones) which likely contributed
to the sharp kinks (curves which are not C1 continuous)
in the through-the-thickness distributions of the responses
investigated, cf. Fig. 3c, d in Pierce et al. (2013b). Third,
we extended the model to include viscous effects in both the
proteoglycan and collagen solids as has been demonstrated
experimentally, cf. Huang et al. (2001).
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Naturally, there are a number of limitations and areas for
future improvements in the proposed material model. We
assume constant electrolytic conditions and lump the Donnan
osmotic pressure with the stiffness of the solid matrix. Thus,
the model cannot capture the effects of osmotic swelling,
cf. Chahine et al. (2004), Ateshian et al. (2004) and references
therein, which may induce prestraining of the collagen fibers.
Additionally, the representation of the fiber network does not
include fiber–fiber or matrix–fiber interactions, or the effects
of fibrillar cross-links.

While we have improved the representation of inho-
mogeneity in the model parameters such that they vary
continuously through the thickness (cf. Krishnan et al. 2003),
we have still employed ‘generic’ properties taken from the
cartilage mechanics literature and our prior work (Pierce
et al. 2013a, b). Future experimental work should be aimed
at determining improved material parameters including their
mean and standard deviation for inter- and intra-patient vari-
ability. We also hope to extract even more sample-specific
information from diffusion-weighted images. In particular, it
appears likely that the Darcy hydraulic permeability k0S(z∗)
can be estimated directly from DT-MRI data, cf. Sarntinora-
nont et al. (2006) and Fernandez et al. (2014).

We use state-of-the-art DT-MRI measurement techniques
to infer both geometric as well as structural properties of the
sample tested. However, a number of limitations in the DT-
MRI impair the model’s fidelity. Among these limitations,
the so-called partial volume effect has by far the biggest
impact (Alexander et al. 2001). In fitting the data to deter-
mine the local diffusion tensors, we violate everywhere the
assumption of homogeneous diffusion properties within a
single measurement voxel (50 × 100 × 800µm), and par-
ticularly along the sample’s interface with the fluid bath and
at the cartilage-bone transition. As outlined by Alexander
et al. (2001), averaging inhomogeneous responses within a
single compartment can decrease the observed anisotropy,
i.e., the collagen fibers appear to be more uniformly distrib-
uted than they are in reality. The most obvious solution to
this problem—reducing the voxel size—would lead either to
a lower signal-to-noise ratio or to an increased measurement
time. Alternatively, we could apply more complex diffusion
models to capture multiple fiber directions within a single
measurement voxel. Tuch (2004), e.g., proposed a model
based on spherical radial basis functions which can resolve
fibers crossing, bending or twisting within an individual
voxel. The downside of such models is that they require a
large number of diffusion-weighted images to constrain all
of the degrees of freedom, which in turn leads to increased
measurement times.

In conclusion, high-fidelity, intra-tissue simulations allow
us to consider complex problems in structure–function rela-
tionships, load support, contact and loading effects on
cartilage degeneration, and provide insight to the mechanobi-

ological cellular stimuli. Furthermore, 3D FE modeling of
cartilage, calibrated using medical imaging modalities, has
potential to become a clinical diagnostic tool for patient-
specific analysis in the future.
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Appendix 1

To evaluate integrals over the unit sphere, as shown, e.g.,
in (8) and (10), we apply the numerical method suggested
by Bažant and Oh (1986) using m distinct direction vectors
Mi , i = 1, 2, . . . ,m. Symmetry of our method allows us
to use only half the number of direction vectors, and subse-
quently double the integration weights qi . With this approach
we numerically estimate integrals as

∫




A(M)d
 =
∫ 2π

θ=0

∫ π

φ=0
A(θ, φ) sin θ dφdθ

≈ 4π

m∑
i=1

A(Mi )2qi ,

(19)

where A is a function taking tensor arguments. A table of the
direction vectors and associated integration weights can be
found in Table 1 of Bažant and Oh (1986).

Appendix 2

To obtain solutions of nonlinear problems in computational
finite (visco)elasticity via incremental solution techniques
of Newton’s type, we solve a series of linearized problems
and thus require the linearized constitutive equations. Specif-
ically, we require elasticity tensors for both the isotropic
matrix and fiber network contributions to the solid extra
stress, as well as the derivative of the filtration velocity
nF wFS with respect to both the deformation gradient FS and
the material gradient of the interstitial fluid pressure grad p.
We write the filtration velocity in the current configuration
as (16) and (17) [cf. Pierce et al. (2013a, 2013b)]. In the ref-
erence configuration, we write the filtration velocity nF wFS0

as

nF wFS0 = k0S

(
nF

1 − nS
0S

)m

× H0

(
−JS grad p + JS ρFR FT

S b
)

,

(20)
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with,

H0 = 1

4π

∫




ρ(M)

I4(M)
M ⊗ M d
. (21)

We write the derivative of the filtration velocity in the ref-
erence configuration with respect to the deformation gradient
of the solid, i.e., ∂(nF wFS0)/∂FS, as

∂
(
nF wFS0

)
/∂FS = ∂/∂FS

[
k0S

(
nF

1 − nS
0S

)m

H0

(
−JSgrad p + JSρFRFT

S b
) ]

= k0S

(
nF

1 − nS
0S

)m [
− ∂H0

∂FS
JSgrad p

− H0 ⊗ ∂ JS

∂FS
grad p + ρFR ∂H0

∂FS
JSFT

S b

+ ρFR H0
∂ JS

∂FS
⊗ FT

S b + ρFR H0 JS
∂FT

S

∂FS
b
]
, (22)

with,

∂H0/∂FS = ∂/∂FS

[
1

4π

∫




ρ(M)

I4(M)
M ⊗ M d


]

= 1

4π

∫




ρ(M)
∂ I4(M)−1

∂FS
⊗ M ⊗ M d
, (23)

and

∂ I4(M)−1/∂FS = ∂ I4(M)−1

∂ I4(M)

∂ I4(M)

∂CS
: ∂CS

∂FS

= −I4(M)−2M ⊗ M :
(

∂FT
S

∂FS
FS

+FT
S
∂FS

∂FS

)
. (24)

In index notation, we write the results from (22)2–(24)2

as

(∂(nF wFS0)/∂FS)IJK = k0S

(
nF

1 − nS
0S

)m

×
[

−
(

∂H0

∂FS

)

IJKL
JS(grad p)L

− (H0)I J

(
∂ JS

∂FS

)

KL
(grad p)L

+ ρFR
(

∂H0

∂FS

)

IJKM
JS(FT

S)ML (b)L

+ ρFR (H0)IM

(
∂ JS

∂FS

)

MJ
(FT

S)K L (b)L

+ ρFR (H0)IM JS

(
∂FT

S

∂FS

)

MJKL

(b)L

]
, (25)

where (∂FT
S/∂FS)IJKL = δJKδIL , with δIJ = eI · eJ the Kro-

necker delta, and with

(∂H0/∂FS)IJKL

= 1

4π

∫




ρ(M)

(
∂ I4(M)−1

∂FS

)

I J
(M ⊗ M)KL d
, (26)

and
(
∂ I4(M)−1/∂FS

)
IJ

= −I4(M)−2(M ⊗ M)KL [δK J (FS)IL + (FS)IKδLJ ] .

(27)

To continue, we write the derivative of the filtration
velocity in the reference configuration with respect to
the material gradient of the interstitial fluid pressure, i.e.,
∂(nF wFS0)/∂grad p, as

∂
(
nF wFS0

)/
∂grad p

= −k0S

(
nF

1 − nS
0S

)m

H0 JS
∂grad p

∂grad p
. (28)

In index notation, we write (28) as
(
∂
(
nF wFS0

)
/∂grad p

)
I J

= −k0S

(
nF

1 − nS
0S

)m

JS (H0)IKδKJ . (29)

Appendix 3

In a ‘classic’ DT-MRI experiment, the tensor data is recon-
structed from six or more diffusion-weighted images under
the modeling assumption of a single Gaussian diffusion com-
partment per voxel (Tuch 2004). In Cartesian coordinates the
anisotropic Gaussian probability distribution function (PDF)
for a single voxel can be stated according to (1), where therein
(ξ) = (x, y, z)T denotes the relative displacement of water
molecules. Since we are only interested in the orientation
density function (ODF) we drop the diffusion time by setting
δ = 0.5 s and, without loss of generality, drop the b-value
by setting b = 1.0 s/mm2, yielding the familiar form of the
multivariate normal distribution (with zero mean)

P(ξ) = (2π)−3/2 |D|−1/2 exp
{
− 1

2ξTD−1ξ
}

. (30)

Due to the simple analytic form of the diffusion probability
density, a closed form ODF can be computed. We first convert
(30) to spherical coordinates
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x = r cos θ sin φ, y = r sin θ sin φ, z = r cos φ, (31)

with r ∈ [0,∞), θ ∈ [0, 2π), and φ ∈ [0, π ]. Next, we
marginalize out the radius r , account for the factor of 4π in
(8) and the required ODF results as

ρ(M,D) = ( 2
π

)1/2 |D|−1/2

×
∫ ∞

0
exp

{
− 1

2r
2MTD−1M

}
r2 sin θ dr,

(32)

which gives (18). Note that the Jacobian determinant r2 sin θ

is introduced by the change from Cartesian to spherical coor-
dinates to account for the fact that the surface element on the
sphere is not uniform across the entire domain. Assuming
the symmetric, positive-definite diffusion tensor is given as

(D) =
⎛
⎝

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎞
⎠ , (33)

the ODF can be written as

ρ(M,D) = sin θ
/{(

−
(
D2
xz Dyy

)
+ 2DxyDxzDyz

−Dxx D
2
yz − D2

xy Dzz + Dxx DyyDzz

)1/2

(((
D2
xy − Dxx Dyy

)
cos2 φ

+
(
D2

yz − DyyDzz

)
cos2 θ sin2 φ

−DxyDxz sin 2φ sin θ + Dxx Dyz sin 2φ sin θ

+D2
xz sin2 φ sin2 θ − Dxx Dzz sin2 φ sin2 θ

+ cos θ
[(
DxzDyy − DxyDyz

)
sin 2φ

−2DxzDyz sin2 φ sin θ ]
+DxyDzz sin2 φ sin 2θ

)
/[

D2
xz Dyy − 2DxyDxzDyz + D2

xy Dzz

+Dxx (D
2
yz − DyyDzz) ]

)2/3}
.

Note that most trigonometric functions and several sub-
expressions could be pre-computed within a FE implemen-
tation, in particular when a numerical integration scheme is
used and only certain directions are evaluated.
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