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Abstract The theory of intra-surface viscous flow on lipid
bilayers is developed by combining the equations for flow on
a curved surface with those that describe the elastic resistance
of the bilayer to flexure. The model is derived directly from
balance laws and augments an alternative formulation based
on a variational principle. Conditions holding along an edge
of the membrane are emphasized, and the coupling between
flow and membrane shape is simulated numerically.

Keywords Lipid bilayers · Viscous membranes ·
Surface flow · Bending elasticity

1 Introduction

A formulation of the nonlinear mechanics of lipid mem-
branes, incorporating intra-membrane viscous flow and
accounting for viscous interaction with bulk liquids, has
recently been developed in Arroyo and DeSimone (2009).
There, it is demonstrated that intra-membrane viscosity has
a significant effect on the dynamics of the system vis a vis
bulk viscosity at biologically relevant length scales, contrary
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to earlier claims made in the literature (Seifert 1997). This
finding furnishes impetus for the general theory of surface
flow on lipid membranes.

The work reported in Arroyo and DeSimone (2009) relies
on a variational principle combined with exterior differential
calculus. While such a framework is entirely satisfactory
from a theoretical point of view, we believe that understand-
ing of the subject would be promoted by the availability of an
alternative treatment-based a priori on balance laws and asso-
ciated constitutive equations. Indeed, the authors of Arroyo
and DeSimone (2009) allude to the possibility of developing
the theory from the balance laws and boundary conditions
of the elastic model (Steigmann 1999a), suitably extended
to account for the effects of intra-membrane viscosity. They
refer to such a development as a ‘conceptually interesting
exercise’ which, however, lay beyond the scope of their
investigation. Our purpose in the present work is precisely
to provide such a development. Thus, while the variational
approach has intrinsic value, here we adopt Scriven’s (1960)
approach to the theory of surface flow, which was devel-
oped entirely on the basis of balance laws and constitutive
equations. In this way, the methods of the older theory are
retained, allowing us to distinguish more sharply the non-
standard effects associated with the bending stiffness of lipid
membranes.

Moreover, because differential forms are not widely used
in continuum mechanics, we work in the setting of tensor
analysis on surfaces. Our view is that this framework, which
is more in keeping with the methods underlying conventional
bulk-fluid mechanics, is adequate for formulating the general
theory and addressing boundary-value problems.

Section 2 contains a complete summary of the con-
ventional elastic theory and boundary conditions arising
from a treatment based directly on balance laws rather
than variational principles (Steigmann 1999a). These of
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course are equivalent to the model derived from varia-
tional considerations (Steigmann et al. 2003; Agrawal and
Steigmann 2009a,b). In the present work, the notions of area
incompressibility and uniformity of the material properties
are developed in detail, and the adjustments to the theory
required to accommodate non-uniform material response are
indicated. In Sect. 3, we focus on uniform membranes and
introduce intra-membrane viscosity via a well-established
interfacial flow model (Scriven 1960; Aris 1989). There we
also develop the adjustments to the equilibrium and bound-
ary conditions required by the inclusion of intra-membrane
viscosity. Section 4 is concerned with the development of
the equations of the model in the Monge parametrization,
as a prerequisite to the numerical analysis of some exam-
ple problems. For simplicity, we do not include viscous bulk
interactions and thus impose a uniformly distributed pressure
on the lipid membrane; that is, we effectively assume the bulk
liquid to be inviscid and thus that it transmits a uniform pres-
sure to the membrane in the absence of inertial effects. In
light of the work reported in Arroyo and DeSimone (2009),
this simplification may be regarded as realistic at sufficiently
small length scales. In any case, viscous interaction with the
bulk may be taken into account in a straightforward manner
and so is not considered here (see for example Secomb and
Skalak 1982; Arroyo and DeSimone 2009).

2 Inviscid membranes

In this section, we present a thorough overview of the con-
ventional purely elastic theory of lipid membranes based on
a free energy per unit mass. Our purpose is to establish a
framework that is sufficiently general to subsume the cur-
rent literature and to allow for straightforward extension to
accommodate surface flow and additional effects such as dif-
fusion (Agrawal and Steigmann 2011). The present work is
limited to the consideration of elastic response combined
with surface flow. Later, in Sect. 2.7, we connect this for-
mulation to the more commonly used framework based on
a free energy per unit area of the surface occupied by the
membrane in its current configuration.

2.1 Elastic surfaces

Lipid membranes are special elastic surfaces with energy
densities that respond to changes in surface metric and cur-
vature. The equations of motion in the absence of inertia
are simply the equations of mechanical equilibrium. For an
elastic surface, subjected to a net lateral pressure p in the
direction of the local surface unit normal n, these may be
summarized in the compact form (Steigmann 1999a):

Tα;α + pn = 0, (1)

where Tα are the so-called stress vectors and Greek indices
range over {1, 2}. These are proportional to the forces, per
unit length, transmitted across the curves on which the sur-
face coordinates θα are constant. Here the semi-colon refers
to covariant differentiation with respect to the metric aαβ =
aα · aβ,where aα = r,α and commas identify partial deriva-
tives with respect to θα. The aα comprise the natural tangent
basis on the surface induced by the parametrization r(θμ, t)
of the position field. The connection to the unit normal field is
n = a1 × a2/ |a1 × a2| . Here and henceforth, Greek indices
range over {1, 2} and, if repeated, are summed over that range.
We assume familiarity with tensor analysis and curvilinear
coordinate systems. Useful introductions for mechanicians
are given in Sokolnikoff (1964), Kreyzsig (1959).

We denote the membrane surface by ω. The coordinate
system θμ on ω plays a role analogous to that of a fixed-
coordinate system used to parametrize a control volume in the
Eulerian or spatial description of classical fluid mechanics.

The differential operation in (1) is the surface divergence,
given explicitly by

Tα;α = (
√

a)−1(
√

aTα),α, (2)

where a = det(aαβ).The metric is a positive-definite matrix,
with a > 0, and so the divergence is well defined. The metric
(the coefficients of the first fundamental form) is one of the
two basic variables in surface theory; the other is the cur-
vature bαβ (the coefficients of the 2nd fundamental form),
defined by bαβ = n · r,αβ .

This framework encompasses all elastic surfaces for
which the energy density responds to metric and curvature.
For example, if the energy density per unit mass of the surface
is F(aαβ, bαβ), then (Steigmann 1999a)

Tα = Nα + Sαn, (3)

where

Nα= Nβαaβ with Nβα=σβα + bβμMμα, Sα=−Mαβ

;β . (4)

These are given in terms of the energy density by Steigmann
(1999a)

σβα = ρ

(
∂F

∂aαβ
+ ∂F

∂aβα

)

Mβα = 1

2
ρ

(
∂F

∂bαβ
+ ∂F

∂bβα

)
, (5)

where ρ is the surface mass density. Substituting (3) and
(4) into (1), invoking the Gauss and Weingarten equations
(Sokolnikoff 1964) aβ;α = bβαn and n,α = −bβαaβ, where
bαβ = aαλbλβ , and projecting the result onto the tangent and
normal spaces to ω furnishes the three equations

Nβα

;α − Sαbβα = 0, Sα;α + Nβαbβα + p = 0. (6)
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Membrane flow and deformation 835

This setting subsumes classical capillarity theory in which
the energy depends in a special manner on metric alone
(Mβα = 0). It also incorporates the well-known Helfrich
theory (Helfrich 1973; Ou-Yang et al. 1999) of lipid bilayers
and monolayers in which the lipids are of fixed length and
everywhere aligned with the surface normal.

2.2 Edge conditions

Edge conditions may be deduced from a mechanical power
balance (Steigmann 1999b) which is simply the global form
of the equation of motion in which inertia is suppressed. In
the purely elastic theory, this is

d

dt
E = P, (7)

where

P =
∫
ω

pn · uda + Pb (8)

is the power supplied to the membrane, u(θα, t) is the mem-
brane velocity field,

E =
∫
ω

ρFda (9)

is the net film energy and Pb is the power supplied by the
forces and moments acting at the boundary ∂ω. This is
Steigmann (1999a,b)

Pb =
∫
∂ω

(f · u + Mn · u,ν)ds +
∑

fi · ui , (10)

where u,ν is the normal derivative of u on ∂ω with exterior
unit normal ν = ναaα and unit tangent τ = n × ν,

f = Tανα − (Mαβτανβn)′, M = Mαβνανβ (11)

are the distributed force and bending couple on the edge,
(·)′ = d(·)/ds is the arclength derivative on ∂ω in the direc-
tion of τ , and

fi = −Mαβ [τανβ ]i n (12)

is the force exerted at the i th corner of ∂ω if the boundary
is piecewise smooth with a finite number of points where
τ (and hence ν) is discontinuous; here the square bracket
refers to the forward jump as the i th corner is traversed, and
the sum in (10) accounts for all corners. The corner forces
vanish if the boundary is smooth in the sense that its tangent
τ is continuous.

The expression (10) for the power is convenient because u
and u,ν may be specified independently on ∂ω. In particular
(Agrawal and Steigmann 2009a) n · u,ν = −τ ·ω where ω is
the rate of change of the surface orientation; i.e., the rotational

velocity of the unit normal n.This yields Mn · u,ν=−Mτ ·ω
and hence the interpretation of M as a bending couple.

2.3 Lipid membranes

The elastic theory of lipid membranes is based on free-energy
densities of the form F(ρ, H, K ), where

H = 1

2
aαβbαβ, K = 1

2
εαβελμbαλbβμ, (13)

respectively, are the mean and Gaussian curvatures of the
surface. Here (aαβ) = (aαβ)−1 is the dual metric and εαβ

is the permutation tensor defined by ε12 = −ε21 = 1/
√

a,
ε11 = ε22 = 0. The set {ρ, H, K } of independent variables
in the free-energy function is dictated by material symmetry
requirements pertaining to the fluid-like response character-
istics of lipid membranes. The underlying concept is devel-
oped fully in Steigmann (1999a, 2003).

In this case, the functions listed in (4) and (5) reduce to
(Steigmann 1999a)

σαβ = −[ρ2 Fρ + 2H(ρFH )+ 2K (ρFK )]aαβ + (ρFH )b̃
αβ,

Mαβ = 1

2
(ρFH )a

αβ + (ρFK )b̃
αβ,

Nαβ = −[ρ2 Fρ + H(ρFH )+ K (ρFK )]aαβ + 1

2
(ρFH )b̃

αβ,

−Sα = 1

2
(ρFH ),βaαβ + (ρFK ),β b̃αβ, (14)

where

b̃αβ = 2Haαβ − bαβ (15)

is the cofactor of the curvature, in which bαβ = aαλaβμbλμ,
and use has been made of the Mainardi–Codazzi equations
of surface theory (Sokolnikoff 1964) in the form (Steigmann
1999a)

b̃αβ;β = 0. (16)

Later, we use the connection

bβμb̃μα = K aαβ. (17)

From (14) we have,

Nβα

;α −Sαbβα = −[(ρ2 Fρ),α+ρ(FK K,α+FH H,α)]aβα,
(18)

and the positive definiteness of the metric then furnishes the
tangential equilibrium equations (cf. (6)1)

(ρ2 Fρ),α + ρ(FK K,α + FH H,α) = 0, (19)

whereas the normal part of the equilibrium equation reduces
to

p = 


(
1

2
ρFH

)
+ (ρFK );αβ b̃αβ + 2Hρ(ρFρ + K FK )

+ρ(2H2 − K )FH , (20)
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836 P. Rangamani et al.

in which 
(·) = (·);αβaαβ is the surface Laplacian, also
known as the Beltrami operator. The subscripts ρ, H, K
refer to partial derivatives of the energy with respect to the
indicated variables. Equations (19) and (20) together consti-
tute the generalization of the well-known shape equation
(Ou-Yang et al. 1999) to films with possibly non-uniform
properties (Jenkins 1977; Steigmann 1999a).

In the absence of bending elasticity, this system reduces
to the equations of classical capillarity theory:

p = 2H(ρ2 Fρ) in which (ρ2 Fρ),α = 0. (21)

2.4 Convected coordinates

To ease the formulation of balance laws and to facilitate their
correct interpretation, we parametrize the material manifold
by a convected-coordinate system ξα. This may be identified
with the system θα at a fixed instant t0, say. The associated
surface�,with parametric representation x(ξα) = r(ξα, t0),
is fixed and may serve as a reference surface in a Lagrangian
or referential description of the motion. That is, we regard
these coordinates as being convected in the sense that they
identify, via a map r = r̂(ξα, t), the current position at time
t of a material point that was located at x(ξα) ∈ � at time t0.
The notion may be generalized by regarding � as a surface
that is in one-to-one correspondence with that occupied at
time t0, so that� need not actually be occupied in the course
of the motion. The connection with the θα-parametrization
of ω is provided by Scriven (1960), Aris (1989)

r̂(ξα, t) = r(θβ(ξα, t), t). (22)

Thus, we specify the fixed surface coordinates θα as func-
tions of ξα and t subject to θα(ξβ, t0) = ξα. We assume the
relations giving θα in terms of ξα to be invertible, to reflect
the notion that at fixed t, the coordinates θα can be associ-
ated with a unique material point (identified by fixed values
of ξα). Any function, f (θα, t), say, may then be expressed
in terms of convected coordinates as f̂ (ξα, t), where

f̂ (ξα, t) = f (θβ(ξα, t), t). (23)

The material derivative of f is its partial time deriva-
tive in the convected-coordinate representation, i.e., ḟ =
∂ f̂ (ξα, t)/∂t, whereas its local time derivative in the fixed-
coordinate parametrization is ft = ∂ f (θα, t)/∂t. By the
chain rule, the two are related by ḟ = ft + (θα)· f,α.

The velocity of a material point on � that has been con-
vected by the motion to ω is u = ṙ = ∂ r̂/∂t. We may write
this in terms of components on the natural basis induced by
the fixed-coordinate (θα) parametrization. Thus,

u = vαaα + wn. (24)

This is not the same as the time derivative rt . However, the
two are related by

u = (θα)·aα + rt . (25)

Following (Aris 1989), we adopt the fixed-coordinate param-
etrization defined by

d

dt
θα = vα(θβ, t), θα|t0 = ξα, (26)

where the derivative is evaluated at a fixed value of the dou-
blet {ξα} and is therefore equal to (θα)·. Accordingly, the
normal velocity in (24) is given by

wn = rt , (27)

and the convected and fixed-coordinate time derivatives sat-
isfy

ḟ = ft + vα f,α. (28)

Later, we require an expression for the material derivative ȧαβ
in terms of the θα-parametrization. To this end, we adopt con-
vected coordinates ξα whose values coincide with the instan-
taneous values of θα . The two coordinate systems will of
course differ at different instants due to the fact that material
is convecting with respect to the θα-system. Said differently,
the material point instantaneously located at the place with
surface coordinates θα will have different locations at differ-
ent instants and hence be associated with different values of
θα, whereas the values of ξα remain invariant. Accordingly,
while it is always permissible to identify ξα with θα at any
particular instant t0, say, it is not possible to do so over an
interval of time. However, for our purposes, this limitation is
not restrictive. Using

ȧλμ = ȧλ · aμ + aλ · ȧμ and

ȧλ = (∂r/∂θλ)· = [∂r/∂ξμ(∂ξμ/∂θλ)]·
= ∂u/∂ξμ(∂ξμ/∂θλ)+∂r/∂ξμ(∂2ξμ/∂θλ∂θα)vα, (29)

together with ∂ξμ/∂θλ = δ
μ
λ (the Kronecker delta) and hence

∂2ξμ/∂θλ∂θα = 0 at time t0, we derive ȧα = ∂u/∂ξα and

ȧλμ = u,λ · aμ + aλ · u,μ, (30)

where u,λ = ∂u/∂θλ at the considered instant.
Combining (24) with the Gauss and Weingarten equations

yields

u,λ = (vα;λ − wbαλ)aα + (vαbαλ + w,λ)n, (31)

where aα = aαβaβ and vα;λ is the covariant derivative
defined by

vα;λ = vα,λ − vβ�
β
αλ, (32)

in which �βαλ are the Christoffel symbols on ω computed
using the θα-system (Sokolnikoff 1964). This delivers the
desired expression (Steigmann et al. 2003):
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Membrane flow and deformation 837

ȧλμ = vμ;λ + vλ;μ − 2wbλμ. (33)

The corresponding result in Aris’ book (Aris 1989; eqs.
(10.21.3), (10.21.4)) is given, in our notation, by

ȧλμ = vμ;λ + vλ;μ + (aλμ)t , (34)

where (·)t is computed at fixed θα . The latter is (aλμ)t =
(aλ)t · aμ + aλ · (aμ)t , where (aλ)t = (r,λ)t = (rt ),λ, and
(cf. (27))

(rt ),λ = (wn),λ = w,λn − wbλαaα, (35)

yielding (aλμ)t = −2wbλμ, in agreement with (33). How-
ever, (33) is not given explicitly in Aris (1989).

2.5 Mass balance

The foregoing relationships facilitate the derivation of bal-
ance laws. For example, if f is the areal density of a particular
quantity on ω, then the rate of change of the total quantity in
a part π of ω is

d

dt

∫
π

f da = d

dt

∫
�

f JdA =
∫
π

( ḟ + f J̇/J )da, (36)

where � is the part of the fixed surface � that is convected
to π and J is the local areal dilation of the surface; i.e.,∫
π

da =
∫
�

JdA for all � ⊂ �. (37)

To express the right-hand side of (36) in terms of the fixed-
coordinate parametrization, we combine J̇/J = 1

2 aαβ ȧαβ
(Steigmann et al. 2003) with (33), obtaining

J̇/J = vα;α − 2Hw. (38)

For example, mass conservation is expressed by

d

dt

∫
π

ρda = 0. (39)

Using (36) with f = ρ and invoking the arbitrariness of π
then yields the local conservation law

0 = ρ̇ + ρ J̇/J = ρt + vαρ,α + ρ(vα;α − 2Hw). (40)

2.6 Area incompressibility

It is well known that lipid membranes are relatively stiff
against areal dilation in comparison with bending or shearing
in the tangent plane (Evans and Skalak 1980; Secomb and
Skalak 1982). To model this, we impose J = 1 as a local
constraint at material points. Accordingly, J̇ vanishes and
(40) simplifies to

0 = ρ̇ = ρt + vαρ,α, (41)

the first of which implies that ρ is independent of t in the
convected-coordinate description; that is, ρ is independent
of t when expressed as a function of ξμ and t. Its value at a
particular material point is thus invariant in time and hence
given by the density in the fixed configuration associated
with �.

The constraint on J is seen to be equivalent to the invari-
ance of ρ at any material point. To accommodate it, we
replace F in Sect. 2.3 by

F(ρ, H, K ; ξμ, t) = F̄(H, K ; ξμ)− γ (ξμ, t)/ρ, (42)

where γ is a constitutively indeterminate Lagrange-multi-
plier field. The latter takes whatever values that may be
required by the equations of equilibrium and any subsidiary
conditions in the particular problem at hand and may thus
depend on the coordinates and time. This yields the formula
γ = ρ2 Fρ and hence the mechanical interpretation of the
Lagrange-multiplier field γ as a surface pressure. However,
it is not a material property and so its a priori specification in
terms of the known surface tension of a particular liquid—
commonplace in works concerned with incompressible lipid
membranes—is logically inconsistent. This point appears to
be a source of considerable misunderstanding in the litera-
ture.

2.7 Areal free-energy density

It is customary in the literature to formulate the mechanics
of lipid membranes in terms of the free energy per unit area
of the surface ω currently occupied by the material; namely

W = ρ F̄ . (43)

In terms of this, we have

σαβ = (λ+ W )aαβ − (2H WH + 2K WK )a
αβ + WH b̃αβ,

Mαβ = 1

2
WH aαβ + WK b̃αβ,

Nαβ = (λ+ W )aαβ − (H WH + K WK )a
αβ + 1

2
WH b̃αβ,

−Sα = 1

2
(WH ),βaαβ + (WK ),β b̃αβ, (44)

where

λ = −(γ + W ). (45)

The shape equation (20) is then seen to be equivalent to

p = 


(
1

2
WH

)
+ (WK );αβ b̃αβ + WH (2H2 − K )

+ 2H(K WK − W )− 2λH, (46)

whereas

Nβα

;α − Sαbβα = −(γ,α + WK K,α + WH H,α)a
βα

= (∂W/∂θα|exp + λ,α)a
βα, (47)
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wherein the derivative ∂W/∂θα|exp accounts for any explicit
coordinate dependence of the material properties arising in
non-uniform membranes. Further, the Lagrange multiplier is
presumed, by virtue of the one-to-one relation between the
convected and fixed coordinates at any t, to be expressible in
terms of θα; that is, γ,α = ∂γ /∂θα. The tangential equations
of equilibrium are then equivalent to Agrawal and Steigmann
(2009a,b)

λ,α = −∂W/∂θα|exp. (48)

The specializations of the edge conditions follow by
substituting (44) into (3), (4) and (11). The involved calcula-
tions are found to yield results which coincide exactly with
those derived in detail elsewhere (Agrawal and Steigmann
2009a,b) by a variational method. These are

M = 1

2
WH + κτWK and f = fνν + fττ + fnn, (49)

where

fν = W + λ− κνM

fτ = −τM,

fn = (τWK )
′ −

(
1

2
WH

)
,ν

− (WK ),β b̃αβνα, (50)

and

fi = WK [τ ]i n. (51)

Here,

κν = bαβν
ανβ, κτ = bαβτ

ατβ, τ = bαβν
ατβ, (52)

respectively, are the normal curvatures of ω in the directions
ν and τ and the twist of ω on the (ν, τ ) - axes. Use has also

been made of the identities H = 1

2
(κν + κτ ) and K = κν

κτ − τ 2.
Evidently the actual surface tension is given by fν . This

is the projection onto ν of the force per unit length trans-
mitted across a curve with unit normal ν. The net force
reduces to f = λν (= −γ ν) only in the absence of bending
effects.

Suppose the membrane is such that the mass density is
uniformly distributed on the fixed surface � used in the def-
inition of convected coordinates. The presumed existence
of such a configuration, even if it is never actually occu-
pied in the course of the motion, constitutes part of the def-
inition of a uniform film. By the chain rule we then have
0 = ∂ρ/∂ξα = ρ,β∂θ

β/∂ξα. The presumed invertibility
of the relation between the fixed and convected coordinates
implies that the matrix (∂θβ/∂ξα) is non-singular and hence
that ρ,β = 0. The mass-conservation law (41) then yields

ρt = 0, implying that ρ is a fixed constant on the surface ω,
independent of θα and t.

If the film is uniform in the sense described, then its
response to H and K should be the same at all material points.
There is then no explicit coordinate dependence in the spe-
cific energy density F̄ , and hence neither in the areal energy
density W.Thus ∂W/∂θα|exp vanishes in uniform membranes,
implying (cf. (48)) that λ is uniformly distributed on ω. The
latter result is modified in the case of films with non-uniform
bending properties in which the non-uniformity is induced
by a diffusing species, for example (Agrawal and Steigmann
2011). We show below that it is also modified by viscous
flow in the surface.

This framework incorporates the well-known shape equa-
tion

k[
H + 2H(H2 − K )] − 2λH = p (53)

for uniform Helfrich membranes, defined by

W = k H2 + k̄K , (54)

in which λ is uniform and k and k̄ are the (constant) bending
moduli.

3 Effect of intra-membrane viscosity

3.1 Conventional theory of intra-membrane viscosity

Extensions of classical capillarity theory to accommodate
intra-surface viscous flow are well known (Scriven 1960;
Aris 1989). They entail the addition of a conventional vis-
cous term to the stress σαβ = −(ρ2 Fρ)aαβ , while bending
effects are of course suppressed in the classical theory. Typ-
ically the viscous stress is assumed to be the 2-D analog of
that appearing in the 3-D Navier–Stokes theory. This stress
arises in response to straining of the fluid, which is simply
the time derivative of the evolving metric in the convected-
coordinate description (Aris 1989). Accordingly, in the case
of area incompressibility, we have

σαβ = −γ aαβ + παβ, where παβ = νaαλaβμȧλμ (55)

and ν is the intra-membrane shear viscosity.
This form of the viscous stress is not appropriate for use

with the θα - parametrization. To rectify this, we substitute
(33), obtaining

παβ = ν
[
aαλaβμ(vμ;λ + vλ;μ)− 2wbαβ

]
, (56)

which is equivalent to eqs. (10.23.3, 4) of Aris (1989) in the
case of area incompressibility (aαβ ȧαβ = 0).
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Membrane flow and deformation 839

3.2 Viscous lipid membranes

We suppose that viscous interaction among lipids arises
mainly from their relative motion in the surface ω, while the
effect of relative misalignment of neighboring lipids due to
bending remains essentially elastic in nature. Accordingly,
the required adjustment to the elastic theory of Sect. 2, to
account for viscosity, is limited simply to the addition of a
viscous stress παβ of the form (56) to the expression (44)1

for σαβ and hence also to the expression (44)3 for Nαβ (see
(4)). This has the effect of adding the terms

π
βα

;α and πβαbβα (57)

to the left-hand sides of (46) and (47), respectively. To aid in
the reduction of the first term, we recast (56), using (15), as

πβα=ν
[
aβλaαμ(vμ;λ + vλ;μ)− 4wHaβα + 2wb̃βα

]
.

(58)

From the Mainardi–Codazzi equations (16) and because the
metric is covariant-constant (Sokolnikoff 1964), we then
obtain

π
βα

;α = 2ν(aβλaαμdλμ;α − w,αbβα − 2wH,αaβα), (59)

where

dλμ = 1

2
(vμ;λ + vλ;μ) (60)

and

dαβ;μ = dαβ,μ − dβλ�
λ
αμ − dαλ�

λ
βμ. (61)

Using (13)1 and (17) we also derive

πβαbβα = 2ν
[
bαβdαβ − w(4H2 − 2K )

]
. (62)

The equations of motion for viscous membranes, replac-
ing (46) and (48) respectively, are thus given in the case of
uniform membranes of Helfrich type (cf. 54)) by

λ,γ −4νwH,γ + 2ν(aαμdγμ;α − w,αbαγ ) = 0, vα;α−2wH =0,

(63)

and

k[
H + 2H(H2 − K )]−2λH +2ν[bαβdαβ − w(4H2−2K )] = p.

(64)

The constraint (63)2 may be treated by introducing a function
ϕ such that


ϕ = 2Hw, where 
ϕ = (
√

a)−1(
√

aaαβϕ,β),α, (65)

and then defining a vector field �α such that

vα = aαβϕ,β +�α. (66)

From (63)2 and (65)1 we have �α
;α = 0 and it follows, for

any simply connected patch of the surface, that

�α = εαβψ,β (67)

for some scalar field ψ. However, we make no use of this
decomposition in the present work.

3.3 Explicit edge conditions

The edge conditions for lipid membranes with viscosity are
given by (3), (4) and (11) in which the viscous stress παβ

is added to the expression (44)1 for σαβ. This results in the
addition of the term πβαναaβ to the right-hand side of the
formula (49) for the edge force f . The decomposition aβ =
νβν + τβτ facilitates the separation of terms into normal and
tangential parts, yielding (44) with

fν = W + λ− κνM + πβανβνα

fτ = πβατβνα − τM, (68)

while fn remains unaltered. The expressions (49)1 and
(51) for the bending moment and corner forces are also
unchanged.

The full set of edge conditions for uniform viscous Helf-
rich membranes is

M = 1

2
k(κν + κτ )+ k̄τ

fν = 1

4
k(κ2

τ − κ2
ν )− k̄τ 2 + λ+ πβανβνα,

fτ = πβατβνα − 1

2
kτκν −

(
1

2
k + k̄

)
τκτ ,

fn = k̄τ ′ − k H,ν (69)

with corner forces

fi = k̄[τ ]i n. (70)

3.4 Dissipation

The discrepancy between the power supplied to the mem-
brane and rate at which energy is stored in it is the dissipation
D, defined by

D = P − d

dt
E, (71)

and satisfying

D ≥ 0 (72)

in any dissipative process, this effectively serving as a sur-
rogate for the second law of thermodynamics in the present,
purely mechanical, setting.

In Steigmann (1999b), it is shown that the equations of
mechanical equilibrium for surfaces yield the global balance
equation
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S = P, (73)

where S is the stress power. In the purely elastic theory, this
is given simply by S = dE/dt, yielding (7) and D = 0.
In the presence of both elasticity and viscosity, the appro-
priate expression for S follows from eq. (2.18) of Steigmann
(1999b) and is given by

S = d

dt
E +

∫
ω

πβαaβ · ȧαda, (74)

where E is again given by (9). Accordingly,

D = (P − S)+
∫
ω

πβαaβ · ȧαda, (75)

yielding

D =
∫
ω

πβαaβ · ȧαda (76)

in all inertia-less motions of the surface. The argument is eas-
ily modified to accommodate inertia. In this case, the equa-
tions of motion of the film yield dK/dt + S = P in place
of (73), where K is the kinetic energy of the surface. The
dissipation is now defined by D = P − d(E + K )/dt,while
(74) and (76) are unaltered.

The integrand in (73) is πβαaβ · ȧα = 1
2π

βα ȧβα, where

πβα ȧβα = νaβλaαμȧλμȧβα. (77)

The factor multiplying ν is the squared norm of the surface
tensor with covariant components equal to ȧαβ. A positive
value of the viscosity thus ensures that any motion involving
straining of the surface is strictly dissipative in the sense of
the strict inequality in (72). Further, the dissipation vanishes
only if the straining vanishes pointwise.

If the loading on the membrane is conservative, then there
exists L such that P = d

dt
L . In this case, we have

D = − d

dt
(E − L) (78)

and hence

d

dt
(E − L) ≤ 0. (79)

The potential energy E − L then furnishes a Lyapunov func-
tion for the motion. In particular, it is minimized by asymp-
totically stable equilibria at which dissipation ceases and the
response is purely elastic.

4 Monge parametrization

To illustrate the use of the theory we adopt the Monge rep-
resentation

r(θα, t) = θ + z(θ, t)k (80)

of ω, where θ(θα) is position on a plane with unit normal k.
The shape of the membrane is then determined by the single
function z(θ, t). For example, the plane may be parametrized
globally by a single system of Cartesian coordinates θα , in
which case

θ = θαeα, (81)

where {eα} is an orthonormal basis for the plane. These then
furnish a parametrization of ω via (80). We compute

rt = zt k, aα = eα + z,αk, aαβ = δαβ + z,αz,β

and n = (k − ∇z)/
√

a, (82)

where δαβ is the Kronecker delta, ∇z = z,αeα is the gradient
on the plane, and

a = det(aαβ) = 1 + |∇z|2 . (83)

Further, the integrand in (8) is

n · r = (z − θαz,α)/
√

a, (84)

the covariant curvature components are

bαβ = n · aα,β = z,αβ/
√

a, (85)

and the curvature tensor is b = bαβaα ⊗ aβ, where

a1 = 1

a
{[1 + (z,2)

2](e1 + z,1k)− z,1z,2(e2 + z,2k)}, (86)

together with a similar formula for a2, obtained by inter-
changing the subscripts. These are derived by using aα =
aαβaβ with (aαβ) = (

aαβ
)−1

.

The Christoffel symbols �λαβ = aλ · aα,β (Sokolnikoff
1964), required in (60) and (61), are

�λαβ = z,λz,αβ/a, (87)

and the normal velocity is

w = n · rt = zt/
√

a. (88)

It is straightforward to use these formulas to cast the equa-
tions of motion (63), (64) in terms of z(θα, t). However, the
resulting system is quite complicated, and so we refrain from
exhibiting it explicitly.

4.1 Example

Consider an example in which the membrane flows over a
rectangular portion of the plane with sides of length a and b.
The kinematic boundary conditions are

z = 0, n = k. (89)

The latter implies that z,α vanish on the boundary and hence
so too the normal derivative z,ν = ναz,α. From (88) we have

w = 0 (90)
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Table 1 Boundary conditions used in Figs. 1 and 2

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0

zx 0 – – 0

zy – 0 0 –

vα 0 0 0 –

fν – – – λ

fτ – – – 0

λ – – – 10−4 pN/nm

on the boundary, while the condition z,ν = 0 implies thatw,ν
also vanishes there. We conclude that n · u,ν vanishes on the
boundary. Because boundary conditions entail the specifica-
tion of one or the other member of a pair of power-conjugate
variables, it follows from (10) that the transverse shear force
fn and the bending moment M are not specified.

No-slip boundary conditions are used on three of the
four boundaries for the tangential velocity components, i.e.,
vα = 0. On the fourth boundary, the traction boundary con-
dition given in (68) is used to relate the velocity gradient to
the surface pressure and the membrane shape. On the fourth
boundary, we specify the left-hand sides of

fν = λ− 1

4
k(νανβ z,αβ)

2 + πβανβνα, (91)

fτ = πβατβνα,

where use has been made of the fact that κτ and τ vanish
on the boundary; the former following from the fact that the
boundary is piecewise straight and the latter from the fact
that ∇z vanishes identically on the boundary. In particular,
there are no jumps in the twist τ at the corners and thus no
corner forces. The boundary conditions are listed in Table 1.

To solve this highly nonlinear coupled system, we use
the multiphysics code Comsol. We study the evolution of
membrane shape and flow in response to an applied uniform
pressure, p, normal to the surface. It should be noted that
when p = 0, z = 0 is a solution to the shape equation even
when the tangential flow is not zero. The model was imple-
mented in the equations-based PDE interface of Comsol
Multiphysics, using the backward difference formula solver
for time dependent problems. The equations were solved on
a domain of 1,000 nm square with an intramembrane surface
viscosity of 10−4 pN · s/nm (Hochmuth 1987). The value of
bending modulus of the membrane assumed here is 82 pN·nm
(Derenyi et al. 2002).

We choose fν = λ on one boundary as shown in Table
1. In Fig. 1, we show the height of the membrane z at the
center in response to the applied lateral pressure at different
times. The lateral pressure is increased as a ramp function,
as shown in Fig. 1a. In response to this increasing pressure,

(a)

(b)

Fig. 1 a Lateral pressure as a function of time and b the height z at the
center of the square patch

the height, z, at the center also increases with time and even-
tually attains a constant value when p is held constant (Fig.
1b), indicating that the system has attained a steady-state
configuration.

The tangential velocity field (Fig. 2) also undergoes tran-
sient changes to accommodate the flow of lipids required to
produce the change in shape. The fluid membrane flows in
from the open boundary. At early times, the fluid flow rate
is low because the lateral pressure is small and at later times
the tangential velocity settles into a steady flow pattern in
response to the steady surface pressure. This steady flow (Fig.
2b, c) is maintained even after the lateral pressure attains a
constant value because the velocity gradient at that boundary
is coupled to the function z(θα, t).

The surface pressureλvaries spatially to accommodate the
tangential flow of the lipids into the computational domain.
Even though the lipid membrane is homogeneous, the change
in the fluid flow pattern results in a change in the surface
pressure in a region adjoining the open boundary. At early
times, the change is the surface pressure is very small and not
discernible. As the shape evolves in response to the lateral
pressure p, the surface pressure λ develops a spatial inho-
mogeneity, which begins to appear around t = 0.1 s and
intensifies as lateral pressure increases (Table 2).

The coupling between surface shape and surface flow is
primarily through the behavior of λ. The choice of fν at the
boundary is also important in determining the flow of lip-
ids and how membrane shape evolves. In this example, the
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(a)

(b)

(c)

Fig. 2 The tangential velocity vector illustrates the flow of lipids on
the surface of the membrane at times a t = 0.05 s, b t = 0.1 s, and c
t = 0.22 s. The flow of lipids settles into a steady pattern in accordance

with the prescribed boundary conditions and vortices can be seen near
the open boundary where traction is assigned

choice fν = λ resulted in a boundary condition wherein the
velocity gradient arises in response to surface shape alone and
not surface pressure. To further understand how the system
responds to different values of fν , we conducted simulations
with the same lateral pressure function but changed the value
fν/λ on boundary 4 (Table 3).

Figure 3 depicts the shape of the membrane along the cen-
ter of the domain. When fν/λ is less than unity, the height of
the membrane increases. As the value of fν/λ is increased,

not only does the membrane flatten; it also adopts an asym-
metric shape. That is, the maximum height is not at the cen-
ter of the domain but rather closer to the open boundary.
This is due to the role played by λ as an effective surface
pressure; larger values at a given pressure correlate roughly
with smaller curvature and hence, in this example, smaller
height (Table 3).

Another parameter that affects the relationship between
surface deformation and flow is the number of boundaries
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Table 2 Boundary conditions used in Fig. 4

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0

zx 0 – – 0

zy – 0 0 –

vα 0 0 – –

fν – – λ λ

fτ – – 0 0

λ – – 10−4 pN/nm 10−4 pN/nm

that allow flow of lipids. In Fig. 4, we show cases where two
adjacent boundaries, boundaries 3 and 4, allow flow with
the boundary conditions fν = λ and fτ = 0. The shape is
symmetric (Fig. 4) but the tangential flow field of lipids is
very different from that of the previous example. In Fig. 4,

Table 3 Boundary conditions used in Fig. 5

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0

zx 0 – – 0

zy – 0 0 –

vα 0 – – –

fν – λ λ λ

fτ – 0 0 0

λ – 10−4 pN/nm 10−4 pN/nm 10−4 pN/nm

we observe the lipids entering and leaving the domain from
the two adjacent walls. Similarly, when only one boundary
is treated as a wall (Fig. 5), the lipids flow in and out of three
boundaries (Fig. 5). Even though the shape is similar for these
boundary conditions, the flow pattern of lipids on the surface

Fig. 3 A cross section of the
domain at the center line shows
the membrane shape in response
to different values of fν/λ at the
boundary. As fν/λ increases,
the height decreases and the
surface shape becomes
increasingly asymmetric for the
same value of pressure
(p = 2 × 10−6 pN/nm2)

Fig. 4 In this example, two walls, boundaries 3 and 4 have the bound-
ary condition fν = λ. The characteristics of the membrane are shown at
time t = 0.1 s, after shape evolution has ceased. The tangential velocity

field shows the lipid flow in and out of two boundaries and the presence
of vortices near these boundaries
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Fig. 5 In this example, three walls, boundaries 1, 3 and 4 have the
boundary condition fν = λ. The characteristics of the membrane are
shown at time t = 0.1 s, after shape evolution has ceased. The tangential

velocity field shows the lipid flow in and out of three boundaries and
the presence of vortices near these boundaries

and the surface pressure pattern are quite different in each of
these conditions.

We note that the shape equation (cf. (64)) involves λ
algebraically, whereas the remaining equations of the model
involve λ only through ∇λ. Thus, if the membrane remains
flat under the stated boundary conditions, λ affects the flow
only through ∇λ and the specification of λ on the boundary is
neither necessary nor consistent. In the general case in which
membrane shape evolves, we specify a uniform value of λ
on the traction part of the boundary and use the fully coupled
system for flow and shape to obtain its distribution in the
interior. In effect we are solving a one-parameter family of
problems, parametrized by the specified boundary value of
λ.To find the physiologically relevant value, it would be nec-
essary in principle to assess the predictions obtained using
different parameter values against some empirically deter-
mined aspect of membrane shape; the appropriate value of
the parameter is then given by that which furnishes the best-fit
simulation. This exercise is beyond our present scope, how-
ever, due to the paucity of available data consistent with our
boundary conditions.

5 Conclusions

In this work, we have developed a model for the intra-surface
flow of lipids on a bilayer membrane by coupling the elastic
model for membrane bending with a model for flow on an
evolving curved surface. This model is based entirely on bal-
ance laws and constitutive equations. Solutions to represen-
tative problems exhibit the coupled interplay between lipid

flow and membrane shape. Potential applications to biophys-
ics include the simulation of membrane nanotube formation
and the cubic-to-lamellar transition. Our work on these prob-
lems is in progress and will be reported elsewhere.
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