
Biomech Model Mechanobiol (2015) 14:245–266
DOI 10.1007/s10237-014-0600-x

ORIGINAL PAPER

Mechanistic micro-structural theory of soft tissues growth and
remodeling: tissues with unidirectional fibers

Yoram Lanir

Received: 31 December 2013 / Accepted: 23 May 2014 / Published online: 19 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A new mechanistic theory was developed for
soft tissues growth and remodeling (G&R). The theory
considers tissues with unidirectional fibers. It is based
on the loading-dependent local turnover events of each
constituent and on the resulting evolution of the tissue
micro-structure, the tissue dimensions and its mechanical
properties. The theory incorporates the specific mechanical
properties and turnover kinetics of each constituent, thereby
establishing a general framework which can serve for future
integration of additional mechanisms involved in G&R. The
feasibility of the theory was examined by considering a
specific realization of tissues with one fibrous constituent
(collagen fibers), assuming a specific loading-dependent
first-order fiber’s turnover kinetics and the fiber’s deposition
characteristics. The tissue was subjected to a continuous con-
stant rate growth. Model parameters were adopted from avail-
able data. The resulting predictions show qualitative agree-
ment with a number of well-known features of tissues includ-
ing the fibers’ non-uniform recruitment density distribution,
the associated tissue convex nonlinear stress–stretch relation-
ship, and the development of tissue pre-stretch and pre-stress
states. These results show that mechanistic micro-structural
modeling of soft tissue G&R based on first principles can
successfully capture the evolution of observed tissues’ struc-
ture and size, and of their associated mechanical properties.
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1 Introduction

Biological tissues adapt to altered mechanical environment
by changing their size, structure and mechanical proper-
ties. Adaptation continues throughout life, not only during
growth period but also at maturity where tissues remodel
due, for instance, to changes in physical activity. Tissue
growth and remodeling (G&R) involve processes occurring
in at least four structural levels: intra-cellular, cellular, tis-
sue space, and global tissue and organ. Humoral factors
(e.g., hormones, growth factors and cytokines) are involved
as well. There exists now a large accumulated body of evi-
dence which suggests that in order to survive and proliferate,
cells need to maintain a homeostatic mechanical environ-
ment (which is cell specific), both the intra- as well as extra-
cellular one (Grinnell 1994). To that end, when faced with
altered mechanical loading, cells strive to maintain homeo-
static mechanical environment either by adapting their extra-
cellular matrix (ECM) by means of production (by anabolic
processes) or removal (by catabolic processes) of ECM con-
stituents, and/or by altering their own cytoskeleton to adjust
their length in order to maintain homeostatic stretch. As
examples, fibrocytes utilize the former strategy while the lat-
ter is used by smooth muscle cells (SMC) (Martinez-Lemus
et al. 2004). Tissue G&R results from these turnover events.
The manifestation of G&R in the tissue level in the case of
arteries, for example, is that they remodel to restore their
homeostatic wall strain and luminal fluid shear stress (Jack-
son et al. 2002; Kamiya and Togawa 1980; Langille et al.
1989; Wayman et al. 2008).

Modeling G&R can be of great value. Models can poten-
tially unify a collection of seemingly un-related facts into
a general scientific framework, thus providing insight into
the processes involved and allowing for hypotheses testing
as to the role and significance of candidate G&R mecha-
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nisms. In practical applications, models serve for quantita-
tive prediction and design. An important example is tissue
engineering where it was found that mechanical condition-
ing not only stimulates matrix production, but plays a key
role in the evolution of the vascular constructs toward tar-
geted micro-structure and mechanical properties (Jockenho-
evel et al. 2002; Nerem and Seliktar 2001; Niklason et al.
2010). Few excellent reviews have been published on the
multi-scale processes involved in G&R and on their mod-
eling, including the fundamental mechanical issues involved
(Ambrosi et al. 2011; Cowin 2004; Humphrey and Holzapfel
2012; Taber 1995).

The present paper focuses on structural modeling of inter-
stitial (volumetric) G&R of soft tissues. Structural features
which may be altered by G&R are the constituents’ mass,
their stress-free configuration and their orientation. Tozeren
and Skalak G&R model (Tozern and Skalak 1988) seems
to be the first structural model for soft tissues. It is based
on the structural theory for tissue mechanics (Lanir 1979,
1983), modified to incorporate G&R via ad hoc assumptions
on the (load-independent) kinetic evolution of the fiber’s
structure. Most subsequent structural G&R models incor-
porated load dependence of tissue constituents’ turnover. In
arteries, evolution of constituents’ mass (collagen, elastin
and smooth muscle cells (SMC)) was analyzed by Glea-
son and co-workers (Gleason and Humphrey 2004, 2005) in
the frame of the constrained mixture approach (Humphrey
and Rajagopal 2002), under changing pressure, flow and
axial stretch. A similar approach was used in a number of
other studies on the effects of variation in constituents vol-
ume fractions between the wall layers (Alford et al. 2008),
and on the effect of SMC vasoactivity in basilar arteries
on their responses to axial stretch (Valentin and Humphrey
2009), to sustained alterations in trans-mural pressure, and
to blood flow (Valentin et al. 2009). Evolution of collagen
mass and orientation distribution in the aortic valve was
modeled (Boerboom et al. 2003; Driessen et al. 2003) by
assuming that collagen content in each of a fixed number
of orientations increased with the fiber stretch in that direc-
tion. The same framework was applied to model G&R in the
aortic valve (Driessen et al. 2005) and in articular cartilage
(Wilson et al. 2006). In another study on artery and aortic
valve (Driessen et al. 2008), remodeling of the orientation
distribution was integrated with a semi-structural constitu-
tive model (fibers embedded in a Neo-Hookean matrix) by
assuming first-order evolution kinetics of the orientation dis-
tribution mean and dispersion. This approach was extended
(Machyshyn et al. 2010) by incorporating in addition, remod-
eling of the collagen fiber’s undulation and by considering
strain-dependent synthesis and degradation of collagen and
matrix. Remodeling of collagen undulation was considered
(Watton et al. 2004) via the evolution of a recruitment con-
stant. Structure-based models have also been developed for

aneurysm growth (due to elastin degradation) in both ascend-
ing aorta and cerebral arteries (Humphrey and Holzapfel
2012). They considered a thin-walled aneurysm, employing
the concept of evolving constrained mixtures (Humphrey and
Rajagopal 2002). Structure-based G&R models were pro-
posed for the heart (Arts et al. 1994; Kerckhoffs et al. 2012)
and for the lamina cribrosa under glaucoma-induced eleva-
tion of the intraocular pressure (Grytz et al. 2012).

Thanks to these G&R studies, significant insights have
been gained into diverse aspects of tissues’ structural and
functional adaptations to loading. Here, an attempt is made
to build upon the knowledge gained to extend and gen-
eralize G&R modeling by relaxing the need for ad hoc
assumptions regarding the consequence and phenomenology
of structural G&R manifestation, as commonly used in pre-
vious models. Since tissue properties are derived from their
constituents, ideally one would like to analyze G&R rely-
ing on the fundamental processes involved (the mechanistic
approach, (Cowin 2004)), based on first principles and on the
evolving tissue microstructure, while considering the specific
mechanical and turnover kinetics of each constituent. The
goal of this report is to present the theoretical framework of
the new approach and to demonstrate its utility and potential
via a specific realization. For clarity’s sake, the tissue is taken
to consist of unidirectional bundle of fibers (e.g., collagen in
tendons and ligaments), thus allowing the focus to be on the
inherent interplay between mechanical and turnover events,
free of the added complexity of a three-dimensional finite-
deformation formulation. The paper considers first tissues
with one type of fibers, followed by generalization to tissues
with multiple types of fibers.

2 Methods

2.1 Theoretical framework

The present evolving structural G&R theory is based on a
number of general assumptions relating to both the con-
stituents mechanics and micro-structure response to defor-
mation (“m” assumptions), and to their turnover kinetics
(“k” assumptions). The former are: m1) soft tissues consist
of fibers (collagen and elastin) and cells (e.g., muscle cells)
embedded in a matrix of fluid ground substance. The tissue
global response to loading equals the sum contributions of its
solid constituents and of the osmotic-derived matrix hydro-
static pressure. m2) There are no voids in the tissue space.
m3) All constituents are incompressible, and so is the tissue
as a whole at each time point along the G&R process. m4) The
fibers and muscle contributions are functions of their axial
deformation. Being thin and long, the fibers buckle under
contraction thereby losing their stiffness. m5) The nominal
fiber bundle stretch equals the tissue stretch. Assumptions on
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the turnover kinetics are: k1) The characteristic time of tissue
loading (on the order of seconds to hours) is several orders of
magnitude shorter than the characteristic time of the biologi-
cal G&R process (typically weeks to months (Cowin 2004)).
Hence, at any time, the tissue response to short loading can
be regarded as stable and analyzed independent of ongoing
G&R process. k2) G&R of fibrous constituents results from
fibers turnover where some are removed by degradation and
new ones are synthesized (Langberg et al. 2001).1 k3) Based
on a large body of in vivo and in vitro evidence suggesting
that the rate of fibers mass degradation depends on their load-
ing (Carver et al. 1991; Curwin et al. 1988; Hannafin et al.
1995; Hansson et al. 1988; Hayashi et al. 1996; Matsumoto
and Hayashi 1994; Minns and Steven 1980; Nabeshima et
al. 1996; Nissen et al. 1978; Ruberti and Hallab 2005; Tip-
ton et al. 1986; Willett et al. 2007, 2008; Wyatt et al. 2009;
Yamamoto et al. 2002, 2003, 1993), strain is taken to be the
stimulus of tissue G&R. k4) in addition to the deformation-
dependent mass degradation there may be (depending on
the constituent) a continuous deformation-independent one.
k5) in parallel to degradation, the rate of fibers mass pro-
duction has both a deformation-dependent and deformation-
independent components (Carver et al. 1991; Curwin et al.
1988; Hannafin et al. 1995; Hansson et al. 1988; Hayashi et
al. 1996; Matsumoto and Hayashi 1994; Minns and Steven
1980; Nabeshima et al. 1996; Nissen et al. 1978; Ruberti and
Hallab 2005; Tipton et al. 1986; Willett et al. 2007, 2008;
Wyatt et al. 2009; Yamamoto et al. 2002, 2003, 1993). k6)
newly produced fibers are deposited on extant fibers (Birk
et al. 1989; Nimni 1990) (which serve as “scaffold”) under
homeostatic deposition stretch which is tissue and fiber spe-
cific (Eastwood et al. 1996; Harris et al. 1981).

The utility of the new theory will be demonstrated by
considering a specific realization of it based on the follow-
ing assumptions, which are special cases of the general ones
listed above: s1) The fibers are hyper-elastic with linear rela-
tionship between the fiber’s first Piola-Kirchoff stress and
its true stretch. It will be shown, however, that the hyper-
elastic formulation can be readily extended to incorporate
fibers visco-elasticity and preconditioning (e.g., (Lokshin
and Lanir 2009; Raz and Lanir 2009)), as well as active
properties (e.g., (Nevo and Lanir 1989)). s2) The fibers and
matrix volume fractions and their respective mass densities
remain constant during G&R (Gleason and Humphrey 2005).
s3) The reaction kinetics of both deformation-dependent and
deformation-independent (basal) components of mass degra-
dation is of first order. s4) The rate of deformation-dependent
fiber degradation is lower in the homeostatic stretch range and
higher elsewhere. s5) The rate of total fibers mass production

1 Adaptation of muscle cells to tissue G&R involves length adapta-
tion, either permanent as in skeletal muscle lengthening in the growing
skeleton) or transiently (e.g., SMC in arteries)—see Sect. 3.

is proportional to the corresponding rate of total fibers mass
degradation. Hence, the production kinetics is also of first
order (Langberg et al. 2001; Niedermuller et al. 1977).2 s6)
the fibers’ deposition stretch is normally distributed within
their homeostatic stretch range. s7) Torn fibers degrade at the
same rate as un-stretched ones.

2.1.1 Kinematics3

In a unidirectional fibrous tissue considered in the present
study, the fiber bundle consists of all the tissue fibers
(“Appendix 1”). The bundle is subjected to a growth (stretch)
protocol whereby its length Lbun(t) increases with time.
During growth, fibers continuously turnover. As fibers
degrade and new ones are produced and deposited at new
birth lengths, the fiber bundle reference (stress-free) length
evolves. Let L ref

bun(t) be the time-evolving bundle reference
length with L ref

bun(0) ≡ Lbun(t = 0) as the original (ini-
tial) bundle reference length. The associated bundle reference
stretch ratio is �ref

bun(t) = L ref
bun(t)/L ref

bun(0).
The bundle nominal stretch ratio and strain at time t

(referred to the initial reference length L ref
bun(0) are, respec-

tively (assumption m5)

�nom
bun (t) ≡ Lbun(t)/L ref

bun(0),

Enom
bun (t) = ((�nom

bun (t))2 − 1)/2 (2.1)

The bundle true stretch ratio and strain (relative to the
bundle current reference length) at time t are, respectively

�bun(t) ≡ Lbun(t)/L ref
bun(t) = �nom

bun (t)/�ref
bun(t),

Ebun(t) = (�2
bun(t) − 1)/2 (2.2)

The bundle nominal stretch incorporates the combined
effects of its growth and deformation. The true stretch speci-
fies the bundle deformation. Although both nominal and true
stretches do not specify the single fiber stretch, the latter is
linked to them in a fiber-specific relationship via its birth
length. Each fiber is characterized by its “birth” length lb

f .
This is consistent with Humphrey and Rajagopal (Humphrey
and Rajagopal 2002) concept of “natural configuration.”

2 The synthesis/degradation ratio may depend on determinants such as
age, disease, injury and level of routine physical activity.
3 Terms related to fibers are designated by lower-case Latin and
Greek letters. Those related to tissue and fiber bundle, by uppercase
letters. Terms related to tissue, matrix, fiber bundle and single fiber are
designated, respectively, by the subscripts “tiss”, “mat”, “bun”, “f”. The
associate property of the term (reference, birth, nominal, deposition,
recruitment, osmotic, preexisting) is designated, respectively, by the
superscripts “ref”, “b”, “nom”, “dep”, “rec”, “osm”, “pre”.
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A single fiber nominal birth stretch ratio and nominal birth
strain are, respectively:4

λb
f ≡ lb

f /L ref
bun(0), eb

f = ((λb
f )

2 − 1)/2. (2.3)

A single fiber true stretch ratio and true strain at time t
are, respectively

λ f (λ
b
f , t) ≡ Lbun(t)/ lb

f

= (Lbun(t)/L ref
bun(0)) · (L ref

bun(0)/ lb
f ) = �nom

bun (t)/λb
f

e f (e
b
f , t) = (λ2

f − 1)/2 = (Enom
bun (t) − eb

f )/(1 + 2eb
f )

(2.4)

Fibers gradually recruit with increasing bundle stretch and
become load bearing at distributed recruitment stretches. A
single fiber recruitment (straightening) stretch is the ratio of
its birth length lb

f to the current bundle reference length, so

that λrec
f,bun ≡ lb

f /L ref
bun(t). Hence, the fiber-in-bundle recruit-

ment stretch is

λrec
f,bun(λ

b
f , t) = λb

f /�
ref
bun(t) (2.5)

Since the bundle true stretch is �bun (t) ≡ Lbun (t) /

L0
bun (t), then the fiber’s true stretch ratio and true strain can

alternatively be referred to the true bundle stretch as

λ f (λ
b
f , t) = �bun (t) /λrec

f,bun(λ
b
f , t)

= �bun (t) · �ref
bun (t) /λb

f

e f (λb, t) = (Ebun(t) − erec
f,bun)/(1 + 2erec

f,bun)

= (Ebun(t) − erec
f,bun)/(λ

rec
f,bun(λb, t))2 (2.6)

In the specific realization of the theory, the bundle is
assumed to grow in length at a constant rate A where

Lbun(t) = (1 + A) · L ref
bun(0) (2.7)

2.1.2 Volume, mass and area

The time-dependent fibers and ground substance matrix vol-
ume fractions (� f (t) and �mat(t)) and their volumes (V f (t)
and Vmat(t)) are interrelated by:

� f (t) = V f (t)/V (t), V f (t) = M f (t)/ρ f (t)
�mat(t) = Vmat(t)/V (t), Vmat(t) = Mmat(t)/ρmat(t)

(2.8)

where the constituents’ M(t), V (t), and ρ(t) terms are
respectively their time-dependent total mass, volume and
constituent density of the fibers and ground substance, while
V (t) the total tissue volume.

There are no voids in the tissue space (assumption m2).
Hence, the volume fractions � f (t) and �mat(t) must fulfill
the condition

� f (t) + �mat(t) = 1 ∀ t ≥ 0 (2.9)

4 In general, not all fibers with reference length lb
f were necessarily

produced at the same time.

As fibers are produced at different times, thus at differ-
ent tissue lengths, the fiber population assumes distributed
length lb

f and associated distributed nominal birth stretch

ratio λb
f (Eq. 2.3). The time-dependent mass density distrib-

ution (not normalized) over the tissue fibers m f (λ
b
f , t) (with

mass units) is defined as follows: at time t , the mass of fibers
having a nominal birth stretch between λb

f and λb
f + dλb

f is

given by m f (λ
b
f , t) · dλb

f . Hence, M f (t) and m f (λ
b
f , t) are

interrelated by:

M f (t) =
∫

λb
f

m f (λ
b
f , t) · dλb

f (2.10)

The time-dependent fiber volume distribution v f (λ
b
f , t) is

similarly defined, where

V f (t) =
∫

λb
f

v f (λ
b
f , t) · dλb

f (2.11)

The fibers’ mass and volume are inter-related by

m f (λ
b
f , t) = ρ f (t) · v f (λ

b
f , t) (2.12)

which by Eq. (2.8)2 yields

m f (λ
b
f , t) = M f (t) · v f (λ

b
f , t)/V f (t) (2.13)

In the framework of the micro-structural approach, the
evolving bundle reference length L ref

bun(t) is equal to the low-
est length at which fibers recruit (become stretched), i.e., the
straightening length of the shortest fiber.5 Hence,

L ref
bun(t) = min

lb
f

(lb
f (t)) (2.14)

The tissue stress-free cross-sectional area and volume at
time t are inter-related by:

Aref
tiss(t) = Aref

f (t) + Aref
mat(t) = V (t)/L ref

tiss(t) (2.15)

where Aref
f (t) and Aref

mat(t) are, respectively, the fibers and
ground substance areas at the bundle reference length.: The
tissue reference length is linked to the bundle one via the
matrix pressure (Sect. 2.1.5). From Eqs. (2.8)–(2.9),

V f (t)/Vmat(t) = � f (t)/�mat(t)
Therefore V (t) = V f (t) + Vmat(t) = V f (t)/� f (t)

(2.16)

Hence, from Eq. (2.8),

Aref
tiss(t) = (1/L ref

tiss(t)) · M f (t)/[ρ f (t) · � f (t)] (2.17)

5 If any fiber is still stretched, the bundle will contract to relieve the
associated stress and attain a stress-free state. If loaded by the matrix
osmotic pressure, the bundle will stretch to attain a load-free (but not
stress-free) configuration (Lanir 2009, 2012).
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In the specific realization of the theory, by assumption
s2, the fibers and matrix volume fraction remain constant.
Combined with Eq. (2.9), this restriction yields

� f (t) = � f (0) ≡ �0
f , �mat(t) = �mat(0) ≡ �0

mat,

ρ f (t) = ρ f (0) ≡ ρ0
f , ρmat(t) = ρmat(0) ≡ ρ0

mat,

∀ t ≥ 0

(2.18)

2.1.3 Turnover kinetics

Tissue constituents are subjected to continuing processes of
production and removal (assumption k2). In studying the con-
stituents’ turnover kinetics, attention is given to when, at what
rate, and at which configuration are fibers degraded and pro-
duced. The rate of total fibers mass change is the difference
between their total production (Q pt

f ) and total degradation

(Qdt
f ), i.e.,

dM f /dt = Q pt
f − Qdt

f (2.19)

Fibers degradation By assumptions k3 and k4, the fiber mass
degradation has two possible components, one depending on
the deformation, the other independent of it (the basal one).
Focusing on the λb

f fibers, the total mass degradation rate of
these fibers (superscript dt) is the sum of the basal (superscript
db) and deformation-dependent (superscript dd) rates:

∂dt m f (λ
b
f , t)/∂t = ∂dbm f (λ

b
f , t)/∂t + ∂ddm f (λ

b
f , t)/∂t

(2.20)

The two components can depend in general on a variety
of determinants such as the nature of the fibers and tissue,
genetic and environmental factors, age, health, medications,
level of routine physical activity, diet, the specific mass of
the λb

f fibers, and the turnover rates of other constituents.
These array of degradation determinants (and other possible
ones) are state variables designated collectively by the vec-
tor �d . The deformation-dependent component depends, in
addition, on the history of the fiber deformation (designated

by λ f (λ
b
f ,

t
τ
0
). At present, there is a dearth of information on

the functional dependence of the two degradation rates on
�d . In the general case, these relationships are designated
by two (hitherto unknown) constitutive functions Ddb and
Ddd such that

∂dbm f (λ
b
f , t)/∂t = Ddb(�d),

∂ddm f (λ
b
f , t)/∂t = Ddd [�d , λ f (λ

b
f ,

t
τ
0
)] (2.21)

The rate of total fibers mass degradation is derived from
Eq. (2.20) as

Qdt
f =

∫

λb
f

∂dt m f (λ
b
f , t)/∂t · dλb

f (2.22)

In the specific realization of the theory the func-

tions Ddb(�d) and Ddd [�d , λ f (λ
b
f ,

t
τ
0
)] for λb

f fibers are

assumed to be proportional to the fiber mass (assumption
s3), and the expressions for the deformation–dependent and
deformation-independent components’ degradation rates are
taken to be first-order reactions expressed by

∂dd m f (λ
b
f , t)/∂t

=
{−Bdd(λ f ) · m(λb

f , t) ∀ λb
f < λb

f,high(t)
0 Otherwise

(2.23)

∂dbm f (λ
b
f , t)/∂t = −Bdb · m f (λ

b
f , t) (2.24)

where the function Bdd [λ f (λ
b
f , t)] (with units 1/time) is the

deformation-dependent reaction constant. λb
f,high(t) is the

highest level of λb
f reached hitherto during the growth pro-

tocol. The limit λb
f < λb

f,high(t) stems from the fact that at

the current growth time t , fibers with λb
f > λb

f,high have not

been hitherto produced. Bdb (with units 1/time) is the basal
degradation reaction constant.

Fibers production Based on assumption k5, the rate of fibers
mass production has deformation-dependent and deformation-
independent components such that,

∂ pt m f (λ
b
f , t)/∂t = ∂ pbm f (λ

b
f , t)/∂t

+∂ pd m f (λ
b
f , t)/∂t (2.25)

where the indices pt, pb and pd designate total, basal and
deformation-dependent production, respectively.

The rates in Eq. (2.25) depend on an array of determi-
nant state variables designated collectively by the vector �p.
Hence, in parallel with Eq. (2.21),

∂ pbm f (λ
b
f , t)/∂t = Ppb(�p),

∂ pd m f (λ
b
f , t)/∂t = P pd(�p, e f (

t
τ
0
)) (2.26)

where the functions Ppb(�p) and Ppd(�p, e f (
t
τ
0
)) are gen-

eral (hitherto unknown) functions. The rate of total fibers
mass production is derived from Eq. (2.25) as

Q pt
f (t) =

∫

λb
f

∂ pt m f (λ
b
f , t)/∂t · dλb

f (2.27)

In the specific realization, by assumption s5 the rate of
total fibers mass synthesis Qs

f (t) is proportional to the rate

of total fibers mass degradation Qdt
f (t) and is given by,

Q pt
f (t) ≡ d pt M f /dt =SDR · Qdt

f (t) (2.28)
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where SDR is the synthesis-to-degradation ratio. It can be
smaller, equal or greater than 1 depending on the phase of
growth, disease, injury and mechanical loading (e.g., routine
physical activity).

Fibers deposition length A fiber produced at time t assumes
a deposition length ldep

f (t) which depends on the bundle cur-
rent length Lbun(t) and on the tension imposed on it dur-
ing deposition by the synthesizing cells (Alberts et al. 2002)
(assumption k6). From Eq. (2.4)1, a fiber produced with a
deposition stretch λ

dep
f has a nominal birth stretch given by

λb
f (t) = �nom

bun (t)/λdep
f .

In depositing the fibers under stretch, cells seek to main-
tain a homeostatic mechanical environment. Since there is a
range of homeostatic stretches, it is reasonable to assume that
fibers are deposited under a range of homeostatic stretches.

In the specific realization of the theory, the fibers deposi-
tion stretches are assumed to be normally distributed within
the homeostatic stretch range (assumption s6).

Matrix turnover Water imbibes into the tissue space due to
osmotic forces. Hence, the volume fraction of the fluid-like
ground substance matrix (the tissue hydration) is determined
by the concentration of osmotic active species in the tissue
space, primarily that of the proteoglycans (PG) with their
negatively charged glycosaminoglycan (GAG) side groups
(Maroudas et al. 1991). PGs are synthesized by the tissue
cells (e.g., fibrocytes, smooth muscle cells). The PGs con-
centration is determined by the nature of the tissue and by
its loading (e.g., tension versus compression (Koob et al.
1992; Koob and Vogel 1987)) and location in the organ (e.g.,
(Azeloglu et al. 2008), in addition to age, health and gen-
der. Quantitative data on the effects of loading on the matrix
remodeling is at present scarce. In the future, such data can be
incorporated into the formulation when it becomes available.

In the specific realization of the theory, assumption s2
implies that the fibers and matrix volume fractions remain
constant (Eq. 2.18) during the G&R process. In other words,
the matrix volume changes proportionally to the change of
the fibers volume.

2.1.4 Fiber and bundle mechanics

At each point in time, the tissue mechanical response can be
analyzed independent of the growth-induced turnover events
(assumption k1). The mechanical response of tissue fibers
under stretch may be time-dependent (Raz and Lanir 2009).
Hence, a single fiber stress depends in general on the his-

tory of its strain e f (
t
τ
0
). Focusing on all fibers with nominal

birth stretch λb
f , the contribution of their Cauchy stress σ f to

the total tissue Cauchy stress 	 f is obtained by scaling the

former by their volume fraction in the tissue. Hence,

d	 f (t) = (v f (λ
b
f , t)/V (t)) · σ f (λ

b
f , t) · dλb

f

= � f (t) · (m f (λ
b
f , t)/M f (t)) · σ f (λ

b
f , t) · dλb

f

(2.29)

where by assumption m4, the fiber constitutive equation is
represented (in terms of its Cauchy stress) by σ f (λ

b
f , t) =

σ f [e f (
t
τ
0
)]. The second Eq. (2.29) results from Eqs. (2.13)

and (2.16).
By assumption m1, the bundle Cauchy stress is given by

summation of Eq. (2.29) over all fibers6

	bun(t) = (� f (t)/M f (t)) ·
∫

λb
f

m f (λ
b
f , t) · σ f (λ

b
f , t) · dλb

f

(2.30)

The tissue’ first Piola-Kirchoff fibers stress, expressed
per unit tissue area in the current reference length L ref

bun(t)
(Aref

tiss(t), Eq. 2.17), is related to its Cauchy stress by Tbun =
	bun/�bun.7 Substitution of this expression, together with
Eq. (2.6) into Eq. (2.30), shows that the stress Tbun can be
expressed in terms of the fiber’s first Piola-Kirchoff stress
(t f = σ f /λ f ) by the expression

Tbun(t) = � f (t) · (�ref
bun(t)/M f (t)) ·

∫

λb
f

m f (λb
f , t)/λb

f

·t f (λ
b
f , t) · dλb

f (2.31)

The total tissue fiber force is Fbun(t) = Tbun(t) · Aref
tiss(t).

In the specific realization of the theory, the fibers are
taken to be hyper-elastic (assumption s1). Hence, the fibers
strain energy per unit of their volume w f

(
e f

)
depends only

on their current true strain e f if e f > 0 and w f
(
e f

) = 0
for e f ≤ 0 (assumption m4). The strain energy of the λb

f
fibers per unit tissue volume (fibers and matrix) dw(e f ) is
thus given by:

dw(e f , t) = (v f (λ
b
f , t)/V (t)) · w f (e f ) · dλb

f

= �0
f · (m f (λ

b
f , t)/M f (t)) · w f (e f ) · dλb

f

(2.32)

where the second equation results from Eqs. (2.13). The total
fibers volume fraction �0

f is introduced to transform the
strain energy function expressed per unit fibers volume to

6 Summation of the Cauchy fibers stresses is permissible since the
stresses of all fibers are expressed per unit area in the common cur-
rent configuration.
7 In the present analysis, the first Piola-Kirchoff stress is expressed per
unit area in the current reference configuration which is shared by all
current fiber population. In the current configuration, the tissue is taken
to be incompressible (assumption m3).
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its value per unit tissue volume. In the specific realization,
the fibers volume fraction remains constant (assumption s2),
i.e., � f (t) = �0

f . Hence, the strain energy per unit tissue
volume of all fibers in the bundle is

Wbun(Ebun, t) =
∫

λb
f

dw(e f , t)

= (�0
f /M f (t)) ·

∫

λb
f

m f (λ
b
f , t) · w f (e f ) · dλb

f (2.33)

The bundle’ second Piola-Kirchoff stress is given by,

Sbun(Ebun, t) = ∂Wbun(Ebun)/∂ Ebun

= (�0
f /M f (t))·

∫

λb
f

m f (λ
b
f , t)·dw f /de f ·∂e f /∂ Ebun ·dλb

f

(2.34)

By using Eq. 2.6 in the chain differentiation in Eq. (2.34),
one gets

Sbun(Ebun, t) = (�0
f · (�ref

bun(t))
2/M f (t))

·
∫

λb
f

m f (λ
b
f , t)/(λb

f )
2 · s f (e f ) · dλb

f (2.35)

where s f (e f ) = dw f /de f is the fiber’s second Piola-
Kirchoff stress. The bundle component of the tissue’ first
Piola-Kirchoff stress Tbun = �bun · Sbun can be expressed in
terms of the fibers’ first Piola-Kirchoff stress t f (t f = λ f ·s f )

by substituting λ f = �bun · �ref
bun/λ

b
f (Eq. 2.6) in Eq. (2.35)

so that

Tbun(Ebun, t) = �bun(t) · Sbun(Ebun, t)

= (�0
f · �ref

bun(t)/M f (t))·
∫

λb
f

m f (λ
b
f , t)/λb

f ·t f (λ f )·dλb
f

(2.36)

An expression for the bundle Cauchy stress can be derived
in a similar way resulting in an expression equivalent to Eq.
(2.30) except that here in the hyper-elastic case the fiber
Cauchy stress depends only on the fiber current stretch (or
strain).

A comparison between Eqs. (2.31) and (2.36) shows that
subject to the assumed equality � f (t) = �0

f , they are of
similar forms. Since Eq. (2.31) applies for any material prop-
erties of the fibers, this similarity implies that in the micro-
structural constitutive formulation, the hyper-elastic fibers
material law in Eq. (2.36) can be readily generalized to non-
elastic fibers (such as fibers visco-elasticity, preconditioning,
active response) by replacing the fiber hyper-elastic stress-
strain law with the relevant non-elastic one (Himpel et al.
2008; Lokshin and Lanir 2009; Raz and Lanir 2009).

2.1.5 The matrix pressure

In tissues, the fluid-like ground substance matrix is under
osmotic-derived hydrostatic pressure. This matrix pressure
affects the tissue mechanical response in two ways. It swells
the tissue from its stress-free configuration into its unloaded
(but not stress-free) one. In addition, the matrix pressure
affects the tissue mechanical response by adding a pressure
term to the fibers stress. Hence, the bundle and tissue dif-
fer in their reference configuration and in their mechanical
response, even in the absence of other types of fibers such as
elastin. These differences are detailed in the following.

In the present uniaxial case, the osmotic pressure induces
at equilibrium a stretch �osm

bun (t) to the fiber bundle under
which the bundle Cauchy stress balances the matrix pres-
sure. As a result of �osm

bun (t), the tissue reference length (the
unloaded one) differs from the bundle one (the stress-free
L ref

bun(t)) and is given by L ref
tiss(t) = L ref

bun(t) · �osm
bun (t). The

tissue true and reference stretches are thus related to the cor-
responding bundle terms by

�tiss(t) ≡ Lbun(t)/L ref
tiss(t) = �bun(t)/�

osm
bun (t),

Etiss(t) = (�2
tiss(t) − 1)/2

�ref
tiss(t) ≡ L ref

tiss(t)/L ref
bun(0) = �ref

bun(t) · �osm
bun (t). (2.37)

During growth, the tissue is under experimentally measur-
able in situ pre-stretch �

pre
tiss(t) and associated pre-stress. The

tissue pre-stretch is equal to its growth-induced true stretch,
i.e., �

pre
tiss(t) ≡ �tiss(t).

The experimentally accessible fiber recruitment stretch is
the one referred to the tissue unloaded reference configura-
tion, namely λrec

f,tiss ≡ lb
f /L ref

tiss(t). The corresponding recruit-
ment stretch is thus

λrec
f,tiss(λb, t) = λb

f /�
ref
tiss(t) (2.38)

The fiber stretch and strain can be expressed in terms of
the tissue stretch and the fibers-in-tissue recruitment stretch
λrec

f,tiss to yield,

λ f (λ
b
f , t) = �tiss (t) /λrec

f,tiss(λ
b
f , t)

= �tiss (t) · �ref
tiss (t) /λb

f

e f (λ
b
f , t) = (Etiss(t) − erec

f,tiss)/(λ
rec
f,tiss(λb, t))2

= (Etiss(t) − erec
f,tiss) · (�ref

tiss (t) /λb
f )

2 (2.39)

Equation (2.39) indicates that the fiber true stretch and the
tissue true stretch are uniquely interconnected by the fiber
recruitment stretch.

The tissue total stress equals the sum of stresses in the
fibers due to their deformation, and the matrix osmotic-driven
hydrostatic pressure (assumption m4). Hence, the tissue first
Piola-Kirchoff stress is

Ttiss(Etiss, t) = Tbun(Ebun, t) − Pmat/�tiss(t) (2.40)
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where Etiss and Ebun are inter-related via the osmotic stretch
�osm

bun (t) (Eq. 2.37) and Pmat is the osmotic-driven matrix
pressure.

Under equilibrium, the matrix pressure is equal to the PG-
induced tissue osmotic pressure, the level of which depends
on the PG concentration. In tissues with unidirectional fibers
such as tendons, the concentration of PG is low, and so is
the associated matrix pressure. Even if small, the matrix
osmotic pressure may play a significant role in the tissue
global response by affecting the tissue load-free length. In
the common case of tissues with undulated fibers, the stress–
strain response at low strain levels is flat, so that even a
small matrix hydrostatic pressure may substantially increase
the unloaded reference length thereby shifting the apparent
stress–stretch curve to the left by a stretch ratio of �osm

bun (t)
(Eq. 2.37, Fig. 4). Osmotic pressure plays even a more sig-
nificant role in tissues with multi-directional fibers (Lanir et
al. 1996; Lokshin and Lanir 2009), especially in tissues sub-
jected to compressive loading such as the articular cartilage
and the inter-vertebral disk (both characterized by high con-
centrations of PG). In these tissues, when under high com-
pressive loading, the matrix pressure may become the major
load bearing component.

2.1.6 The fibers recruitment stretch distribution

The fibers turnover with growth, induces changes in their
mass distribution over their birth stretch λb

f . The normalized

mass density distribution function (d.d.f.) is m f (λ
b
f , t)/Mf (t).

However, the fibers birth stretch is unknown. The only exper-
imentally measurable distribution is that of the fiber-in-tissue
recruitment stretch D(λrec

f,tiss). In the micro-structural theo-
ries of tissue mechanics (Lanir 1979, 1983), D(λrec

f,tiss) is a
fundamental feature of soft tissues mechanics which is the
underlying cause of its nonlinear mechanical response. It is
defined as follows: the proportion of fibers which become
straight (and load bearing) between the stretches λrec

f,tiss and
λrec

f,tiss + dλrec
f,tiss equals D(λrec

f,tiss) · λrec
f,tiss It can be readily

shown (“Appendix 2”) that D(λrec
f,tiss) is related to the nor-

malized mass density distribution by

D(λrec
f,tiss, t) = �ref

tiss · m f (λ
b
f , t)/M f (t) (2.41)

2.1.7 Evolution of the tissue mechanical properties

Growth and remodeling are manifested not only by changes
in length, mass and mass distribution, but also by the evolving
tissue mechanical response. The latter occurs due to changes
in the fibers’ mass and cross-sectional area even though the
fibers’ intrinsic properties are constant. The evolution in the
tissue response can be monitored by imposing a test stretch
protocol �test

bun(τ ) at selected time points t∗ along the G&R
period where the test is short compared with t∗. By assump-

tion k1, there is no G&R adaptation during this short pro-
tocol duration, so that the tissue structure is fixed and the
stress response can be evaluated by an equation similar to
Eq. (2.36), namely:

T test
bun (t∗, τ ) = (� f (t

∗) · �ref
bun(t

∗)/M f (t
∗)) ·∫

λb
f

m f (λ
b
f , t)/λb

f · t f · dλb
f (2.42)

where τ is the time along the test protocol, t f = t f (λ f ) and
following Eq. (2.6)

λ f = �test
bun(τ ) · �ref

bun(t
∗)/λb

f (2.43)

The total force is then given by F∗
bun(t, τ ) = T test

bun (t∗, τ ) ·
Aref

tiss(t
∗). By assumption m1, the global tissue force (fibers

and matrix is F∗(t∗, τ ) = Aref
tiss(t

∗) · [T test
bun (t∗, τ ) − Pmat/

�test
bun(τ )] where Pmat is the matrix pressure, and tissue incom-

pressibility (assumption m3) was applied.
In the specific realization, the test protocol was a stretch at

constant rate, and the hyper-elastic fiber first Piola-Kirchoff
stress t f was taken to vary linearly with its true stretch and
vanish under contraction (λ f < 1). Hence,

t f =
{

K (λ f − 1) ∀ λ f ≥ 1
0 otherwise

}
(2.44)

where K is the fiber’s stiffness.

2.1.8 Effect of growth on the tissue pre-stress

Growth induces in situ pre-stretch to the tissue. In parallel
with the pre-stretch, tissues manifest pre-stress. Both pre-
stretch and pre-stress are observable in some tissues (e.g.,
skin, coronary and other blood vessels). They retract their
dimensions when cut and removed from the organ. In the cur-
rent case of unidirectional tissues, if the uniaxial pre-stretch
of the fiber bundle is �

pre
bun, then the tissue Cauchy pre-stress

is given by 	
pre
tiss(t) = 	bun(�

pre
bun) − Pmat. Both 	

pre
tiss(t) and

	bun(t) are expressed per unit tissue area in the pre-stretched
configuration.

2.2 Tissues with multiple types of unidirectional fibers

The theory presented here can be readily generalized to tis-
sues with multiple types of unidirectional fibers. An exam-
ple is a bundle of fibers between the lamellae of arter-
ial media which is composed of roughly parallel aligned
collagen, elastin and smooth muscle cells. Generalization
of the theory is carried out by considering that each type
of fiber (designated by the index i) has its own spe-
cific mass (ρ f,i ), turnover kinetics, mechanical properties,

and deposition stretch (λ
dep
f,i ). This implies that in for-

mulating the appropriate theory, the equations are simi-
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lar to those for tissues with a single type of fibers (pre-
sented in Sect. 2.1 above), but with constitutive parame-
ters that are fiber specific (e.g., Ddb

i instead of Ddb,�d
i

instead of �d , σ f,i (λ
b
f,i , t) instead of σ f (λb, t)). Natu-

rally, the formulation variables become also fiber specific
(e.g., lb

f,i , λ
b
f,i , λ f,i ,� f,i (t), V f,i (t), M f,i (t), m f,i (λ

b
f,i , t),

Q pt
f,i , 	 f,i , T f,i ). The equations must be supplemented by

expressions relating each fiber variable to those of the total
fibers population, i.e.,

V f (t) =
∑

i

V f,i (t), � f (t) =
∑

i

� f,i (t),

M f (t) =
∑

i

M f,i (t) (2.45)

and likewise for the tissue fiber stress (by application of the
rule of mixtures),

	 f (t) =
∑

i

	 f,i (t), T f (t) =
∑

i

T f,i (t) (2.46)

One equation that is assigned a slightly different form is
Eq. (2.14) for the evolving tissue reference length:

L ref
bun(t) = min

i
(min

lb
f

(lb
f,i (t))) (2.47)

Since the formulation and equations for the multiple fiber
types is of a very similar form to that of a single fiber, rather
than repeating all of it, only few examples of the modified
equations are presented.

The fibers volume fraction (Eq. 2.8),

V f (t) =
∑

i

M f,i (t)/ρ f,i (t) (2.48)

The space-filling condition (Eq. 2.9),∑
i

� f,i (t) + �mat(t) = 1 ∀t ≥ 0 (2.49)

The relationship between mass and volume distributions
(Eq. 2.12),

m f,i (λ
b
f,i , t) = ρ f,i (t) · v f,i (λ

b
f,i , t) (2.50)

The tissue reference cross-sectional area (Eq. 2.17),

Aref
tiss(t) = (1/L ref

tiss(t)) ·
∑

i

M f,i (t)/[·ρ f,i (t) · � f,i (t)]

(2.51)

The basal and deformation-dependent rate of fiber degra-
dation (Eq. 2.21),

∂db
i m f,i (λ

b
f,i , t)/∂t = Ddb

i (�d
i ),

∂dd
i m f,i (λ

b
f,i , t)/∂t = Ddd

i (�d
i , e f (

t
τ
0
)) (2.52)

The fiber nominal birth stretch is given by λb
f,i (t) =

�bun(t)/λ
dep
f,i .

The total Cauchy stress due to the i type fiber bundle (Eq.
2.30) is given by,

	bun,i (t) = (� f,i (t)/M f,i (t)) ·
∫

λb
f,i

m f,i (λ
b
f,i , t)

·σ f,i (λ
b
f,i , t) · dλb

f,i (2.53)

and the total tissue Cauchy stress is

	tiss(t) =
∑

i

	bun,i (t) − Pmat (2.54)

2.3 Specific realization of the theory

Analysis of a specific case of the new theory is presented
with the goal of demonstrating its feasibility and utility.
Its predictions and consequences will be contrasted against
known structural features of soft tissues. In particular, it will
be shown that the commonly observed distribution of the
fibers recruitment stretch and the associated tissue convex
nonlinear stress–strain response (Viidik 1972; Zhao et al.
2013) may well result from the mechano-biological interac-
tion between growth-induced tissue stretch and kinetics of
the fibers turnover.

Methods of the specific realization The assumptions relevant
to the specific realization have been listed in the Sect. 2. The
associated equations of kinematics, turnover kinetics and
mechanical consequences of these assumptions have been
presented together with the related equations for the general
theory. Together these constitute the theoretical framework
of the specific realization considered here. It is supplemented
in the present section by a list of the selected numerical para-
meters values. In view of the absence of established data
on few of the model parameters, they were selected by trial
and error, aimed to obtain biologically reasonable general
response features. However, no systematic parametric inves-
tigation was carried out and parameters were not optimized.
The rationale behind some choices is presented in the Sect. 3.

The homeostatic fiber stretch was assumed to span the
range between λ f = λ1 = 1.03 and λ f = λ2 = 1.08. The
homeostatic range is taken to be the stretch range at which
the fibers are most stable and experience the lowest turnover
rate. The fibers were assumed to tear at λ f = λ3 = 1.15.
The basal degradation rate constant (Eq. 2.24) was set to
Bdb = 2 · 10−7(s−1). The values for the deformation-
dependent degradation rate constant were as follows (fol-
lowing assumptions s4 and s7):

• Bdd = 8 · 10−7(s−1) at λ f < λ1 (the hypo-homeostatic
stretch range)

• Bdd = 3 · 10−7(s−1) at λ1 < λ f < λ2 (the homeostatic
stretch range)

123



254 Y. Lanir

Fig. 1 Simulation Inputs: A
The bundle stretch protocol. B
The initial fibers mass density
distribution (lengths of all fibers
is equal to the initial bundle
length). Simulation Predicted
Global Outputs: C The tissue
reference stretch. D The tissue
cross-sectional area. E The
tissue total fibers mass. Time
units are 104 h 0 0.5 1 1.5 2
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• Bdd = 20·10−7(s−1) at λ2 < λ f (the hyper-homeostatic
stretch range)

• Bdd = 8 · 10−7(s−1) at λ3 < λ f (torn fibers)

The value of SDR (ratio of total fibers mass production to
total mass degradation) was set to SDR = 1.05.

Torn fibers do not resist any load but they occupy vol-
ume in the tissue space thereby affecting its stress levels. In
addition, they are subjected to degradation (assumption s7)
thereby participating in the fiber turnover kinetics.

The tissue was taken to have initial cross-sectional area
of 1mm2 and reference length of 10 mm. The fibers occupy
10 % of the initial tissue volume and are all straight (but not
stretched) at their initial reference configuration. The fibers
density is ρ0

f = 1.034gr/cm3, and their intrinsic stiffness
(Eq. 2.43) is K = 100 MPa when stretched and K = 0 when
buckled under contraction. The tissue osmotic pressure was
taken to be Pmat = 2.5kPa.

The tissue was assumed to grow at a constant rate A (Eq.
2.7) of 0.5 cm/year (50 % of the initial length per year) for two
years. This growth is preceded by a step stretch to the mid-
point of the homeostatic range (λ = 1.055). The evolution of
the tissue mechanical properties was investigated by carrying
out short stretch tests of up to 10 % extension at selected time
laps along the growth period.

Results of the specific realization The simulation results are
presented for two distinct cases. One relates to the fiber bun-
dle, without osmotic effects of the charged matrix. The other
case is that of a tissue in which the fibers are embedded in
an osmotic active matrix.

The simulation inputs are the bundle growth stretch pro-
tocol and initial fibers mass density distribution (Figs. 1A,B,
respectively). All fibers are assumed to be initially straight
but un-stretched. Evolutions of the tissue global dimensions
are presented in terms of its reference length (Fig. 1C), cross-
sectional area (Fig. 1D) and of the total fiber mass (Fig. 1E),
respectively. It is seen that under constant kinetic rate, the
reference length seems to grow linearly while both area and
fiber mass grow exponentially with growth time.

The predicted micro-structural manifestation of the tis-
sue growth is presented in terms of the fibers mass density
distribution which evolves with growth time from a single
common birth stretch of λb = 1.0 to a distribution over a
range of birth stretches (Fig. 2). Concurrently with spread-
ing, the distribution ranges progressively move to the right
toward higher λb levels.

Importantly, the evolving fibers mass density distribution
depicted in Fig. 2 as function of the fibers birth stretch λb is
not readily observable since the tissue length increases during
growth (Fig. 1C). The mass dispersion can be experimentally
observed via the fibers recruitment density distribution over
the tissue stretch relative to its current unloaded (reference)
length (Fig. 3). The general patterns of the distributions are
similar to those at Fig. 2. The important difference is that here
the distribution range remains closer to the tissue reference
length (tissue stretch = 1). Fibers with recruitment stretch
lower than unity are stretched in the unloaded state thereby
balancing the matrix osmotic pressure.

The functional manifestation of growth-induced change
in the fibers mass density distribution is seen in the evolu-
tion of fiber bundle response (no matrix osmotic effects) to
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Fig. 2 Effect of growth time on the fibers mass density distribu-
tion across their birth stretch λb

f , starting from an initial Dirac-δ

population at λb
f = 1. Note the predicted emerging non-uniform

bell-shaped density distribution, a pattern commonly observed in
soft tissues. The symbol “tf” designates the total growth period
duration
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Fig. 3 Evolution of the normalized fibers recruitment stretch density
distribution function. Tissue stretch of unity corresponds to the current
tissue unloaded length. The difference in the numerical values of the
X -axis between Figs. 3 and 2 reflects the growth and pressure-induced
increase in length. Fibers with recruitment stretch higher than unity are

wavy at the unloaded length. Fibers having recruitment stretch lower
than unity are already stretched in the unloaded length thereby balanc-
ing the matrix osmotic pressure. The gradually fading discontinuity in
the rising part of the distributions represents the effect of the assumed
initial uniformity of the fibers lengths (Fig. 1B)

mutually identical short test protocols along the growth dura-
tion. Initially (growth time t = 0), all fibers are straight and
manifest linear stress–stretch relationship (Fig. 4A). Later on,
as the fibers acquire distribution of recruitment stretch and

their stress response to the test protocol reduces in magnitude
becoming convexly nonlinear and seemingly stable after suf-
ficient growth duration. In parallel, the stress–stretch curves
move to the right toward higher stretch levels. The total force
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Fig. 4 Effect of growth on the
fiber bundle (no osmotic effects)
global mechanical response,
presented at selected time laps
along the growth period. A The
bundle first Piola-Kirchoff
(PK1) stress as function of its
stretch. B The corresponding
bundle total force. Curves
represent responses at growth
times t = 0(+), t = 0.05 ∗ tf ,
t = 0.08 ∗ tf , t = 0.20 ∗ tf ,
t = tf (tf being the duration of
the simulated growth period).
Note the shift to the right of the
curves origins (by �osm

mat (t), Eq.
2.37) and the initial linear
response (at growth time t = 0)
of the straight fibers, which
gradually develops with growth
to convexly nonlinear response
commonly observed in tissues
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Fig. 5 Evolution of the tissue
(fibers in osmotic active matrix)
global mechanical properties at
selected time laps along the
growth period. A The tissue first
Piola-Kirchoff stress as function
of its stretch. B The
corresponding tissue total force.
Curves designations as in Fig. 4.
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response follows initially a similar pattern to that of the stress,
but deviates from it thereafter increasing in magnitude due
to the increase in cross-sectional area (Fig. 4B).

The predicted responses to the test protocols in terms of
the experimentally observable stress–stretch properties of the
whole tissue (fibers and matrix) are shown in Fig. 5A. The
convexly nonlinear patterns are similar to those of the bun-
dle itself (Fig. 4A), yet there are differences. First, the ori-

gins of the tissue response curves remain at tissue stretch
of unity along the entire growth duration (Fig. 5A). Second,
the stress magnitudes at corresponding stretch levels are in
general higher in the tissue than those of the bundle. Finally,
although in common with the results of Fig. 4A there is an
initial drop in the stress level (at growth time t = 0.05 ∗ t f ),
here at later times the tissue stress (Fig. 5A) picks up to attain
higher stress levels.

123



Mechanistic micro-structural theory 257

Fig. 6 Growth-induced
development of in situ tissue
pre-stress (a) and tissue
pre-stretch (b). Both pre-stress
and pre-stretch are predicted to
asymptotically approach
constant levels
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Tissue pre-stress and associated pre-stretch are additional
readily observable features. Their evolution with growth time
is presented in Fig. 6A,B, respectively. The results suggest
that both pre-stress and pre-stretch tend to approach asymp-
totically constant levels, and that the stable pre-stretch is
close to the simulated highest homeostatic stretch (1.08).

3 Discussion

A theory was developed for analyzing G&R based on funda-
mental mechano-biological turnover events occurring at the
constituents’ level, and on the resulting evolution of the tis-
sue structure and properties. The theory considers growth and
remodeling adaptation that may occur following but exclud-
ing the process of morphogenesis. In other words, during
G&R, tissues maintain their overall geometrical and struc-
tural nature (e.g., type of fibers, unidirectional versus multi-
directional fibers networks, flat versus cylindrical geometry,
lamellae structure in the arterial media). The features which
can be changed by G&R are the quantities of tissue con-
stituents and their attributes such as deposition stretch and
orientation distribution. The theory presented here is a frame-
work linking local fundamental mechano-kinetic events with
macro manifestation of tissue G&R. As such, it is a mech-
anistic theory which relies on both the local basic turnover
processes and on the associated micro-structural manifes-
tation of them. Hence, although it may not include all the
processes involved in tissue G&R, it is of sufficient general-
ity to be able to incorporate additional processes which may
prove to be of significance.

The main advantages of the present theory are that it is
based on first principles and fundamental processes involved
in the evolving tissue micro-structure, free of ad hoc assump-
tions regarding the consequence and phenomenology of
structural G&R manifestation. The theory accounts for G&R
features which have not been previously addressed, namely
the evolutions of non-uniform fiber undulation and of the
tissue pre-stretch and pre-stress.

The present theory considers tissue G&R as stemming
from the sum of local G&R processes in the fiber level. An
important advantage of this approach is that it circumvents
a fundamental unresolved difficulty of defining finite growth
(which includes mass change) in the framework of general
continuum mechanics. In a number of previous G&R mod-
els, growth was prescribed by an associated deformation gra-
dient (Rodriguez et al. 1994). However, as Cowin pointed
out (Cowin 2010), finite growth cannot be prescribed by a
deformation gradient since the associated motion is not bijec-
tive (one-to-one and onto). In bijective motion every element
(e.g., fiber) in the tissue at time t is mapped to by exactly one
element in the tissue at the reference state, so that the motion
of the element corresponds in a one-to-one link via the time-
dependent deformation field. The motion in tissue G&R is not
bijective since fibers are continuously degraded and new ones
are produced. The present micro-structural formulation cir-
cumvents this difficulty of non-bijective G&R motion since
each fiber is labeled by its birth length (or birth stretch) which
links in a one-to-one correspondence between the fiber and
tissue motions (Eqs. 2.38 and 2.39). Hence, the G&R motion
in the current formulation is bijective-like, perhaps “pseudo
bijective.”
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Incidentally, the difficulty associated with tissue motion
not being bijective, and the manner by which it can be circum-
vented have already been previously applied in the micro-
structural theory of the mechanics of inert tissue (no G&R)
(Lanir 1979, 1983). In that theory, although there is no fibers
turnover, fibers are gradually recruited with increasing stretch
to become active in load bearing. Hence, at each instant, fibers
not recruited are not a part of the load bearing tissue mass
and are thus effectively non-existent. Hence, the effective
mass of the tissue increases with increasing stretch as fibers
are recruited. Yet, during this recruiting process, each fiber
recruitment length is known, so that the fiber and the tissue
motions correspond one-to-one.

The rule of mixtures used here to evaluate the global tissue
response finds its theoretical basis in general mixture theory
(Truesdell 1962). In the context of soft tissues’ equilibrium
response, the application of the rule of mixtures encompasses
two implicit assumptions: (i) under equilibrium there is no
mechanical interaction between existing tissue constituents;
(ii) newly produced constituents do not affect the response
of extant ones. These assumptions represent a special case
and may not be valid in a general growing continuum.

The constrained mixture approach to G&R (Humphrey
and Rajagopal 2002) is consistent with the present theory in
two ways: first, in that the global tissue response is evaluated
from its constituents’ responses by application of the rule of
mixtures. Second, in incorporation of evolving constituents’
natural configurations. The main difference between the two
approaches is that structure is not considered in the classi-
cal mixture theory, while it is a fundamental feature of the
present one.

3.1 Assumptions of the general theory

The dependence of turnover rate on stress is excluded
(assumption k3) since stress is an abstract man-created con-
cept that cannot be directly measured (Cowin 2004). On the
other hand, since a key element of the theory is the evolv-
ing fibers gauge length, there is no difficulty in defining each
fiber true strain, thus avoiding the difficulty in adopting strain
as a G&R stimulus, a difficulty which exists in non-structural
G&R models. Dependence on strain rate (Cowin 1996) can
be readily incorporated into the present theory in relevant
cases.

The assumed dependence of degradation kinetics on the
fibers deformation reflects observations of a number of pre-
vious studies. Mechano-enzymatic studies on both recon-
stituted bovine collagen (Huang and Yannas 1977) and on
intact rabbit tendon (Nabeshima et al. 1996) reveal that
under 4 % strain there is a reduction in the rate of enzy-
matic degradation and an associate increase in the tensile
failure strain compared to unloaded control. Higher strain
causes an increase in the degradation rate. In another study

on uni-axially loaded cornea subjected to enzymatic degra-
dation, it was found that in the same sample, loss of colla-
gen fibers birefringence (i.e., cleaved fibers) occurred only
in the fibers aligned normal to the stretch direction (there-
fore un-stretched) while stretched fibers maintained their fib-
rillar nature (Ruberti and Hallab 2005). At the other end
of the strain range, in tensile tests of bovine tail tendon
collagen stretched up to its damage region, it was found
that over-stretch significantly enhanced the fibers proteol-
ysis by the serine enzyme acetyltrypsin, and likewise but
to a lesser degree by α-chymotrypsin (Willett et al. 2007).
The authors attributed the over-stretch effect to observed (by
previous X-ray studies) stretch-induced intra-fiber sliding at
the inter-fibril and intermolecular levels which result in the
exposure of susceptible domains to the enzyme. The latter
is attributed to stretch-induced disruption of semicrystalline
lattice structure of collagen fibers, thereby liberating indi-
vidual molecules from restrictions (created by their near-
est neighbors) on their thermal movement. When thus liber-
ated to move, these molecules are allowed to achieve greater
numbers of conformations, which translates into increased
probability for protease binding and catalysis (Willett et al.
2007).

The quantitative aspect of tissue constituents’ participa-
tion in G&R turnover is at present insufficiently known.
The turnover rate decreases significantly from the embry-
onic stage toward maturity. There are, however, significant
differences between tissue constituents. For collagen type
1, the rate of turnover depends on species, tissue and age
(Mays et al. 1991), and the kinetics seems to follow a multi-
compartment first-order model (Kao et al. 1977; Nieder-
muller et al. 1977; Sodek and Ferrier 1988) with charac-
teristic time at maturity of weeks to months. Elastin, on the
other hand at maturity is extremely stable against enzymatic
and thermal denaturation with characteristic turnover time of
many years. SMC respond to growth in two different ways.
These cells (including vascular SMC (Martinez-Lemus et al.
2004)) exhibit the property of length adaptation which results
from the malleability of the muscle myofilament lattice. The
malleability appears to stem from plastic rearrangement of
contractile and cytoskeleton filaments in response to the mus-
cle cell loading. This rearrangement allows the muscle to
adapt to a wide range of cell lengths, yet maintain optimal
tension and contractility (Kerckhoffs et al. 2012; Langille et
al. 1989; Seow 2005). In addition to their plastic length adap-
tation, SMC participate in G&R also by increasing their num-
ber during growth [with estimated replication rate of 0.06 %
per day (Schwartz et al. 1990)].

3.2 Assumptions of the specific realization

In view of the present scarcity of relevant data, the actual con-
stituents turnover kinetics can be incorporated in future real-
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izations of the present theory when data becomes available.
The first-order rate kinetics (assumption s3) in the specific
realization of the theory is a simplification which does not
capture the full range of the turnover kinetics which involves
a number of cellular compartments and processes (Kao et al.
1977). However, although a simplification, the assumed first-
order kinetics is still valuable since it captures the nature and
significance of the interplay between mechanical and biolog-
ical processes during G&R.

The fibers and tissue hydrations result from their osmotic
properties which are determined by the fibers internal envi-
ronment and by the fixed charge density of the extra-fibrillar
matrix proteoglycans (Maroudas et al. 1991). Both are tis-
sue specific. They may change with age (Sivan et al. 2006),
with sustained altered loading (Koob et al. 1992), and con-
sequently with location in the organ (e.g., (Azeloglu et al.
2008)). Both fibers and proteoglycans are produced by the
tissue cells in their attempt to maintain constant homeo-
static physical environment. Hence, it is not unreasonable
to expect that during the slow process of G&R, the tissue
fixed charge density and thus its hydration are maintained at
constant levels (Gleason and Humphrey 2005) (assumption
s2).

Both degradation and production of matrix fibers are regu-
lated by the tissue cells. For degradation, the cells (e.g., SMC
and fibroblasts) secrete matrix metalloproteinases (MMPs)
which are zinc-dependent peptide enzymes. In vitro studies
have shown that increased mechanical loading promotes both
the secretion of MMP-2 and MMP-9 by these cells (Kim et al.
2009), and the synthesis of new collagen (Arts et al. 2012;
Carver et al. 1991; Li et al. 1998). Indeed, under in vivo,
it was shown that exercise increases both the synthesis and
degradation of collagen in human peritendinous region of
Achiles tendon, but the anabolic process dominated ((Lang-
berg et al. 2001)). There seems thus to be a link between
fibers degradation and production. In the specific realization,
this link is taken to be of proportionality form (assumption
s4).

Fibrils are deposited under stretch. It appears that cells
need to be under external tension of the ECM fibers in order
to proliferate and maintain bioactivity (Grinnell 1994). Col-
lagen fibrils acquire their deposition stretch by the action of
their secretion cells (e.g., fibroblasts) which crawl over them
and tugging on them (Alberts et al. 2002). A specific mech-
anism was proposed for fibroblasts whereby the cells lamel-
lipodia extend along held collagen fibers, bind and retract
them in a ’hand-over-hand’ cycle, involving α2β1 integrins
(Meshel et al. 2005). There are tissue differences with respect
to the collagen fibril arrangement and organization in the
matrix, even for the same type of collagen (Alberts et al.
2002). In parallel, there are differences in deposition stretch
between different types of tissues (Eastwood et al. 1996; Har-
ris et al. 1981). Since the cells seek to maintain a favorable

mechanical environment, it is not surprising that fibers tend
to be deposited under homeostatic stretch (Ellsmere et al.
1999). But since there seems to be a range of homeostatic
stretch, there is no a priori reason to favor a single level
of homeostatic stretch. Hence, in the specific realization of
the theory, it was assumed that the deposition stretch is nor-
mally distributed within the fibril homeostatic stretch range
(assumption s6).

Selected levels of the model parameters In the specific real-
ization of the theory, the selected levels of the stretch-
dependent degradation parameters (which include the stretch
ranges of hypo-homeostatic, homeostatic and hyper-
homeostatic regions and the corresponding rate constants)
were motivated by mechano-enzymatic studies reviewed
above. In addition, in a recent detailed quantitative study of
the strain effect on collagen proteolysis (Wyatt et al. 2009), it
was observed that increased strain reduces the rate of enzy-
matic cleavage of tendon collagen and that there are three
distinct strain ranges: at strain ε < 3 % (roughly within the
stress–strain toe region), the cleavage rate is constant, but
drops sharply by roughly 50 % at ε = 3 % and remains at
that level in the strain range 3 < ε < 5 %. In the strain range
5 < ε < 10 % (corresponding to the range where the colla-
gen molecule triple-helix is stretched), the cleavage rate was
found to decline linearly with strain.

The collagen half-life can vary considerably with age and
under pathological conditions. In normotensive rat arteries it
was found to be about 60–70 days (Nissen et al. 1978). This
implies degradation rate constants (Bdd and Bdb) in the order
of between 10−7 and 10−6s−1 which correspond to the levels
used in the specific realization.

The chosen level of collagen stiffness (100 MPa) is within
the range of measured tendon data (Butler et al. 1984). The
selected collagen volume fraction (0.10) corresponds approx-
imately to its dry volume fraction in the skin (0.09 (Lok-
shin and Lanir 2009)) and to its percentage per wet tis-
sue weight in the cartilage (18 %), considering that water
accounts for about 75 % of the tissue weight (Maroudas et
al. 1980).

Osmotic pressure in unloaded articular cartilage is approx-
imately 2.5 atmospheres. In other soft tissues (e.g., tendon,
skin arterial wall), the proteoglycans fixed charge density
(FCD) is approximately 10 % of its level in the cartilage
(Azeloglu et al. 2008; Gaudette et al. 2004). Since the tis-
sue osmotic pressure was found to increase with the square
of its FCD (Basser et al. 1998; Urban and McMullin 1985),
the level of Pmat was selected here to equal 1 % of that of the
cartilage, namely 2500 Pa.

Analysis of the sensitivity of the model predictions to
its parameters should consider both the highly nonlinear
nature of the model, and the significant interactions which
exist between parameters. The latter implies that sensitivity
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analysis via perturbations of a single parameter may result in
misleading conclusions since this sensitivity depends criti-
cally on the levels of other ones. Hence, a realistic sensitivity
analysis should consider the multi-dimensional “sensitivity
regions,” similar to the concept of confidence regions (in con-
trast to confidence intervals) in the theory of parameter esti-
mation. The highly nonlinear nature of the model implies that
interactions between parameters may critically depend on
their values. For these reasons, a reliable sensitivity analysis
in the present formulation involves an extensive multi-faced
analysis which warrants a special study. This is left for future
work (with two exceptions detailed below). Some qualitative
insights can, however, be gained based on the model physical
nature. For example, both the fibers volume fraction (�0

f )

and their stiffness (K ) are likely to have mutually similar
effects on the bundle and tissue mechanical responses (Figs.
4, 5, 6B), but no effect on the kinetics-driven evolution of the
bundle structure (Figs. 1, 2, 3). The homeostatic stretch range
([λ1, λ2]) and the degradation reaction constants (Bdb, Bdd)

determine the rate of fibers turnover. They are thus expected
to have significant effects on the evolving tissue dimensions
and mass (Figs. 1D,E), on the fibers bundle structure (Figs.
2, 3), and on the mechanical responses of the bundle and tis-
sue (Figs. 4, 5). In addition, these four parameters interact
significantly between themselves and with the tissue rate of
growth.

The sensitivities to two parameters, SDR and Pmat

are less obvious. In addition, their physiological levels
are less clear compared with other parameters. There are
no data on the synthesis-to-degradation ratio (SDR). The
matrix osmotic-driven pressure (Pmat) is well known in tis-
sues like the articular cartilage and intervertebral disk but
may vary in other tissues depending on the nature and
magnitude of their loadings. In view of these consider-
ations, their specific sensitivities where studied (“Appen-
dix 3”) for the case in which all other parameters were
held constant at their selected reference levels. The results
demonstrate that SDR has insignificant or no effects on
the mass and recruitment density distributions and on
the bundle stress–stretch relationships, and has very lit-
tle effect on the tissue stress–stretch relationships and on
the tissue pre-stretch and pre-stress (results not shown).
On the other hand, SDR affects significantly the evolu-
tion of the cross-sectional area and mass (Fig. 8), thereby
altering also the bundle and tissue force-stretch relation-
ships (Fig. 9). The osmotic-driven matrix pressure Pmat

was found to have no effect on attributes such as the
evolutions of the mass and cross-sectional area and the
mass recruitment densities (results not shown). Only under
extremely high perturbations, Pmat was found to have small
effects on the tissue stress–stretch and force–stretch relation-
ships (Fig. 10) and on the tissue pre-stretch and pre-stress
(Fig. 11).

3.3 Results of the specific realization

In attempting to test the feasibility of the new G&R the-
ory and its specific realization, predictions were contrasted
against soft tissues measured and observed response features.
Most importantly, the results depicted in Fig. 3 are compat-
ible with the hypothesis that mechano-biological interaction
between growth-induced tissue stretch and kinetics of the
fibers turnover result (after sufficient growth time) in the com-
monly observed distribution of the fibers recruitment stretch
and in the associated tissue convex nonlinear stress-strain
response (Viidik 1972; Zhao et al. 2013).

The results highlight a number of additional interesting
points. Both predicted tissue cross-sectional area and fibers
total mass are seen to increase exponentially with growth time
(Fig. 1). These predictions are valid only under the assumed
constant rates of both growth and turnover reaction constants
throughout the growth period. In reality, the growth rate and
turnover kinetics can change with age during growth.

The initial condition for the fibers mass density dis-
tribution was taken to be homogeneous with all fibers
straight and un-stretched at the initial reference length.
Hence, all fibers have initially the same birth stretch λb

f =
1.0 (Fig. 1b). To check the effect of the initial distribu-
tion on the evolving fibers mass density distribution, the
simulation was run with different initial mass distribu-
tions. It was found (results not shown) that the growth
induced features are affected by the initial conditions only
at times close to the onset of growth, but this fades quickly
away with growth time so that after longer times (t >

0.05 ∗ t f in the present case) both the fibers recruit-
ment density distribution and resulting tissue mechanical
response are indistinguishable from those in Figs. 3 and
5.

The functional importance of osmotic pressure (even if of
small magnitude) is seen when comparing the bundle with
the tissue responses to the test protocols (Fig. 4 vs. 5). Sim-
ply stated, the osmotic-derived tissue hydrostatic pressure
stretches the tissue until the bundle stress counter-balances
the matrix pressure. The magnitude of this stretch is signif-
icant due to the flat nature of the bundle response at low
stretches. This adjustment of the tissue reference length has
important functional consequences. First, the long range of
bundle stretch manifesting zero stress is absent in the tissue.
In addition, the bundle is under residual stress at the load-free
tissue reference configuration. From the structural point of
view, the lowest stretch level of the fibers density distribu-
tion is lower than unity, implying that the initial slope of the
tissue stress-strain relationship, although small, is not zero.
Finally, the tissue exhibits an apparent stiffer response than
that of the bundle at comparable stretches. This stems from
the convexly nonlinear response of the bundle, so that when
pre-stretched by the pressure toward higher stretch levels,
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the slope of the tissue stress-strain response (i.e., its stiff-
ness) at apparently comparable stretches is higher than that
of the bundle. Hence, the osmotic pressure seems to stiffen
the tissue (Eastwood et al. 1996).

In the specific realization, the tissue pre-stress (and pre-
stretch) following stabilization, approach asymptotic levels
(Fig. 6). The reason being that if the pre-stretch exceeds the
highest homeostatic stretch, fibers degrade at higher rate and
are replaced by longer fibers deposited under homeostatic
stretch. This raises the question of how tissues such as arter-
ies sustain axial pre-stretch of up to 1.6 in the aorta (Han
and Fung 1995) or 1.4 in the left anterior descending coro-
nary artery (Lu et al. 2003) with blood pressure exceeding
100 mmHg? The results here suggest that collagen fibers with
their comparatively high rate of turnover cannot sustain such
levels of axial and radial stretching. It is therefore speculated
that in tissues having elastin as a significant component (such
as the arterial wall), it is the elastin, known for its very low
rate of turnover with half time of many years, is the compo-
nent which bears these levels of pre-loading without being
replaced for long time periods.

The growth-induced fiber mass density distribution gives
rise to buckling of some fibers and their resulting wavy
(undulated) disposition when the tissue is at its unloaded
length. This applies to fibers with recruitment (straighten-
ing) stretches higher than unity (Fig. 3). Upon tissue exten-
sion these fibers gradually recruit to become stretched and
load bearing. The other fibers (i.e., whose straightening
stretch is lower than unity) are already stretched at the tis-
sue load-free reference and their combined tension balances
the matrix osmotic pressure. The experimentally measurable
fibers recruitment density distribution function (Eq. 2.41) can
be derived from their mass density distribution and vice versa.

The dynamics of the growth-induced remodeling is
determined by the characteristic times of the mechanisms
involved. In the specific realization, the characteristic degra-
dation time is 106–107 s (the inverse of the B ′s values in Eqs.
2.23 and 2.24). Hence, it is expected that the effect of the
initial fibers birth stretch distribution on its evolution with
time will fade away for growth times higher than 106 − 107

seconds. The results depicted in Fig. 3 support this since at
t = 0.2 · t f (= 12,440,000 s) the assumed initial sharp den-
sity distribution (Fig. 1B) can no longer be seen. The effect
of the loading dynamics (e.g., routine daily activity, special
physical training) was not included in the specific realiza-
tion since its characteristic time (order of 1day = 86, 440 s)
is much shorter than the characteristic degradation time.
Hence, the effect of loading dynamics is expected to be
damped.

The specific realization has limitations. First, just one
type of fiber (collagen) is considered. This is suitable
for tendons and ligaments, but insufficient for other tis-
sue having elastin or SMCs as components of their micro-

structure. The choice to consider one type of fiber was
done to facilitate clearer insight into the consequences of
mechano-kinetic interaction, free of the added complex-
ity of multi-component investigation. Integration of several
types of fibers can be readily carried out, as outlined in
the general theory (Sect. 2.2). Another limitation (rational-
ized above) is the assumed first-order kinetics of the fiber
degradation (and production). It was previously suggested
that collagen secretion involves at least two separate first-
order processes (Kao et al. 1977). The assumed first-order
kinetics is not expected to have significant effects on the
study results and conclusions since the effects of kinet-
ics order fade away after long growth period. The plat-
form developed is sufficiently general to incorporate other
types of turnover kinetics in future studies. Finally, growth
induced changes in composition of the tissue have not been
addressed in the realization of the theory, which considers
collagen fibers and fluid-like matrix. Naturally, if elastin
fibers and/or SMCs were included (along the guidelines of
Sect. 2.2) then owing to the differences in turnover kinetics
between constituents, the tissue composition would change
with growth.

In summary, a mechanistic theory was developed for
growth and remodeling of soft tissues with unidirectional
fibers. It is based on the fibers fundamental mechano-kinetic
turnover processes and predicts the resulting evolution of the
tissue micro-structure, its size and its mechanical properties.
The theory constitutes a general framework which can incor-
porate multiple types of fibers having different mechanical
properties and turnover kinetics. The feasibility of the new
theory was examined via a specific realization. The predic-
tions support the notion that the commonly observed distri-
bution of the fibers’ undulation and the associated tissues
convex nonlinear stress stretch response result from interac-
tion of the fibers’ turnover with their growth-induced stretch-
ing.

4 Appendix 1: A scheme of the tissue structure and its
constituents stresses

Figure 7 depicts a scheme of the unidirectional tissue with
one type of fibers (collagen). The fibers are non-uniformly
undulated due to their distributed birth length. They thus
recruit (become stretched and load bearing) at distributed
tissue stretch. The total tissue stress is the sum of the fibers
stresses and the fluid matrix pressure.

5 Appendix 2: Derivation of Eq. (2.41)

In classical tissue mechanics, the measurable strain and stress
are referenced to the tissue unloaded reference configuration.
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Fig. 7 A scheme of the simulated tissue structure and its constituents
stresses

In the structural theory for hyper-elastic soft tissues (Lanir
1979, 1983), the bundle strain energy is given by the weighted
sum of the fibers strain energies,

Wbun(Ebun, t) = �0
f ·

∫

∀λrec
f,tiss

D(λrec
f,tiss, t) · w f (e f ) · dλrec

f,tiss

(5.1)

where λrec
f,tiss is the fiber-in-tissue recruitment stretch and

D(λrec
f,tiss) is the volume (or mass) density distribution such

that the fraction of fibers with recruitment stretch between
λrec

f,tiss and λrec
f,tiss + dλrec

f,tiss is D(λrec
f,tiss) · dλrec

f,tiss.
On the other hand, in the present G&R theory, the bun-

dle strain energy expressed as a function of the tissue strain
(instead of the bundle one) is

Wbun(Ebun, t) = (�0
f /M f (t)) ·

∫

λb
f

m f (λ
b
f , t) · w f (e f ) · dλb

f

(5.2)

The integration variable λb
f in Eq. 5.2 can be replaced by

λrec
f,tiss of Eq. 5.1 by using Eq. 2.38 to yield

dλb
f = �ref

tiss(t) · dλrec
f,tiss (5.3)

By equating the two expressions for Wbun in Eqs. (5.1)
and (5.2), the desired Eq. (2.41) is obtained.

6 Appendix 3: Sensitivity analysis

The analysis focuses on the effects of two parameters, the
synthesis-to-degradation ratio (SDR) and the matrix pressure
(Pmat). The ratio SDR was found to affect solely the evolu-
tions of the tissue cross-sectional area and mass. The mag-
nitudes of these effects are most significant. Figure 8 shows
that even small perturbations (3 %) in SDR from its reference
level of 1.05 induce significant alterations in the evolution
of the tissue cross-sectional area (A) and mass (B). These

Fig. 8 Effects of perturbations
in the synthesis-to-degradation
ratio (SDR) on the evolution of
the tissue cross-sectional area
(A) and mass (B). The SDR
levels are 1.02, 1.05 and 1.08
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Fig. 9 Effects of perturbations
in the synthesis-to-degradation
ratio (SDR) on the bundle’s (A)
and the tissue’s (B) force-stretch
relationships. Depicted are the
corresponding responses at the
end of the simulated growth
period

1.06 1.08 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1A

Bundle Stretch

B
un

dl
e 

F
or

ce
 [N

]

1 1.02 1.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8B

Tissue Stretch

T
is

su
e 

F
or

ce
 [N

]

SDR=1.02

SDR=1.05

SDR=1.08

Fig. 10 Effects of perturbations
in the matrix pressure Pmat on
the tissue stress–stretch (A) and
force–stretch (B) relationships.
Depicted are the corresponding
relationships at the end of the
simulated growth period. The
Pmat levels are 250, 2,500,
25,000 Pa
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induce in turn equivalent large changes in the bundle and tis-
sue force–stretch relationships (Fig. 9) but not in the stresses
which are unaffected (results not shown).

The matrix pressure Pmat was found to have no effect
on the model predictions with the exception of very small
effects it has on the tissue stress–stretch and force–stretch
relationships (Fig. 10). The tissue responses are seen to be

mostly affected under 10-fold increase of the matrix pressure
from 2,500 Pa at reference to 25,000 Pa, the latter figure being
typical of the articular cartilage with its high concentration
of osmotic active proteoglycans. The matrix pressure was
found to have likewise a small effect on the evolution of the
tissue pre-stretch and pre-stress (Fig. 11). These effects are
small even under the large simulated perturbations in Pmat.
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Fig. 11 Effects of perturbations
in the matrix pressure Pmat on
the evolution of the tissue
pre-stress (a) and pre-stretch (b)
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