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Abstract Complex 3D beating heart models are now avail-
able, but their complexity makes calibration and validation
very difficult tasks. We thus propose a systematic approach of
deriving simplified reduced-dimensional models, in “0D”—
typically, to represent a cardiac cavity, or several coupled
cavities—and in “1D”—to model elongated structures such
as muscle samples or myocytes. We apply this approach
with an earlier-proposed 3D cardiac model designed to cap-
ture length-dependence effects in contraction, which we here
complement by an additional modeling component devised
to represent length-dependent relaxation. We then present
experimental data produced with rat papillary muscle sam-
ples when varying preload and afterload conditions, and we
achieve some detailed validations of the 1D model with these
data, including for the length-dependence effects that are
accurately captured. Finally, when running simulations of
the 0D model pre-calibrated with the 1D model parameters,
we obtain pressure–volume indicators of the left ventricle
in good agreement with some important features of cardiac
physiology, including the so-called Frank–Starling mech-
anism, the End-Systolic Pressure–Volume Relationship, as
well as varying elastance properties. This integrated multi-
dimensional modeling approach thus sheds new light on the

M. Caruel (B) · P. Moireau · D. Chapelle
Inria Saclay Ile-de-France, M�DISIM team, Palaiseau, France
e-mail: matthieu.caruel@inria.fr

R. Chabiniok
Division of Imaging Sciences and Biomedical Engineering,
St Thomas’ Hospital, King’s College London, London, UK

Y. Lecarpentier
Institut du Coeur,, Hôpital de la Pitié-Salpêtriére, Paris, France

Y. Lecarpentier
Centre de Recherche Clinique, Hôpital de Meaux, Paris, France

relations between the phenomena observed at different scales
and at the local versus organ levels.
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1 Introduction

Complex three-dimensional (3D) multi-physics beating
heart models are now available—see, e.g., (Peskin 1975;
Nash and Hunter 2000; Costa et al. 2001; Sachse 2004; Ker-
ckhoffs et al. 2005; Sainte-Marie et al. 2006; Niederer and
Smith 2009) and references therein—including for patient-
specific simulations as in (Smith 2011; Chabiniok 2011),
themselves based on various inverse modeling approaches,
see (Schmid et al. 2008; Moireau et al. 2008). However,
such models are computationally intensive, and their physical
and computational complexities make their detailed valida-
tions and calibrations difficult. Preliminary calibrations of
the numerous physical parameters are essential to run mean-
ingful simulations and to initiate inverse modeling loops for
personalization purposes, and it is very ineffective to perform
this preliminary stage with the full 3D model.

Moreover, increasingly sophisticated biomechanical car-
diac tissue models—frequently based on multi-scale approa-
ches—aim at capturing ever subtler aspects of the car-
diac behavior, whether in physiological or pathological
conditions, see e.g. recent survey in (Trayanova and Rice
2011). This holds in particular for load-dependent mech-
anisms, which have been recognized as crucial in cardiac
physiology for decades, most notably with the so-called
Frank–Starling effect in contraction (Frank 1895; Star-
ling 1918) and also more recently in the relaxation stage
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(Brutsaert et al. 1980). Various models have endeavored to
incorporate such effects, see e.g. (Panerai 1980) and refer-
ences therein for contraction and (Izakov et al. 1991; Niederer
et al. 2006) for relaxation. Clearly, as regards the detailed
validation of such refined models, the complete organ is not
the adequate scale for model assessments based on experi-
mental testing, whereas well-adapted controllable protocols
are available at a more local scale, namely with tissue sam-
ples (Lecarpentier et al. 1979; Kentish et al. 1986; Parikh et
al. 1993) or even myocytes (Bluhm et al. 1995; Cazorla et
al. 2000; Iribe et al. 2006). Nevertheless, while very refined
models can be formulated and calibrated to reproduce a given
family of experiments, it is also essential that the model-
ing approach be integrated in a unified framework within
which the detailed 3D behavior of the whole organ can also
be assessed, in order to investigate the relations between the
behaviors at the local and global scales.

In this paper, we will demonstrate how, using geometrical
arguments, a generic 3D model that contains the most impor-
tant ingredients to reproduce a prototypical cardiac cycle can
be used to derive associated reduced-dimensional models
both in “0D” (zero-dimensional)—typically, to represent a
cardiac cavity or several coupled cavities—and in “1D” (one-
dimensional)—to model elongated structures such as fibers
or myocytes. Such hierarchical models are intended for use in
combination with 3D models to provide dramatic effective-
ness gains without compromising modeling accuracy at the
local scale, and we emphasize that our procedure could eas-
ily be applied to many 3D models. Clearly, whereas the 1D
model has a claim to accuracy for myocardial structures of
adequate geometries, the 0D model is only meant to provide
a straightforward translation of local properties to the organ
level without incorporating any anatomical details—whereas
other reduced-dimensional approaches such as in (Arts et al.
1991; Lumens et al. 2009) include more detailed anatomi-
cal descriptions—while the 3D model is available for accu-
rate simulations of the whole organ. We emphasize, indeed,
that the major originality and potential of our approach lie
in that it allows exploiting a combination of several such
closely related models, within the hierarchical family thus
constructed, for different purposes such as:

– 1D–0D: to obtain fast translations of experimentally
assessed properties—based on 1D samples—to the
“organ” level approximately represented by the 0D model;

– 1D–3D: to infer much more accurate translations to the
organ level, e.g. including spatial heterogeneities and
detailed fiber distributions;

– 0D–3D: to easily calibrate the constitutive properties
based on global indicators prior to running 3D simulations.

We choose to illustrate this dimensional reduction strat-
egy with the 3D model originally proposed in (Sainte-Marie

et al. 2006) and further refined in (Chapelle et al. 2012), and
we then endeavor to use the resulting 1D reduced model to
assess the modeling framework against unpublished experi-
mental data obtained with rat papillary muscle samples. The
experimental protocol is specifically designed to mimic a car-
diac cycle under varying preload and afterload conditions,
in order to more particularly investigate load-dependence
effects. In our model, systolic effects are accounted for by a
function—proposed in (Chapelle et al. 2012)—representing
the varying number of available cross-bridges with respect
to sarcomere strain, which we validate with detailed mea-
sured trajectories of extensions and forces and also with Hill-
type force–velocity curves. Concerning the load-dependence
effects occurring in diastole, we incorporate into the model
a new ingredient inspired from (Izakov et al. 1991).

Once the biophysical model parameters have been cali-
brated using the 1D model confronted with papillary mus-
cle experimental data, we reemploy these parameters—with
some limited adaptations—in the 0D model in order to
explore the corresponding behavior of a cardiac cavity rep-
resenting a left ventricle. In particular, we assess the end-
systolic pressure–volume relationship (ESPVR), which our
hierarchical modeling strategy allows to directly relate to the
length-dependence effects and Frank–Starling mechanism.
We also analyze the resulting behavior in light of the varying
elastance concept (Suga et al. 1973).

The paper is organized as follows: In Sect. 2, we recall
the main ingredients of the 3D cardiac model proposed in
(Sainte-Marie et al. 2006; Chapelle et al. 2012). Next, in
Sect. 3, we present the derivation of the reduced-dimensional
0D and 1D models from the 3D formulation. Then, in Sect. 4
(Results), we describe the experimental setup and report on
our validation trial based on the 1D model, before assessing
the behavior of the 0D cavity model. These results are further
discussed in Sect. 5, and we finally give some concluding
remarks in Sect. 6.

2 3D model summary

We consider the multiscale cardiac model proposed in
(Sainte-Marie et al. 2006; Chapelle et al. 2012), of which
we now summarize the main ingredients, while also fur-
ther emphasizing the distinctions that we introduce in this
work.

2.1 Sarcomere behavior

Muscles present a multiscale fiber-based structure. At the
microscale, each fiber exhibits a striated aspect resulting from
the succession of contractile units called sarcomeres. Within
the sarcomeres, myosin molecular motors gathered in so-
called thick filaments can periodically attach to the surround-
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ing thinner actin-made filaments—thus creating so-called
cross-bridges—in the presence of adenosine tri-phosphate
(ATP), the metabolic fuel of cells. The forces exerted via
these cross-bridges by actin–myosin interaction can then
induce the relative sliding of the interdigitated filaments,
hence the shortening of individual sarcomeres and the macro-
scopic contraction.

We first concentrate on the behavior of the sarcomeres and
model the kinetics of cross-bridges by using an extension of
A.F. Huxley’s model (Huxley 1957). Let us denote by ec the
equivalent strain associated with the relative displacements
of actin versus myosin filaments. All along the thick myosin
filaments, the protruding myosin heads can attach to special
sites located on thin actin filaments. For a given myosin head,
we denote by s the distance to the closest such actin site scaled
by a characteristic interspace distance. Assuming that only
one site at a time is available for any given myosin head, we
introduce n(s, t) the fraction of heads attached at a distance
s at time t . As long as a head remains attached, its extension
s varies at the same rate as ec; hence,

∂n

∂t
+ ėc

∂n

∂s
= (n0(ec) − n) f − ng, (1)

where f and g denote binding and unbinding rates, respec-
tively, and the strain-dependent function n0 accounts for the
length-dependent fraction of recruitable myosin heads, by
which we depart from the original Huxley equation with
right-hand side (1 − n) f − ng. Many earlier works have
proposed mechanical models of muscle contraction based
on the Huxley description or variants thereof, albeit in gen-
eral the introduction of such terms as n0 in (1) primarily
aims at providing a detailed description of calcium dynam-
ics (Wong 1972; Zahalak and Ma 1990), in which some
length-dependence effects can be optionally introduced (Pan-
erai 1980). Here, with our focus on mechanical modeling
we will consider chemical activation as given and directly
incorporate length dependence into n0. The heart muscle is
known to work on the “ascending limb” of the force–length
relation where the maximum active force rapidly increases
with the degree of myofilament overlap within the sarcom-
eres (Gordon et al. 1966; Fabiato and Fabiato 1975; Julian
and Sollins 1975; ter Keurs et al. 1980; Kentish et al. 1986;
Shiels and White 2008). This phenomenon—related to the
Frank–Starling mechanism at the organ level—is of utmost
importance for the cardiac function (Moss and Fitzsimons
2002; Guyton and Hall 2011; Tortora and Derrikson 2009)
and will be characterized by n0(ec) in our model. Moreover,
as in (Bestel et al. 2001; Chapelle et al. 2012), we model f
and g by

f (s, t) = |u|+ 1s∈[0,1] (2a)

g(s, t) = |u|+ 1s /∈[0,1] + |u|− + α |ėc| (2b)

where 1 denotes the indicator function—namely, e.g.,
1s∈[0,1] = 1 for s ∈ [0, 1], and 0 otherwise—and u denotes
a variable reaction rate summarizing chemical activation—
in particular calcium kinetics, see e.g. (Zahalak and Ma
1990; Hunter et al. 1998)—inducing contraction or relaxation
depending on whether u is positive or negative, respectively.
We use |u|+ et |u|− to, respectively, denote the positive and
absolute values of u, namely |u|+ = u when u ≥ 0 and 0
otherwise, whereas |u|− = −u when u ≤ 0 and 0 other-
wise. The term α |ėc| accounts for bridges destruction upon
rapid length changes, which is revealed by rapid force drop
following fast length change (Izakov et al. 1991).

With this particular choice of f and g, we have f + g =
|u| + α |ėc|, and we note that this expression is independent
of s, an assumption often used in modeling actin–myosin
interaction (Guerin et al. 2011).

Relaxation is also known to be load dependent in mam-
malian cardiac muscles, with experimental evidence show-
ing that relaxation occurs earlier at lower loads or smaller
sarcomere lengths (Lecarpentier et al. 1979). This phenom-
enon is often attributed to collective effects induced by an
interplay between the ability of troponin to bind calcium
ions and the concentration of myosin motors, or by steric
effects due to changes in lattice spacing upon contraction
(Izakov et al. 1991; Campbell 2011), and also by calcium
concentration variations regulated by ion exchangers and sar-
coplasmic reticulum (Brutsaert et al. 1980). This additional
length-dependence effect motivates that we depart from the
previous formulations (Chapelle et al. 2012; Sainte-Marie et
al. 2006) and represent this phenomenon by introducing in
the spirit of (Izakov et al. 1991)—albeit in a simpler sum-
marized manner—a new internal variable w(t) obeying the
first-order dynamics

αr ẇ = m0(ec) − w, (3)

which has a multiplicative effect when u ≤ 0 (relaxation),
namely,

u = |ū(t)|+ − w |ū(t)|− , (4)

where ū(t) is now an input variable independent of the sar-
comere state. The relaxation load dependence is then driven
by the function m0 that will be defined as a decreasing func-
tion of ec with a reference value of 1 at high ec, while the
parameter αr is a time constant associated with a simple delay
effect pertaining to the complex chain of underlying chemical
processes summarized in the evolution of w.

The stress state in the sarcomere is then obtained by
assuming here a simple quadratic energy for realized cross-
bridges, in the form

Wm(s) = k0
2 (s + s0)

2,
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Fig. 1 Hill-Maxwell rheological model

namely a linear spring of stiffness k0 and pre-strain s0, which
induces an individual force k0(s + s0). The overall stiffness
and stress in the sarcomere are thus, respectively, given by

kc(t) = k0

∫
n(s, t) ds,

τc(t) =
∫

W ′
m(s) n(s, t) ds = k0

∫
(s + s0) n(s, t) ds,

where we recognize expressions directly associated with the
first two moments of the density function n. The correspond-
ing moments dynamics are then obtained by integrating over
s in (1), which leads to the following closed-form dynamical
system{

k̇c = −(|ū|+ + w |ū|− + α |ėc|) kc + n0k0 |ū|+
τ̇c = −(|ū|+ + w |ū|− + α |ėc|) τc + n0σ0 |ū|+ + kcėc

where σ0 = k0(s0 + 1/2) represents the maximum active
stress.

2.2 Overall constitutive law

We denote by y the displacement field with respect to a
stress-free reference configuration �0. We then introduce the
right Cauchy-Green deformation tensor C , and the associated
Green-Lagrange strain tensor e, defined by

C = FT · F, e = 1

2
(C − I ),

where F = I + ∇ y is the deformation gradient.
As in (Sainte-Marie et al. 2006; Chapelle et al. 2012), we

use a nonlinear Hill-Maxwell rheological law to incorporate
the above contractile modeling into the overall behavior, see
Fig. 1. As we are pursuing a Lagrangian description of the
system with a strain measure given by the Green-Lagrange
strain tensor, it is natural to use the second Piola-Kirchhoff
stress tensor for internal forces, and except when otherwise
specified, all stress quantities considered will be associated

with this specific stress tensor. In the first branch of this
rheological schematic, the contractile element is placed in
series with a linear elastic element, and in parallel with a
linear damping element. This whole branch is assumed to
be of 1D character, namely, producing stresses only along
the fiber direction—represented by a spatially varying unit
vector τ 1—in the form σ1D τ 1 ⊗ τ 1, in relation to strains
measured along the same direction, i.e. e1D = τ 1 · e · τ 1. The
parallel association of the viscous component gives

σc = τc + μėc.

with μ a viscous damping parameter. Concerning the series
linearly elastic element characterized by the stress–strain law
σs = Eses , in our nonlinear large strain framework, the 1D
strains e1D, ec and es are related by

1 + 2e1D = (1 + 2es)(1 + 2ec),

while the stresses σ1D, σs and σc obey

σ1D = σs

1 + 2ec
= σc

1 + 2es
,

these relations representing the nonlinear extensions of the
usual series-type rheological identities (Chapelle et al. 2012).
This leads to the additional dynamical relation

τc + μėc = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3 . (5)

To take into account the connective tissue surrounding the
myocardial fiber, we introduce a hyperelastic potential We

and a viscous pseudopotential Wv and define the fully 3D
passive stress as follows:

�
p

= ∂We

∂e
(e) + ∂Wv

∂ ė
(e, ė).

Here, we consider a hyperelastic potential of transverse
isotropic type We(J1, J2, J4), function of the classical
reduced invariants of the Cauchy-Green strain tensor, which
are expressed with the standard invariants I1, I2, I3, and I4

as

J1 = I1 I
− 1

3
3 , J2 = I2 I

− 1
3

3 , J3 = I
1
2

3 , J4 = I4 I
− 1

3
3

where

I1 = tr
(

C
)

, I2 = 1

2

(
tr(C)2 − tr(C2)

)
,

I3 = det(C), I4 = τ 1 · C · τ 1.

We assume the material to be incompressible, namely I3 =
J3 = 1, which is why We is taken independent of J3. While
the terms containing J1 and J2 are isotropic in nature, the
J4 invariant accounts for the privileged direction associated
with the fiber—namely transverse isotropic behavior—that
can result from the contribution of titin and the intercellular
collagen network (Linke et al. 1994; Weiwad et al. 2000;
Fukuda et al. 2001; Linke and Fernandez 2002). In order
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to derive the passive stress �
p
, for the hyperelastic part we

apply the chain rule

∂We

∂e
= 2

∑
i

(
∂We

∂ Ji

)(
∂ Ji

∂C

)
,

where we use the classical expressions of the invariant deriv-
atives
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ J1
∂C = I

− 1
3

3 (I − 1
3 I1C−1)

∂ J2
∂C = I

− 2
3

3 (I1 I − C − 2
3 I2C−1)

∂ J4
∂C = I

− 1
3

3 (iφ1
⊗ iφ1

− 1
3 I4C−1)

As for the viscous pseudo-potential, we will consider the sim-
ple form Wv = η

2 tr(ė)2. Following the classical approach,
in order to handle incompressibility we will introduce a
pressure–type Lagrange multiplier p such that the overall
second Piola-Kirchhoff stress tensor can be written

� = �
p

+ σ1D τ 1 ⊗ τ 1 − p C−1, (6)

where

σ1D = 1 + 2ec

1 + 2e1D
(τc + μėc). (7)

2.3 System equilibrium

The overall mechanical behavior is governed by the funda-
mental law of dynamics, written in the deformed configura-
tion � as

divσ + ρ( f − γ ) = 0, (8a)

where σ is the Cauchy stress tensor, related to � by

σ = J−1 F · � · FT ,

ρ is the mass density of the tissue, f is the external force
per unit mass and γ the acceleration. This should be supple-
mented with boundary conditions in the form

σ · ν = g, (8b)

where ν denotes the outward unit normal vector and g pre-
scribed forces on some parts of the boundary, e.g. of pressure
type, namely g = −P ν in this case. The corresponding weak
formulation—also called principle of virtual work—can be
written in a Lagrangian formalism, namely in V the space
of admissible displacements measured with respect to the
reference configuration �0 as

Pa(y∗) + Pi (y∗) = Pe(y∗), ∀y∗ ∈ V,

with

Pa(y∗) =
∫

�0

ρ ÿ · y∗d�, (9)

Pi (y∗) =
∫

�0

� : dye · y∗d�, (10)

Pe(y∗) = −
∫

Sendo

Pv ν0 · F−1 · y∗d S, (11)

where y∗ represents a displacement test function, and Pv the
intraventricular blood pressure exerting forces on the endo-
cardium surfaces Sendo of outward unit normal vector ν0. The
virtual increment of the nonlinear Green-Lagrange strain ten-
sor e is given by the differential

dye · y∗ = 1

2

(
FT · ∇ y∗ + (∇ y∗)T · F

)
.

The internal pressure Pv is coupled to the cardiac out-
flow Q = −V̇ , where V is the ventricular cavity volume, by
additional conditions. Inflows and outflows are made possi-
ble by opening and closing the cavity valves, which occurs
depending on the balance of internal and external pressures
summarized as (Sainte-Marie et al. 2006)

−V̇ = Q = q(Pv, Par , Pat ),

where Par denotes the pressure in the aorta or in the pul-
monary artery, depending on the ventricle considered—i.e.,
the afterload—Pat is the corresponding atrial pressure that
gives the preload in the filling phase, and q is a regularized
version—for numerical purposes—of the following ideal
behavior⎧⎪⎨
⎪⎩

Q ≤ 0 if Pv = Pat (filling)

Q = 0 if Pat ≤ Pv ≤ Par (isovol. phases)

Q ≥ 0 if Pv ≥ Par (ejection)

that we approximate as
⎧⎪⎨
⎪⎩

Q = Kat (Pv − Pat ), if Pv ≤ Pat

Q = K p(Pv − Pat ), if Pat ≤ Pv ≤ Par

Q = Kar (Pv − Par ) + K p(Par − Pat ), if Pv ≥ Par

(12)

where the regularizing constants Kat , K p and Kar must be
chosen such that K p is much smaller than Kar and Kat to
ensure that the flow is negligible in isovolumic phases.

Finally, the system is closed by a relation representing the
external circulation, with a so-called two-stage Windkessel
model written as follows:{

C p Ṗar + (Par − Pd)/Rp = Q

Cd Ṗd + (Pd − Par )/Rp = (Pvs − Pd)/Rd

where C p, Rp, Cd , and Rd denote capacitances and resis-
tances of the proximal and distal circulations, Pd denotes an
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additional pressure variable called distal pressure, and Pvs is
a constant representing the venous system pressure.

We can now summarize all the above 3D modeling equa-
tions in the following system:

Pa(y∗) + Pi (y∗) = Pe(y∗), ∀y∗ ∈ V, (13a)

� = ∂We

∂e
+ ∂Wv

∂ ė
+ σ1Dτ 1 ⊗ τ 1 − pC−1, (13b)

σ1D = Es
e1D − ec

(1 + 2ec)
2 , (13c)

(τc + μėc) = Es
(e1D − ec)(1 + 2e1D)

(1 + 2ec)3 , (13d)

k̇c=−(|ū|++ w |ū|−+α |ėc|) kc+ n0k0 |ū|+ , (13e)

τ̇c=−(|ū|++ w |ū|−+α |ėc|) τc+ n0σ0 |ū|++kcėc, (13f)

−V̇ = Q = q(Pv, Par , Pat ), (13g)

C p Ṗar + (Par − Pd)/Rp = Q, (13h)

Cd Ṗd + (Pd − Par )/Rp = (Pvs − Pd)/Rd . (13i)

3 Reduced formulations

Dimensional reduction is a process by which the dimension
of the spatial variables space in which the model is posed—
3D in our case—is decreased by making adequate assump-
tions, kinematical and otherwise, concerning the dimensions
that are “eliminated” in the reduction process. A prototypical
example of this is provided by structural modeling in mechan-
ics, see e.g. (Bathe 1996; Chapelle and Bathe 2011) and ref-
erences therein. As is well-known in structural mechanics,
indeed, dramatic gains in computational effectiveness can
thus be obtained, together with very limited loss in accuracy
provided the underlying assumptions are adequately justi-
fied. The dimensional reduction process, however, is also
known to be quite intricate when nonlinear constitutive equa-
tions are considered, a difficulty that we must address here. In
our case we will demonstrate two such possible reductions:

– 0D model: assuming spherical symmetry, we will obtain a
0D model, namely without any spatial variable; this model
aims at approximately representing a cardiac cavity—the
left ventricle, typically—but of course as spherical sym-
metry does not hold in actuality, the model will have lim-
ited accuracy and in fact is only meant as a fast simulation
tool exhibiting adequate trends in behavior, in particular
as regards parameter variations.

– 1D model: assuming cylindrical symmetry and uniaxial
loading, we will derive a 1D model; in this case, the
reduced model can be very accurate in specific contexts
where the assumptions are justified, such as experimental
testing with ad hoc muscle samples, as will be considered
in Sect. 4.

Fig. 2 Spherical model of a ventricle

We point out that in the latter case, such a 1D reduced model
is the best-suited candidate for confronting muscle model
simulations to experimental measurements obtained with
cylindrical samples. In fact, a “naive” use of the 3D model
instead—with one finite element across the thickness, say—
would lead to severely erroneous modeling results due to
fundamental incompatibilities between simplified kinemat-
ics and the actual stress state, see (Koiter 1965; Chapelle and
Bathe 2011). Therefore, in such cases strong 3D mesh refine-
ment would be required, whereas just a few 1D elements—
or even a single element when a homogeneous behavior is
considered—can suffice to provide excellent accuracy.

We further emphasize that our reduction strategy is not
a simple application of local 3D constitutive equations in
specific configurations, but incorporates essential modeling
ingredients into complete formulations which retain the char-
acter of continuous media dynamics, compatible in particular
with relevant boundary conditions and with incompressibil-
ity constraints. Moreover, this approach is generic and can
be applied with a wide class of models, indeed.

3.1 0D-formulation

3.1.1 Geometry and kinematics

We define a simplified problem in which the geometry and
the physical behavior are endowed with spherical symmetry
properties. The simplified geometry for a ventricle is given
by a sphere of radius R0 and thickness d0 in the stress-free
reference configuration �0, see Fig. 2. Assuming that the
constitutive properties also exhibit spherical symmetry, the
resulting behavior under an internal pressure loading will
display the same symmetry, and the deformed configuration
is then characterized by modified radius R and thickness
d. At any given point in �0, we denote by (ir , iφ1

, iφ2
) an

orthonormal basis, with ir radial and (iφ1
, iφ2

) orthoradial
defined so that iφ1

= τ 1, i.e. the fiber direction. With the
above assumptions, the displacement field with respect to
the reference configuration is radial, namely given by y =
y ir = (R − R0) ir , and the right Cauchy-Green deformation
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tensor has the special form

C =
⎛
⎝ Crr 0 0

0 C 0
0 0 C

⎞
⎠ , (14)

where
√

C = 1+ y/R0 is the ratio of circumferential lengths
between the reference and deformed configurations. Assum-
ing incompressible behavior, we have det C = 1; hence,

Crr = C−2. Considering a virtual displacement y∗ = y∗ir
with the above-assumed kinematic symmetry, we find in each
orthoradial direction

(dye · y∗)φφ = (1 + y/R0)(y∗/R0). (15)

3.1.2 Stress and equilibrium derivation

Due to the relative thinness of the wall compared to the sphere
radius, classical arguments of shell theory justify that the
radial stress �rr can be neglected compared to the ortho-
radial components (Chapelle and Bathe 2011). Therefore,
in the decomposition (6), the Lagrange multiplier p can be
explicitly inferred from �rr = 0, viz.

p = C−2
(
�

p

)
rr

. (16)

Hence, in (13a), the power of internal forces Pi per unit
volume gives, by using (15),

� : dye · y∗ =
(

1 + y

R0

)
y∗

R0

(
�φ1φ1 + �φ2φ2

)

=
(

1 + y

R0

)
y∗

R0
�sph, (17)

with the combined stress quantity �sph defined by

�sph =
(
�

p

)
φ1φ1

+
(
�

p

)
φ2φ2

+ σ1D − 2C−3
(
�

p

)
rr

.

(18)

Note that no radial term appears in the expression of the
tensor product � : dye · y∗ due to vanishing radial stresses.
The passive stress �

p
is directly inferred from the specific

choice of the energy functionals We and Wv , see (7), and—
with the kinematical assumptions made—the invariants and
their derivatives reduce to⎧⎨
⎩

J1 = 2C + C−2

J2 = C2 + 2C−1

J4 = C⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ J1
∂C = I − 1

3

(
2C + C−2

)
C−1

∂ J2
∂C = (

2C + C−2
)

I − C − 2
3

(
C2 + 2C−1

)
C−1

∂ J4
∂C = iφ1

⊗ iφ1
− 1

3 C C−1

while the viscous contribution gives

∂Wv

∂(ė)
= η

2
Ċ .

Substituting into (18) we obtain after simplifications

�sph = σ1D + 4
(

1 − C−3
) (

∂We

∂ J1
+ C

∂We

∂ J2

)

+2
∂We

∂ J4
+ η Ċ

(
1 + 2C−6

)
,

where σ1D is given by (7). The other terms in (13a) can be
integrated directly; hence, we obtain the following ordinary-
differential equation (ODE) for the displacement y

ρd0 ÿ + d0

R0

(
1 + y

R0

)
�sph = Pv

(
1 + y

R0

)2
. (19)

Remark 1 Our spherical symmetry assumption implicitly
requires an isotropic distribution of the fibers in the orthora-
dial directions. Note that there is no contradiction here with
the fact that each point can be associated with a specific
fiber direction that corresponds to non-isotropic mechani-
cal behavior at that particular point. This simply means that
the local distribution of fibers around that point—e.g. from a
probabilistic point of view—should have no privileged direc-
tion within the orthoradial plane. This is also justified when
assuming that the fiber distribution across the (small) thick-
ness evenly spans all the directions of this plane.

Finally, the valve law (13g) can be expressed as

−V̇ = 4π R2
0

(
1 + y

R0

)2
ẏ = f (Pv, Par , Pat ) ,

so that the initial system (13) finally leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρd0 ÿ + d0
R0

(
1 + y

R0

)
�sph = Pv

(
1 + y

R0

)2

�sph = σ1D + 4
(
1 − C−3

) (
∂We
∂ J1

+ C ∂We
∂ J2

)

+ 2 ∂We
∂ J4

+ 2η Ċ
(
1 − 2C−6

)

σ1D = Es
e1D−ec

(1+2ec)
2

(τc + μėc) = Es
(e1D−ec)(1+2e1D)

(1+2ec)3

k̇c = −(|ū|+ + w |ū|− + α |ėc|) kc + n0k0 |ū|+
τ̇c = −(|ū|+ + w |ū|− + α |ėc|) τc + n0σ0 |ū|+ + kcėc

−V̇ = 4π R2
0

(
1 + y

R0

)2
ẏ = f (Pv, Par , Pat )

C p Ṗar + (Par − Pd)/Rp = Q

Cd Ṗd + (Pd − Par )/Rp = (Psv − Pd)/Rd

Note that more realistic 0D models could be derived fol-
lowing similar strategies albeit with more complex geometric
descriptors and kinematical assumptions, see e.g. (Lumens
et al. 2009), possibly leading to larger systems of ODEs.
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Fig. 3 Cylindrical model of a cardiac muscle sample

3.2 1D-formulation

3.2.1 Geometry and kinematics

This one-dimensional model aims at reproducing the behav-
ior of an elongated structure made of myocardium, such
as isolated muscle fibers, or even single myocytes, under
uniaxial traction. As a simplified geometry we consider a
circular cylinder of radius R0 and length L0 in the refer-
ence configuration �0, with corresponding values R and L
in the deformed configuration, see Fig. 3, and we assume
that material properties are accordingly endowed with cylin-
drical symmetry—namely, transverse isotropy—hence, the
whole behavior has this same symmetry. As an orthonor-
mal basis we use a first vector i x oriented along the fiber—
i.e. τ 1 = i x —and we define two arbitrary equivalent direc-
tions (ir1

, ir2
) in the cross-section. An external force Ftip is

applied at the end of the sample along the i x -direction, and
we seek the resulting longitudinal displacement y(x) at each
point of the sample. Due to the incompressibility condition,
the Cauchy-Green tensor takes the special form

C =
⎛
⎜⎝

C 0 0

0 C− 1
2 0

0 0 C− 1
2

⎞
⎟⎠ ,

where
√

C = 1 + y′(x) is now the length ratio in the i x -
direction. Therefore in the longitudinal direction we have(

dye · y∗)
xx

= (
1 + y′) (y∗)′,

for a virtual displacement field y∗(x) = y∗(x) i x .

3.2.2 Stress and equilibrium derivation

Considering the cylindrical symmetry and the uniaxial load-
ing condition, it is easily seen that the radial stresses �rr

identically vanish in this case. Like in the 0D model reduc-
tion, this allows to compute the Lagrange multiplier p, viz.

p = C− 1
2

(
�

p

)
rr

. (20)

The power of internal forces then reduces to

� : dye · y∗ = �xx
(
1 + y′) (y∗)′,

with the axial stress given by

�xx = σ1D +
(
�

p

)
xx

− C− 3
2

(
�

p

)
rr

, (21)

with e = e1D = (C − 1)/2. In this case, we have for the
hyperelastic part⎧⎪⎨
⎪⎩

J1 = C + 2C− 1
2

J2 = 2C
1
2 + C−1

J4 = C

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ J1
∂C = 1 − 1

3

(
C + 2C− 1

2

)
C−1

∂ J2
∂C =

(
C + 2C− 1

2

)
I − C − 2

3

(
2C

1
2 + C−1

)
C−1

∂ J4
∂C = i x ⊗ i x − 1

3 C C−1

The derivative of the viscous pseudo-potential gives

∂Wv

∂ ė
= η

2
Ċ .

Then we can rewrite (21) as

�xx = σ1D + 2
(

1 − C− 3
2

) (
∂We

∂ J1
+ C− 1

2
∂We

∂ J2

)

+2
∂We

∂ J4
+ η

2
Ċ

(
1 + 1

2
C− 9

4

)
,

and finally we can integrate over each cross-section in (13a),
which yields
∫ L0

0

[
ρ ÿ y∗ + �xx

(
1 + y′) (y∗)′

]
dx = Ftip

A0
y∗(L0),

with A0 = π R2
0. As Ftip is assumed to be prescribed here,

we are eventually left with the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ L0
0

[
ρ ÿ y∗+ �xx

(
1 + y′) (y∗)′

]
dx = Ftip

A0
y∗(L0), ∀y∗∈V

�xx = σ1D + 2
(

1 − C− 3
2

) (
∂We
∂ J1

+ C− 1
2 ∂We

∂ J2

)

+ 2 ∂We
∂ J4

+ η
2 Ċ

(
1 + C− 9

4

)

σ1D = Es
e1D−ec

(1+2ec)
2

(τc + μėc) = Es
(e1D−ec)(1+2e1D)

(1+2ec)3

k̇c = −(|ū|+ + w |ū|− + α |ėc|) kc + n0k0 |ū|+
τ̇c = −(|ū|+ + w |ū|− + α |ėc|) τc + n0σ0 |ū|+ + kcėc

Note that—when integrating by parts in the variational
formulation—we can derive the equivalent strong form of
the mechanical equilibrium, namely,

ρ ÿ − [
�xx

(
1 + y′)]′ = 0, (22a)

�xx (L0)(1 + y′(L0)) = Ftip

A0
. (22b)
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which represents the counterpart of Eqs. (8a), (8b).

Remark 2 Cylindrical symmetry is a rather strong assump-
tion, but if we only assume axisymmetry together with “small
thickness”, classical structural mechanics arguments also
lead to vanishing radial stresses; hence, a very similar deriva-
tion can be performed and the resulting 1D weak form simply
reads

L0∫

0

A(x)
[
ρ ÿ y∗ + �xx

(
1 + y′) (y∗)′

]
dx = Ftip y∗(L0),

with a non-constant cross-section area parameter A(x).

4 Results

4.1 Application of the 1D model

We illustrate the use of the above-derived 1D model to rep-
resent the behavior of an isolated papillary muscle sample in
experimental conditions designed to mimic a cardiac cycle
(Sonnenblick 1962; Lecarpentier et al. 1979). This experi-
mental assessment will concurrently serve the purposes of
parameter calibration and model validation, including fine
features such as length-dependence effects. We will then
demonstrate how the corresponding calibration can be used
in combination with our dimensional reduction strategy to
set up a 0D model of cardiac contraction.

4.1.1 Experimental data

We start by briefly describing our experimental protocol
before considering the calibration of our 1D-model, see
(Claes and Brutsaert 1971; Brutsaert and Claes 1974; Clerck
et al. 1977; Lecarpentier et al. 1979) for a more detailed
description. Experiments were performed on a papillary mus-
cle dissected from the left ventricle of an adult rat. The sample
length at which the maximum active force is generated (Lmax)
is approximately 5 mm, and the cross-section is about 1 mm2.
As depicted in Fig. 4, the sample is mounted vertically in a
chamber and attached at one end, while the other end is con-
nected to an electronically controlled traction device (Brut-
saert and Claes 1974). The displacement of the tip is recorded
by a photodiode detector. The chamber is filled with Krebs-
Ringer’s solution maintained at a temperature of 29◦C. The
muscle is stimulated via two platinum electrodes arranged
longitudinally around the sample, using rectangular pulses
at the rate of 12 min−1, each pulse lasting 5 ms.

In the experimental protocol, the sample in passive state
is first stretched to a length L p associated with a preload
Fp, see Fig. 4a. The muscle is then electrically activated by
the above-described pulse. The initial extension, however, is

(a) (b)

(c) (d)

Fig. 4 Experimental protocol for papillary muscle. (a) Passive stretch-
ing by preload Fp; (b) isometric contraction; (c) isotonic contraction
and relaxation against prescribed afterload Fa ; (d) isometric relaxation

maintained by the control device as long as the measured tip
force Ftip is less than a prescribed afterload value Fa , i.e. this
corresponds to isometric contraction, see Fig. 4b. When this
force threshold Fa is reached, the muscle is allowed to shorten
at fixed tension Ftip = Fa , namely in isotonic condition, see
Fig. 4c. Isotonic condition still holds when relaxation occurs,
until the sample recovers its initial extension, after which
stage further displacements are again prevented, namely in
isometric relaxation, see Fig. 4d. Note that this sequence is
partly non-physiological, as relaxation starts with an isotonic
phase, instead of isovolumic in the cardiac cycle.

Two data sets corresponding to two different preloads are
available. The largest preload is chosen in order to induce
the highest possible active force in the muscle, i.e. L p then
corresponds to the so-called Lmax for which the length-
dependence effect is maximum. For each given preload, the
experiment is repeated for several increasing values of the
afterload, until fully isometric conditions prevail along the
whole cycle. In each such experiment, position and force at
the tip are recorded, providing data as shown in Fig. 5b,c.

4.1.2 Calibration strategy

We here discuss how we can perform numerical simulations
of the 1D-model, and how the model parameters can be cal-
ibrated in a systematic manner based on the experimental
data.

Discretization procedures The 1D model proposed in
Sect. 3.2 is discretized time- and space-wise for numerical
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simulations. Time discretization is performed using a mid-
point time scheme for the displacements and velocities y and
ẏ, and the specific energy-preserving time scheme proposed
in (Chapelle et al. 2012) for the internal variables (ec, kc, τc).
For spatial discretization, we use P1-Lagrange finite elements
for the displacements, and (ec, kc, τc) are computed at the
numerical quadrature points, and condensed out of the linear
system being solved at each Newton iteration—within each
time step (Sainte-Marie et al. 2006). Assuming that the state
of the fiber is approximately homogeneous along the length,
we will use a single linear finite element in the simulations.
Therefore, the strains and passive stresses will be indepen-
dent of the position x and so will be the active stress since we
only use space-homogeneous activation patterns in adequacy
with the experimental protocol.

Reference configuration In order to compute deformation
indices as used in the model constitutive equation, we need
to define a stress-free reference configuration for the sample.
This is very delicate due to the extreme compliance of the
passive behavior around the reference configuration, and in
general, this configuration is not properly characterized in
such conditions; hence, experimental deformations are usu-
ally represented with respect to Lmax rather than the refer-
ence length L0. We determined that a reference length set
to L0 = 0.55 Lmax allows for consistent adjustment of the
passive law based on initial extensions induced by the two
preloads. This corresponds to a total Green-Lagrange strain
at Lmax of e ≈ 1.1, a rather large value. At the sarcomere
level, indeed, it is known that the reference length—the so-
called slack length—is about ∼1.85µm, whereas the maxi-
mum active stress is measured at sarcomere length ∼ 2.3µm,
i.e. a strain at Lmax of e ≈ 0.3. This discrepancy may be
explained by the presence of a compliant series element due
to damaged tissue near the clamps, as already reported in
(Krueger and Pollack 1975; ter Keurs et al. 1980). In order to
discriminate the effect of such a component, hence to iden-
tify its constitutive behavior, we would need simultaneous
measurements of sarcomere extensions, which is out of the
scope of the present study. Therefore, we will pursue our
calibration with the above-presented model alone.

Calibration of the passive behavior law We calibrate the
passive behavior based on the maximum extension points
shown in Fig. 5a for the two different preload levels (see
blue and red squares). The hyperelastic potential We is taken
in the form

We = C0 exp
(

C1(J1 − 3)2
)

+ C2 exp
(

C3(J4 − 1)2
)

,

inspired from (Holzapfel and Ogden 2009), and the parame-
ters C0, C1, C2 and C3 are chosen to match the experimental
control points, see solid line in Fig. 5a. We gather the cali-

(a)

(b) (c)

Fig. 5 Calibration of passive and active behavior based on passive
extension and maximum active shortening data (a) for high/intermediate
values of the preload in red/blue, extracted from typical dynamical mea-
surements for tip forces (b) and strains (c); Note example measurement
points marked in (b),(c) are reproduced in (a)

Table 1 Calibrated model parameters (in SI units)

1D-model
C0, C2 1.9 103 C1, C3 1.1 10−1

σ0 1.24 104 k0 104

μ, η 70 Es 3. 107

α 1.5 αr 0.12

A0 10−6 ρ 103

0D-model (when different from 1D-model)

R0 2.36 10−2 d0 1.42 10−2

σ0 1.24 105 k0 105

Rp 8. 106 C p 2.5 10−9

Rd 108 Cd 1. 10−8

Kat 9. 10−6 K p 5. 10−10

Kar 1.3 10−5 Psv 103

brated parameters in Table 1. Note that with the above type
of hyperelastic potential expression, it is not possible to dis-
criminate the parameter values from the two separate expo-
nential terms based on uniaxial type measurements alone.
Therefore, we perform this calibration while enforcing the
constraint C0 = C2 and C1 = C3.

123



Dimensional reductions of a cardiac model for effective validation and calibration 907

(a) (b)

Fig. 6 Influence of Es on the static calibration: blue solid line for
infinite Es ; red dashed for Es = 3.105 Pa; green dot-dashed for Es =
7.104 Pa

Calibration of the length-dependence effect The next step
consists in the calibration of the length-dependent effect, rep-
resented by the function n0(ec). In Fig. 5a, the filled cir-
cles represent the state of the system at maximum shorten-
ing under isotonic conditions, namely, the points labeled “3”
in the sub-figures (b) and (c). In the context of the heart
function, this relation is termed the End-Systolic Pressure–
Volume Relation (ESPVR). Here, we denote by esys and esys

c

the corresponding “end-systolic” values of e and ec, respec-
tively. This state is characterized by the mechanical equi-
librium between the active stress, the passive stress and the
afterload Fa expressed by combining (21) and (22b), which
yields

σ1D = Ftip

C
1
2 A0

− �p, �p =
(
�

p

)
xx

+ C− 3
2

(
�

p

)
rr

,(23)

where �p denotes the passive part of the second Piola-
Kirchhoff stress—here 1D, recall (21)—which can be
directly inferred from the strain esys. Hence, (23) gives σ1D

for each “end-systolic” point. Since σ1D also satisfies (13c),
we can compute the internal strain esys

c . In the mechanical
equilibrium considered, τc + μėc = n0(ec)σ0; hence, Eq.(7)
can be rewritten as

n0(e
sys
c )σ0 = σ1D

1 + 2esys

1 + 2esys
c

,

which allows to compute the quantity n0(e
sys
c )σ0 for any

given afterload of associated total strain esys. The constant
σ0 is inferred from the experimental data at large preload
when the device adjusted so that the entire process is isomet-
ric (i.e. afterload as large as needed), and using the modeling
assumption that n0(ec) = 1, namely the maximum value for
this state. Finally, the function n0 is then calibrated from all
other experimental points using a piecewise linear form, see
Fig. 6 where we display this function calibrated for several
choices of the series elastic modulus Es .

Influence of finite Es coefficient The effect of having a
“finite” value for the series elasticity modulus Es—namely,

a value comparable to σ0—is that the total strain esys dif-
fers from the strain of the active component esys

c . In Fig. 6,
we illustrate this effect by showing the calibrated length-
dependent function n0(e

sys
c ) and the relation esys vs. esys

c

for different values of Es , while keeping the same defin-
ition of the reference configuration. We can see that the
ascending part of the function n0(e

sys
c ) becomes steeper as

Es decreases, which implies that the course of ec during con-
traction becomes larger for a given afterload, since we start
from ec = e with the extension of the preload. Nevertheless,
the calibration of Es would require specific data based on
measurements of the sarcomere extensions for various con-
trolled levels of active forces, see e.g. (Linari et al. 2004,
2007, 2009; Piazzesi et al. 2007). Since we do not have such
data at hand in our case, we use a large value of Es in the rest
of this study.

Calibration of activation The kinetics of contraction
strongly depend on the activation function ū via u, see (4).
As stated in the model presentation, this function represents a
variable reaction rate and in fact summarizes various complex
chemical mechanisms that occur during depolarization and
repolarization (Chapelle et al. 2012). In practice, we essen-
tially need to prescribe in u two nominal values characteris-
tic of the time constants of active stress buildup and decay
during these two stages, respectively—with a negative sign
for repolarization by construction of our active law—with
some transients ensuring continuous evolution throughout.
This leads to a natural description of the function as piece-
wise linear with two plateaus associated with the depolar-
ization and repolarization rates. Note that of course alterna-
tive parametrizations of similar activation functions could be
considered, e.g. with smoother exponential functions, albeit
limited impact is to be expected in view of the above consid-
erations on the activation function behavior. We then adjust
this activation function so that the isometric stress curve cor-
responds to experimental measurements, see Fig. 7 for the
calibrated function. Note that, in particular, the point of max-
imum tip force must correspond to u = 0, and subsequent
negative values of u induce an extension via a decrease of the
active force. Moreover, the minimum (negative) value of u is

(a) (b)

Fig. 7 (a) Length-dependence function n0 (solid line) and load-
dependent relaxation m0 (red dashed line); (b) activation function
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(a) (b)

(c) (d)

Fig. 8 Strain (top) and stress (bottom) response of a single papillary
muscle for two different preloads. Dashed lines, experimental mea-
surements; solid lines, simulations. Curves with the same color in each
column correspond to the same afterload value

obtained from the slope of the stress relaxation curve in com-
plete isometry for the large preload, choosing m0(ec) = 1 in
this case. We point out that the maximum (positive) value of
ū around 30 s−1—the inverse of a time constant—is compat-
ible with typical ATP turnover time scales (Lymn and Taylor
1971; Linari et al. 2010). We further emphasize that the acti-
vation function ū is calibrated once and for all with a single
isometric force measurement and then used as is in all subse-
quent simulations with varying preloads and afterloads. This
activation function is thus representative of the electric state
prevailing in the experimental setup, which is quite differ-
ent from what occurs in rat hearts in vivo, in terms of time
constants, in particular (heart rate at rest is about 300 bpm).

Load-dependent relaxation Once the activation is cali-
brated, we adjust the parameters controlling the load depen-
dence of relaxation, namely, via the function m0(ec), the time
constant αr , and the parameter α controlling the velocity-
dependent destruction of bridges. We point out that the iso-
tonic extension phase necessarily corresponds to the late part
of the plateau on the force curves, plateau which ends at the
precise moment when the muscle tip re-establishes the con-
tact with the support. Therefore, m0 and α together govern the
duration of isotonic extension depending on the afterload—
via m0—and on the preload due to α, since extension will be
larger to reach the support corresponding to a large preload,
see Fig. 8. After that, in isometric relaxation the force relax-
ation rate is directly governed by m0 alone. We set αr to a
rather large value, see Table 1, hence m0 essentially depends

Fig. 9 Force-velocity plot from experimental data and numerical
simulations—Low/high preload in blue/red

on the end-systolic strain during the whole relaxation, and
then the above considerations allow to calibrate m0 and α

based on the data corresponding to different preloads and
afterloads.

4.1.3 1D simulation results

Figure 8 shows the dynamics of strain e and tension Ftip/A0,
as simulated by the 1D-model (solid lines) and compared
to experimental data for the two different preloads (dashed
lines), while Fig. 9 shows the Hill-type force–velocity curves
obtained by taking the maximum velocity in the isotonic con-
traction phase.

We see that our 1D-model is able to most adequately repro-
duce the kinetics of the muscle sample response for the two
preload values with the same set of parameters and the same
activation function. This can be seen in the rise of the tensile
force, in particular, the path of which mostly depends on the
preload, which is well accounted for by the length-dependent
function n0 that induces a lower steady-state active force
value for the smaller preload, and hence a smaller rate of
increase.

Note that the observed small discrepancies in the initial
values of strains—which is more visible for the lowest pre-
load, see Fig. 8b—are the consequence of the large compli-
ance of the passive stress–strain law for small strains, see
Fig. 5a, and small differences in the preload values used in
the tests.

Regarding the force-velocity plot in Fig. 9, although the
simulated points lie on a rather “flat” curve—for each pre-
load value—compared to the theoretical hyperbola predicted
by A.V. Hill (Hill 1938), we find an excellent match with our
corresponding experimental data. In addition, these plots are
consistent with the property of a unique intercept on the zero-
force ordinate, namely the V0 maximum velocity of A.V. Hill,
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of about 6 s−1 here. Note that it is known that subtle tuning
of the device damping would be required to obtain more
convex force-velocity curves (Brutsaert and Claes 1974),
notwithstanding that departures from convexity have also
been precisely characterized in experiments performed on
myocardium (Clerck et al. 1977; Daniels et al. 1984; de
Tombe and ter Keurs 1990). Nevertheless, this experimen-
tal tuning was not performed here, hence is not reproduced
in the calibrated simulations either.

Our 1D-model also adequately represents the load-
dependent relaxation, with the stress relaxation rate governed
by m0 and α as explained above.

4.2 Application of the 0D-model

Our objective in this section is to investigate to what extent
the above-derived simple 0D model can reproduce, at least
in an approximate manner, some important features of car-
diac physiology. In this context, only qualitative or semi-
quantitative correspondence is to be expected, and we will
focus on physiological indicators representing the behavior
of a healthy human heart. As regards parameter calibration,
we will use the prior calibration of the 1D model as a starting
point, albeit some recalibration of common parameters—as
limited as possible, ideally—as well as further calibration of
new parameters is required, due to differences between the
two modeling contexts.

4.2.1 Calibration strategy

The atrial pressure is prescribed as a given function of
time, calibrated using physiological values, in correspon-
dence with the passive behavior calibration. We aim at obtain-
ing a maximum volume around 120 mL including about 20 %
acquired during atrial contraction, and with an inflow twice as
high—in terms of maximum volume increase rate—during
the first stage of ventricular filling than during atrial contrac-
tion (Guyton and Hall 2011). We check that these specifica-
tions can be fulfilled with realistic values of the atrial pressure
while leaving the passive behavior parameters as calibrated
with the 1D model and data.

The active behavior is recalibrated in order to obtain phys-
iological end-systolic states, namely values of pressure and
volume—with adequate ejection fraction, in particular—and
the slope of the locus of these end-systolic states in the
pressure–volume diagram for varying afterload levels, i.e. the
above-discussed ESPVR. To that purpose, we only modify
the contractility parameter σ0, which is taken about one order
of magnitude larger in the 0D case. We discuss some pos-
sible explanations for this difference in calibration below.
We emphasize that the activation function u—including the
relaxation modeling components in (3)–(4)—and the length-
dependent function n0 are left unchanged.

(a) (b)

(c) (d)

Fig. 10 Cardiac cycle obtained with the 0D-model: (a) Left ventricu-
lar volume; (b) cardiac outflow (positive during systole); (c) ventricular
(solid), proximal aortic (red, dashed), and atrial (green, dotted) pres-
sures; (d) pressure–volume cycle

In addition, we here need to calibrate the circulation
model. First, the distal circulation parameters, Rd and Cd , are
chosen so that the characteristic time of the evolution of the
distal pressure Pd—with the time constant given by RdCd—
is compatible with the cycle duration, i.e. 0.8 s here, while
Cd alone governs the distal pressure increase. Likewise, the
proximal parameters Rp and C p are adjusted so that the asso-
ciated time constant is about 10−2 s and the proximal resis-
tance Rp conditions the peak ventricular pressure. The para-
meters of the valve law are chosen so that the pressure–flow
relationship (12) is as close as possible to the ideal behavior
without leading to numerical difficulties (Sainte-Marie et al.
2006).

The final values of the calibrated parameters are listed in
Table 1.

4.2.2 Simulation results with the 0D-model

Typical cardiac cycle In Fig. 10, we plot the results obtained
with the 0D-model. We find that our 0D-model produces a
realistic contraction cycle representative of a normal human
left ventricle, with—in particular—a physiological ejection
fraction of about 60 %, and the maximum filling inflows (neg-
ative peaks in Fig. 10b) in the above-discussed proportion.
As this simulation was obtained with a straightforward recal-
ibration of the model validated using the papillary muscle
experiments, this confirms the rather direct correspondence
between local properties and a macroscopic organ model.

ESPVR assessment The ESPRV is one of the most fre-
quently used indicators in normal and pathological cardiac
physiology to assess the cardiac condition. This relation has
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Fig. 11 Comparison between physiological loading (black, dashed)
with ideal constant afterload condition (red, dotted); theoretical ESPVR
in blue and passive behavior in dot-dashed green

been shown to be independent of the preload and after-
load (Gordon et al. 1966). We can obtain the correspond-
ing pressure–volume curve by considering the steady state
of (19), namely

Pv = d0

R0

(
1 + y

R0

)−1

�sph, (24)

for different values of the volume, as visualized by the blue
curve in Fig. 11. Available experimental data usually lead
to the ESPVR being well-approximated by a straight line,
as is also seen in our figure in the physiological volume
range, even if different shapes are also sometimes reported
(Takeuchi et al. 1991; Senzaki et al. 1996). Regarding the
characterization of the ESPVR by Eq.(24), we point out that,
for physiological values of the end-systolic volumes, the
corresponding strains are associated with very low passive
stresses in this relation; hence, �sph is then essentially the
result of the active stress, itself governed by the n0 function.
Therefore, we find that the ESPVR curve is a rather direct
image—at the global organ level—of the length-dependence
mechanism occurring at the sarcomere level. Note also that
the major features of the cardiac function as a biomechani-
cal pump are then essentially conditioned by the two curves
associated with passive behavior and ESPVR, as seen in the
figure.

As reported in earlier works, the end-systolic points lie
on the ESPVR curve regardless of the ejection path, namely
independently of the external circulation system state (Suga
et al. 1973). As an illustration of this phenomenon, we repro-
duce the constant afterload experiments of (Suga et al. 1973)
by changing the parameters of the distal components of the
Windkessel model, and we see in Fig. 11 that the new end-
systolic points also lie on the ESPVR curve, indeed.

Fig. 12 ESPVR with different contractility values; symbols show the
end-systolic points obtained from numerical simulations, while solid
lines give the theoretical ESPVR relations; dotted lines show different
pressure–volume cycles under constant afterload for various preload and
afterload conditions; solid black curve represents the passive behavior

In Fig. 12, we show the ESPVR variations induced by
changes in the contractility parameter, namely, σ0, which
corresponds to varying the inotropy. As is observed in car-
diac physiology (Suga et al. 1973; Guyton and Hall 2011),
we obtain ESPVR curves of increasing slopes when the con-
tractility increases—proportionally to σ0 in our model—and
with a common intercept on the volume axis, usually denoted
by Vd .

Our results are thus fully compatible with the property that
the ESPVR curve be independent of both preload and after-
load. Preload independence is—of course—directly asso-
ciated with the Frank–Starling mechanism. Moreover, the
ESPVR is in direct relation with the microscopic mechanical
properties and in particular with the length dependence of
the maximum active force represented by our function n0.

Time-varying elastance As in (Suga et al. 1973), we define
the instantaneous ventricular elastance E as

E(t) = Pv(t)

V (t) − Vd
,

and we represent in Fig. 13 the evolution of this quantity in
time under constant afterload. More specifically, we consider
two different contractility values, with two different afterload
levels for each of them. We see very little difference, for
each contractility value, between the curves obtained for the
two different afterload levels, as experimentally evidenced in
(Suga et al. 1973; Iribe et al. 2006). Following the classical
approach, we then normalize the elastance by its maximum
value in time—for each simulation separately. When plotting
all these curves together in Fig. 13c, we obtain very similar
kinetics between the various curves despite the variations
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(a) (b)

(c)

Fig. 13 Elastance recorded for two different values of contractility
σ0 = 1.2 105 Pa (a) and σ0 = 1.8 105 Pa (b); (c) Rescaled elastance
curves for all contractility and afterload values

of contractility and afterload, as experimentally observed in
(Suga et al. 1973), indeed.

5 Discussion

We have demonstrated how dimensional reductions of a 3D
model can be performed in a consistent manner as regards
the passive and active components of the 3D behavior. This
approach has generic value, as we assumed no particular
simplifying property of these constitutive ingredients in the
process, and the main technicalities then reside in the elim-
ination of the hydrostatic pressure based on the stress state
properties, and the derivation of the strain invariants special-
ized to the kinematics at hand. In this respect, this extends
some previous approaches in which similar reductions were
performed under specific assumptions concerning the pas-
sive constitutive behavior, as in (Arts et al. 2003) where the
only passive contribution in the directions transverse to mus-
cle fibers is that of hydrostatic pressure, and likewise with
the passive law used in (Hunter et al. 1998) when applied in
the uniaxial tension case.

As mentioned when describing the simulations of the 1D
model, the main limitation of this preliminary validation trial
with experimental data concerns the range of strains found
in correspondence with the data, clearly unrealistic at the
sarcomere level. We believe that this is largely due to pas-
sive tissue in a rather large vicinity of the clips—as e.g. pre-
cisely evidenced in (Krueger and Pollack 1975; ter Keurs
et al. 1980)—and introducing some additional series-type
contribution in the overall constitutive behavior. Character-
izing this distinct contribution would require more detailed
measurements, out of the scope of this paper. Therefore, our
validation can only be considered as “semi-quantitative,” and
the elucidation of the additional series contribution is bound
to lead to a rescaling of the strain scale in the actual pas-
sive constitutive law of the myocardium and likewise for the
n0 function representing the length dependence. Neverthe-
less, our trials have shown that this function is adequate to
represent the systolic load-dependent effects.

As regards the difference in calibration between the two
reduced models, we recall that we only changed the contrac-
tility parameter, within all the physical parameters shared by
the two models. It should be noted that in the 1D model, the
contractility parameter corresponds to the contractility of a
rat papillary muscle in experimental conditions, whereas in
the 0D model, the required contractility is that of a human
heart wall in physiological conditions. First of all, we do
not expect the observed difference to arise from inter-species
variability, since a rat heart is known to operate in very similar
ranges of stresses and strains as the human heart, see (Pacher
et al. 2008). Hence, the discrepancy may be attributed to
functional changes in ex-vivo experimental conditions, due
to, e.g., some kind of myocardial stunning (Kloner and Jen-
nings 2001) and to a perfusion state different from physiolog-
ical conditions since we recall that in the experimental setup
perfusion is provided by the solution in which the sample
is immersed. In addition, there may be differences in active
contents between papillary muscles and wall tissue. Such dif-
ferences may be experimentally assessed by measurements
pertaining to myosin contents as performed in (Fitzsimons
et al. 1998), but we do not know of any reference provid-
ing such comparative measurements for both the papillary
muscles and the wall tissue in the same organ. At any rate,
in our case the maximum measured active stress—directly
related to our contractility parameter—appears to be within
the range of other such experimentally measured values avail-
able in the literature in similar protocols, see in particular a
survey in (Niederer et al. 2006). In the latter study, a quite
large variability—by a factor 5, typically, between largest and
lowest values—is revealed in such measured data, and our
calibrated value is in fact in the lowest part of the experimen-
tal range. Nevertheless, effective contractility being clearly
proportional to the density of recruitable active elements, it
is natural to take into account this density and the deficit
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thereof—whether it may result from structural factors or
experimental conditions—to directly scale the contractility
parameter of the model to account for such different condi-
tions. The fact that only this parameter needs to be modified
in our 0D calibration is in line with this conjecture concerning
possible variations in active contents, indeed.

Through the use of our two reduced-dimensional model-
ing strategies, we have shown that our cardiac tissue model is
fully compatible with the ESPVR concept. Our findings also
confirm the direct relation of the ESPVR with the sarcomere
scale properties of length-dependent maximum active force,
represented in our case by the function n0 that has a direct
image in the pressure–volume space at the organ level as sub-
stantiated by our 0D-model. This could be further exploited in
many ways. For instance, we could test the effects of drugs on
papillary muscles to emulate some cardiac diseases, accord-
ingly recalibrate (or estimate) the n0-function and all consti-
tutive parameters based on the 1D-model, and then use the
0D-model to assess the impact on a cardiac cycle.

The ESPVR is frequently discussed in relation with the
Frank–Starling effect, namely the increase in stroke volume
for increasing preloads. Here, we see that in our model, the
two properties are—in essence—accurately represented by
the same n0 function, indeed. In addition, in our model, we
see that this function has a direct impact on the rate of active
force increase during contraction. This suggests an additional
interpretation of the Frank–Starling effect, namely that it pri-
marily works by increasing this active force build-up rate to
allow a larger strain variation in the same time interval—
hence, an increased contraction velocity—for increased end-
diastolic strains associated with a higher preload. This is also
fully consistent with the Hill-type force–velocity relations,
of course.

Concerning the diastolic load-dependent phenomena, we
have proposed a simple modeling ingredient with a variable
following a first-order dynamics that is used to weigh the
activation function, to account for the variations of unbind-
ing kinetics due to steric effects in the sarcomere. We have
found that this—combined with the strain rate unbinding
term associated with the parameter α—allows to reproduce
quite accurately the effects measured in the experimental
data. However, we do not claim that the same level of val-
idation has been achieved here as for systolic effects, since
diastolic effects are much more subtle to characterize based
on experimental data. Furthermore, such effects intervene
in a different manner in actual cardiac physiology, in which
diastole starts with an isovolumic phase, as opposed to iso-
metric in the experimental protocol—recall Fig. 5a where
only the two orthogonal segments 1-2-3 are explored in both
directions instead of a full cycle. This means that detailed
measurements would also be required to investigate this
issue, and possibly to reconcile these effects with the vari-
able elastance theory, or to identify in which specific context

the effects in question may represent a departure from this
theory.

6 Conclusion

We have proposed a generic approach for deriving reduced-
dimensional versions of a 3D heart model. The 1D model
was intended to accurately represent the behavior of elon-
gated structures such as muscle samples or myocytes, and we
achieved a detailed validation of our model based on exper-
imental data produced with papillary muscles, in particu-
lar concerning length-dependence effects in both systole and
diastole. The 0D model was designed as an approximate rep-
resentation of a cardiac cavity—typically the left ventricle—
and we have obtained some most adequate pressure–volume
indicators when running simulations of this model with the
parameter values pre-calibrated with the 1D model results,
including when assessing the ESPVR and varying elastance
properties. The 0D model can also readily be used as a cali-
bration tool for detailed 3D model simulations, or as a bound-
ary condition to an arterial model, whether to prescribe the
inflow, or both fluid and solid input conditions when appro-
priate, see (Moireau et al. 2012).

Moreover, our approach of devising several models within
a single hierarchical family sheds some new light on the rela-
tions between the phenomena observed at different scales
and in different contexts. As could be expected, we find a
direct translation of the length-dependence effect modeled
at the sarcomere level and the load-dependent contraction
of a papillary muscle modeled in our 1D framework. Still
more interestingly, considering concurrently the 1D and 0D
models allows to directly translate at the organ level some
findings obtained at the local level of the sample, and in par-
ticular, we have found that the ESPVR curve is a straightfor-
ward image in the cardiac function of the length-dependence
effects observed at the lower scales. More generally, this
modeling framework could be used as a tool for predicting the
in vivo manifestations in the heart of phenomena observed—
or induced—in vitro in various types of experimental testing,
such as for assessing the effects of drugs.

Further perspectives include detailed assessments of a
series elasticity contribution in the myocardium constitutive
behavior, based on specific data to be obtained. Moreover,
estimation methodologies—also known as data assimilation,
see (Chapelle et al. 2013) and references therein—can be
expected to be particularly effective in reduced-dimensional
models to automatically identify model parameters. Indeed,
estimation typically leads to very intensive computations in
3D models, and convergence in the estimation process is
dependent on the parameter values used as starting points;
hence, a preliminary stage of estimation based on a reduced
model would be of substantial potential benefit.
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