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Abstract Tissue Engineering is a strongly interdisciplinary
scientific area aimed at understanding the principles of tis-
sue growth to produce biologically functional replacements
for clinical use. To achieve such an ambitious goal, com-
plex biophysical phenomena must be understood in order
to provide the appropriate environment to cells (nutrient
delivery, fluid-mechanical loading and structural support)
in the bioengineered device. Such a problem has an inher-
ent multiphysics/multiscale nature, as it is characterized by
material heterogeneities and interplaying processes occur-
ring within a wide range of temporal and spatial scales.
In this context, computational models are useful to gain a
quantitative and comprehensive understanding of phenom-
ena often difficult to be accessed experimentally. In this
paper, we propose a mathematical and computational model
that represents, to our knowledge, the first example of a self-
consistent multiscale description of coupled nutrient mass
transport, fluid-dynamics and biomass production in bioen-
gineered constructs. We specifically focus on articular carti-
lage regeneration based on dynamically perfused bioreactors,
and we investigate by numerical simulations three issues crit-
ical in this application. First, we study oxygen distribution
in the construct, since achieving an optimal level through-
out the construct is a main control variable to improve tissue
quality. Second, we provide a quantitative evaluation of how
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interstitial perfusion can enhance nutrient delivery and, ulti-
mately, biomass production, compared with static culture.
Third, we perform a sensitivity analysis with respect to bio-
physical parameters related to matrix production, assessing
their role in tissue regeneration.
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1 Introduction

In vitro cultivation of functional tissues for body repair, the
so-called “Tissue Engineering”, is investigated as a prom-
ising technique able to improve life conditions of millions
of patients worldwide (see, e.g., Langer and Vacanti 1993;
Vunjak-Novakovic and Freshney 2006; Atala et al. 2011).
Yet, at present, to bridge the gap between being a concept
and a clinical applicable procedure, a definite need arises for
improved control over the functional properties and compo-
sition of the cultivated tissue.

A major application of TE is found in the artificial regener-
ation of articular cartilage, a tissue with very poor capabilities
of self repair. Portions of cartilage tissue have been grown in
bioreactors starting from donor chondrocyte cells attached to
polymeric scaffolds in mixed flasks, rotating wall or direct
perfusion bioreactors (Freed and Vunjak-Novakovic 2001;
Martin et al. 2004; Schulz and Bader 2007). Cells, initially

123



764 P. Causin et al.

seeded so to yield a quasi-uniform thin layer on the scaffold
walls (Wendt et al. 2006), undergo a first period of rapid pro-
liferation during the early culture time (5–7 days), after which
they secrete (2–4 weeks) the typical highly hydrated matrix
comprising proteoglycan monomers assembled with GAGs
anchored to hyaluronic acid chains and collagen (Potter et al.
1998; Freed and Vunjak-Novakovic 2001). In order to ensure
cell viability and efficient metabolic activity, a properly tuned
level of nutrients must be delivered to cells. This is not an
easy task, since nutrient mass transfer is significantly limited
by the progressive obstruction of the scaffold due to biomass
growth (Obradovic et al. 1999; Freed and Vunjak-Novakovic
2001). Direct perfusion bioreactors have been shown to be
able to deliver more efficiently nutrient to cells, and for this
reason, they are the reference devices in this work. The spe-
cific experimental setting we consider (described in detail
in Raimondi et al. 2006, 2008) consists of scaffolds with
average porosity 77 %, interstitially perfused by the culture
medium through a pumping system. The medium flow rate at
the inlet is kept constant all over the experiment, and the flow
direction is inverted cyclically every 40 min. The presence of
an interstitial flow has the side effect of introducing further
mechanical and biophysical processes which must be as well
analyzed and controlled.

The biophysical phenomena occurring during in vitro
tissue regeneration encompass a wide range of embedded
scales, as depicted in Fig. 1. Existing mathematical models
mainly focus on a single specific scale. Computational mod-
els working at the Macroscale treat the perfused scaffold as a
continuum on which the Bioengineer defines and modifies the
control parameters (inlet velocity, scaffold porosity). These
studies numerically evaluate the fluid-dynamical field and/or
the nutrient profile in the construct as if the system were
simply a “homogeneous equivalent fluid” (Obradovic et al.
1999, 2000; Devarapalli et al. 2009; Williams et al. 2002).
Deposition of biomass is controlled via phenomenological
models keeping into account the dependence of growth on
local nutrient availability and, in a simplified manner, of
mutual inhibition effects (Nikolaev et al. 2010). CFD mod-
els of interstitially perfused bioreactors coupled with oxygen
mass transport equations are treated in Raimondi et al. (2006,
2012), Raimondi (2006) and are localized in microdomains
composed of a few pores (functional units), corresponding
to the Mesoscale. The problem is solved on idealized simpli-
fied geometries as well as on realistic configurations, keeping
into account the presence of the scaffold matrix. The CFD
analysis is, however, carried out on the uncellularized scaf-
fold, that is, completely neglecting the presence of the grow-
ing biomass. An improvement is obtained in Lesman et al.
(2010) where CFD computations are performed on a series
of different “frozen” simplified geometries representing the
pattern of deposition of the biomass extracted from experi-
mental images at the pore size for different time levels. In

Galbusera et al. (2007), the computational study is carried
out at the Microscale, and the CFD analysis/mass transport
is coupled with a representation of the Cellular scale based
on the use of cellular automata algorithms including in a sim-
plified manner phenomena like adhesion and contact forces.

Adopting a single-scale perspective as the one of the above
models can provide useful insights on selected phenomena in
the bioreactor. However, a change of perspective is strongly
needed to improve the TE practice: this corresponds to main-
tain a Macroscale vision, which is the one important for
the Bioengineer, including at the same time a powerful lens
to model finer scale (Microscale) effects. At present, how-
ever, only a very restricted selection of models is capable of
treating multiple scales in this context, since this requires to
address the very delicate concept of scale transition in a very
complex framework. In Cioffi et al. (2008), a first attempt was
carried out, by solving an axial symmetric model at the Mac-
roscale to compute boundary conditions that are then used
to drive the solution of a 3D CFD model in a Microscale
domain constituted by the uncellularized scaffold geometry.
In this reference, no feedback mechanism was introduced
between the Microscale and Macroscale models. An alterna-
tive way to include, in a coupled fashion, information com-
ing from finer scales into larger scale models is to resort to
homogenized approaches characterized by effective trans-
port parameters computed from (complex) closure problems
localized at the Microscale (Whitaker 1999). In Chung et al.
(2007), such an approach was applied to a Darcy model for
the porous medium coupled with convection diffusion equa-
tions for nutrient mass transport in combination with cell
growth models derived from the works of Galban and Locke
(1999a,b). In our previous paper Sacco et al. (2011), the same
approach as in Chung et al. (2007) is considered with the fur-
ther use of suitably extended analytical solutions for the clo-
sure problems accounting for the presence of the scaffold. In
the present article, we adopt the homogenized perspective of
Sacco et al. (2011), at the same time including, in the spirit of
Cioffi et al. (2008), a Microscale analysis which impacts on
the Macroscale study via a genuinely dynamically coupled
mechanism. The present modeling strategy is characterized
by:

– a self-consistent coupling among nutrient distribution,
cell metabolic activity and geometry evolution;

– a biophysical description of biomass evolution;
– a subdivision into modular sub-blocks, whose model-

ing/computational complexity can be properly tuned to
the problem at hand without affecting the overall struc-
ture;

– an affordable computational cost;
– the possibility of a direct integration with experimental

data obtained from microscopical images of histological
sections of tissue-engineered constructs.
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Fig. 1 The TE problem is characterized by the presence of complex phenomena occurring at different scales. The figure depicts such situation in
a schematism useful for the mathematical modelization

We use such a multiscale computational framework to carry
out three distinct studies addressing important issues in
cartilage regeneration. The first study stems from the obser-
vation that cartilage cells are in vivo physiologically sub-
jected to low levels of oxygen tension (pO2 ranging from 2
to 10 %), but a widespread practice in TE is to supply “hyper-
physiological” conditions (pO2 = 20 %) at the bioreactor
inlet (Grimshaw and Mason 2001; Das et al. 2010). We
carry out simulations to relate a given inlet nutrient con-
centration with the time evolution of the corresponding dis-
tribution inside the construct, and we explore how inlet con-
centration can be tuned to optimize local oxygenation lev-
els. In a second study, we investigate the effect of perfu-
sion on nutrient mass transfer. Perfusion, enhancing nutri-
ent delivery, allows for a more uniform development of bio-
mass across the construct thickness, requiring a shorter cul-
ture time to reach a certain biomass production level with
respect to the static case. The better performance of dynam-
ical perfusion compared to static culture is confirmed by
our simulations, which show, however, that, while the tran-
sient behavior to reach steady state is significantly differ-
ent from static culture conditions, the final level of oxy-
gen obtained in dynamical conditions is definitely influ-
enced by diffusion barriers. Eventually, in a third study, we
further assess the role of diffusion barriers, carrying out
a sensitivity analysis on the biomass production rate and
extracellular matrix inhibition effect with respect to biomass
growth.

Fig. 2 Geometry and notation. a 3D porous construct. b 2D cross-sec-
tion of the construct, with length L and thickness W . c Zoomed view
of the multiphase composition of the construct

2 Mathematical model

We consider the typical configuration of a disk-shaped scaf-
fold consisting of the union of interconnected scaffold pores,
culture medium and biomass. We let x be the coordinate vec-
tor, t the time variable and It := [tstart, tend] the temporal
interval of engineered tissue cultivation, tstart and tend being
the starting and final culture times. Figure 2 shows the con-
struct geometry and introduces the corresponding notation
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used throughout the paper. We denote by Ω the bioreactor
domain, with boundary ∂Ω = ∂Ωin ∪∂Ωl . The domain Ω is
composed by the time-invariant subdomain Ωsc, representing
the scaffold, and by its complement Ωe = Ωe(t). This latter
subdomain is, in turn, composed of the time-dependent fluid
portion Ωfl = Ωfl(t) and the biomass portion Ωb = Ωb(t),
both of which may be, in general, composed by the union of
unconnected domains of complex shape. The interface sep-
arating Ωfl and Ωb is denoted by Γ . Moreover, n indicates
the unit normal vector on ∂Ω and on each material inter-
face.

2.1 Full scale model

The full scale approach we advocate in this work consists
of the coupled solution for every t ∈ It of the following
differential systems.

2.1.1 Fluid subdomain model

(a) advection–diffusion problem for nutrient concentra-
tion c = c(x, t) in Ωfl:

∂c

∂t
+ ∇ · J = 0, (1a)

J = −Dfl∇c + vc, (1b)

where v is the fluid velocity determined by system (2),
J is the nutrient mass flux and Dfl is the nutrient dif-
fusivity in the fluid phase. The equation system (1) is
supplied with the initial condition c(x, 0) = c0 and
the boundary conditions c = c0 on ∂Ωfl ∩ ∂Ωin and
J · n = 0 on ∂Ωfl ∩ ∂Ωl and on ∂Ωfl ∩ ∂Ωsc, where c0

is the (constant) inlet nutrient concentration.
(b) Navier–Stokes equations (Landau and Lifshtiz 1959)

for fluid velocity v = v(x, t) and fluid pressure p =
p(x, t) in Ωfl:

∇ · v = 0, (2a)

ρfl

[
∂v
∂t

+ (v · ∇)v
]

= −∇ p + μfl�v, (2b)

where ρfl and μfl are the density and the dynamic
viscosity of the medium, respectively. The equa-
tion system (2) is supplied with the initial condition
v(x, 0) = 0 and the boundary conditions v = vin on
∂Ωfl ∩ ∂Ωin, v = 0 on ∂Ωfl ∩ ∂Ωsc, and ∂v/∂n = 0
on ∂Ωfl ∩ ∂Ωl .

2.1.2 Biomass subdomain model

(a) diffusion–reaction problem for nutrient concentration
c = c(x, t) in Ωb:

∂c

∂t
+ ∇ · J = Q (3a)

J = −Db∇c, (3b)

where Db is the nutrient diffusivity in the biomass
phase and the function Q = Q(c) represents mass con-
sumption due to cellular metabolism, expressed by the
Michaelis–Menten kinetics

Q = − R c

K1/2 + c
, (3c)

where R = Ψmaxξcells, ξcells being the number of cells
per unit biomass volume and Ψmax the maximal nutrient
consumption rate, respectively, while K1/2 is the half
saturation constant. The equation system (3) is supplied
with the initial condition c(x, 0) = c0 and the bound-
ary conditions c = c0 on ∂Ωb ∩ ∂Ωin and J · n = 0 on
∂Ωb ∩ ∂Ωl and on ∂Ωb ∩ ∂Ωsc;

(b) model for fluid velocity in Ωb:

v = 0; (4)

(c) model for biomass growth:

Ωb = Ωb(t; v|∂Ωfl∩∂Ωb , p1, . . . , pn), (5)

where (p1, . . . , pn) is a set of biophysical parameters
(e.g., nutrient concentration, contact inhibition effects)
that regulate engineered tissue production at the Micro-
scale level.

2.1.3 Fluid–biomass interface model

At the fluid–biomass interface, the following conditions must
be satisfied:

c|∂Ωb = κc|∂Ωfl, (6a)

J|∂Ωfl · n = J|∂Ωb · n, (6b)

v|∂Ωfl = 0. (6c)

Condition (6a) expresses local mass equilibrium, with posi-
tive constant κ ≤ 1, and provides a “lumped” description of
the effects of transmembrane chemical processes occurring
at the subcellular scale (Wood et al. 2002). Condition (6b)
represents mass flux continuity, while condition (6c) is the
standard adherence of a fluid at a solid wall. We will refer
in the following to the above coupled system of equations as
the 3D Full Scale (3DFS) model.

2.1.4 Modeling assumptions

The following assumptions in the mathematical description
of engineered tissue growth will be adopted in the present
work.
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A1. Nutrient mass transfer can be described by a sequence
of quasi-stationary steps, because the time scale of
nutrient transport is much faster than biomass growth
(Obradovic et al. 2000; Sacco et al. 2011). This corre-
sponds to neglecting the term ∂c/∂t in (1a) and (3a).
Notice that the temporal dependence of the fields c
and v is, however, retained through the coupling with
biomass growth.

A2. The left-hand side of (2b) can be neglected because
the Reynolds number of the fluid-dynamical problem
is very small. For example, assuming an inlet veloc-
ity |vin| = 50 µms−1, a scaffold porosity of 77 %
(Raimondi et al. 2005) and L = 1 mm (Sacco et al.
2011), we have that the microscopic Reynolds number
(i.e., computed at the pore size scale) is of the order
of 5×10−4, while the macroscopic Reynolds number
(i.e., computed at bioreactor scale) is of the order of
6×10−2.

A3. Biomass growth is described according to the fact
that, after seeding, cells undergo a first proliferative
phase, followed by an intense phase of ECM secre-
tion. Since proliferation is a time-limited but highly
complex mechanism, whose modeling is a very hard
task which should be addressed as a stand-alone topic,
we introduce in this work the approximation of a “post-
initial” condition, which amounts to assuming that cells
have already reached their maximal number N tot

cells (see
Obradovic et al. 2000; Nikolaev et al. 2010 for a similar
approach). Moreover, we consider cells and biomass to
have the same mass density ρb, which will be assumed
to be equal to the clear fluid density ρfl.

Depending on the choice of initial conditions, we notice that
assumptions A1. and A2. might fail to hold in a short tempo-
ral interval immediately after the starting culture time t = t0,
during which transient and inertial effects might play a sig-
nificant role.

2.1.5 Idealized geometry

A realistic geometry of the construct can be extracted from
μ-CT data and used, upon segmentation and post-processing,
for simulations. Since this is not the focus of this work, we
rather consider the idealized geometry shown in Fig. 3a,
referred to the experimental setting of Raimondi et al. (2008)
and already numerically investigated by several authors (Rai-
mondi et al. 2005; Cioffi et al. 2008; Lesman et al. 2010).
The simplified bioreactor domain is described by a regular
mosaic of “cubic pores” (Fig. 3a, b), obtained by intersect-
ing a cube of size 2b with a sphere of radius Rsph, such that
b < Rsph < b

√
2. We denote by 2a the diameter of the circle

obtained on the lateral sides of the cube from the intersection

Fig. 3 Idealized geometry. a The bioreactor construct is composed by
a regular mosaic of “cubic pores” which represent the functional sub–
units. The cubic pores are organized in NS stacks. b Stack of pores.
Each stack is partitioned into NL pores and is aligned along the x axis,
along which the coordinate of the centroid of the pore P is denoted by
xP . c Spherical pore. The origin of the coordinate system is located at
the pore center, the fluid–biomass interface at rb = rb(t) and the pore
wall at r = rw, respectively. Biomass is supposed to uniformly grow
inwardly along the radial direction

with the sphere. Letting then Vcub = (2b)3 the volume of the
cube, we define the construct design porosity Φ0 as

Φ0 := V 0
void

Vcub
= 4π R3

sph/3 − 6πh2(3Rsph − h)/3

8b3

= π

24
(−8λ3 + 18λ2 − 6)

where V 0
void is the void volume in the cube at the start-

ing culture time, h := Rsph − b and λ := Rsph/b, with
1 < λ <

√
2. During the temporal evolution of the engi-

neered tissue growth process, ECM production progressively
tends to fill the available void space within each pore of
the scaffold matrix, so that permeability to fluid flow and
diffusivity of nutrient delivery are expected to be consider-
ably reduced. This effect is accounted for by our multiscale
model through the introduction of suitable effective transport
parameters (effective permeability, effective diffusivity) dis-
cussed in Sect. 2.3.

2.2 Multiscale model

Even with the introduction of the above simplifications, the
computational challenge of solving the 3DFS model is still
a too demanding task even for the more advanced numerical
techniques and powerful machine resources. This difficulty is
principally represented by the need of using a very high scale
resolution, say, up to the Microscale/Cellular scale, further
complicated by the presence of internal moving boundaries
due to biomass growth. A change of modeling perspective is
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thus required. The idea we pursue in this work is to use a scale
separation argument and localize the 3DFS model at two dis-
tinct—but interacting—scales, the Macro- and Micro-scales.
At the Macroscale level, a homogenized form of the 3DFS
model is used for the gross characterization of internal fields
and inclusion of technological input parameters, while at the
Microscale level, a decoupled solution of the 3DFS model
is carried out on disjoint computational domains of strongly
reduced size for the characterization of fine biomass growth
phenomena and direct interaction with high-resolution exper-
imental measurements. The two scales are coupled and inter-
act through bridging variables, which for Micro-to-Macro
transition represent effective-averaged parameters, while for
Macro-to-Micro transition represent appropriate boundary
conditions.

To mathematically identify in the rest of the paper each of
the two scale levels introduced above, we will denote by the
subscripts m and M quantities and operators defined at the
Microscale and Macroscale, and by (m,M) and (M,m) quan-
tities obtained from Micro-to-Macro- and Macro-to-Micro-
scale transitions, as described below.

2.2.1 The Microscale model

The Microscale model is formulated at a characteristic size
corresponding to the functional sub-unit constituted by the
single pore. Despite the strong size reduction with respect
to the 3DFS problem, the difficulty of computationally han-
dling moving interfaces in a 3D domain remains unsolved.
A possible escape to this difficulty relies on the experimen-
tal evidence that biomass growth mainly occurs in the void
spherical space symmetrically along the pore radial direction
(Lesman et al. 2010). This suggests, providing at the same
time a biophysical justification, to introduce in the mathemat-
ical description of Microscale phenomena the assumption of
spherical symmetry. With this assumption, the intrinsic 3D
nature of the biomass growth is maintained at the benefit
of a drastic reduction of computational complexity because
all problem variables depend only on the radial coordinate.
To work under this hypothesis, we introduce an “equivalent
spherical pore” (Fig. 3c) consisting of a sphere of radius rw

whose volume Vw = 4πr3
w/3 is equal to the void volume

of the pore, which yields rw = b(6Φ0/π)1/3. The spheri-
cal pore is adopted as the computational domain Ωm and is
composed of the union of the time-varying fluid and biomass
micro-regions Ωm,fl and Ωm,b (Fig. 3c). The origin of the
radial system is located at the centroid xP of the considered
pore P . To simplify the notation, the dependence on xP of all
the quantities in the Microscale model will be understood, if
not otherwise specified.

The 3DFS model localized at the Microscale level amounts
to solving the following coupled differential sub-systems for
every t ∈ It :

(a) model for Microscale nutrient concentration cm =
cm(r, t):

(1) in the Microscale fluid subdomain Ωm,fl:

cm = c(M,m), (7)

where c(M,m) is the Macro- to Micro-scale bridg-
ing concentration;

(2) in the Microscale biomass subdomain Ωm,b:

1

r2

∂(r2 Jm(cm))

∂r
= Q(cm), (8a)

Jm(cm) = −Db
∂cm

∂r
. (8b)

The equation system (8) is supplied with the fol-
lowing interface and boundary conditions:

cm = κc
(M,m)

at r = rb, (8c)

Jm(cm) = 0 at r = rw, (8d)

where a remark similar to that made for condition (6a)
applies also to the interface condition (8c);

(b) model for the radial component of the Microscale fluid
velocity vm = vm(r, t):

(1) in the Microscale fluid subdomain Ωm,fl:

vm = α/r2, (9a)

where α = α(t) is a function to be determined
enforcing the continuity of convective (from the
left) and diffusive (from the right) nutrient fluxes
at r = rb, that is
α

r2
b

c
(M,m)

= Jm(cm)
∣∣
r↓rb

, (9b)

where (·)∣∣r↓rb
:= limεr →0+(·)∣∣rb+εr

. Notice that
the singularity of vm at r = 0 has no physical
significance; rather, it is a mathematical conse-
quence of the fact that Eq. (9a) is the only admis-
sible spherically symmetric solution of the Stokes
equation.

(2) in the Microscale biomass subdomain Ωm,b:

vm = 0. (9c)

The above simplified mathematical representa-
tion of fluid flow is in accordance with the 2D
and 3D simulation experiments conducted in
Raimondi et al. (2011) on the novel mini-bio-
reactor configuration experimentally studied in
Laganà and Raimondi (2011) and corresponds to
assuming that nutrient delivery throughout grow-
ing biomass is to be ascribed principally to the
mechanism of oxygen diffusion.
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(c) model for biomass radial thickness and interface dis-
placement:
secretion of biomass from cells causes the medium-bio-
mass interface to move due to the increase in the width
of the region Ωm,b at the expense of a reduction of
Ωm,fl. In radial symmetry, the biomass region is iden-
tified by the evolution of the quantity hb := rw − rb,
which represents the time-dependent thickness of the
biomass and consists of cells and accumulated extra-
cellular matrix.
Before describing the model in detail, we need to estab-
lish some notation and fundamental relationships. Let
Vb = Vb(t) = Vw − 4π(rw − hb(t))3/3 denote the
volume occupied by the biomass in the spherical pore
at time t . Then, the amount of biomass present at time t
in pore P is mb(t) = ρbVb(t). We assume the biomass
at time t = 0 to be purely composed of a layer of N tot

cells
cells—which according to the previous assumption on
the “post-initial” condition is a fixed given value—
forming an equivalent annular region of thickness h0,
so that mb(0) = ρb(Vw − 4π(rw − h0)

3/3).
To monitor biomass secretion, we follow the standard
experimental and theoretical practice of choosing GAG
as a marker of ECM accumulation. For modeling sim-
plicity, we focus only on the evolution of the GAG
“bound” fraction (see also Wilson et al. 2002); we
refer to DiMicco and Sah (2003), Klein and Sah (2007)
for a more general and detailed description including
unbound, bound and degraded GAG fractions. Denot-
ing by mGAG = mGAG(t) the GAG mass contained at
time t in Ωm,b, we assume the following 0D lumped
model of the GAG synthesis process (Obradovic et al.
2000; Nikolaev et al. 2010):

dmGAG

dt
= kGAG ξcells cm

(
1 − mGAG

mGAG,inh

)
(10a)

mGAG(0) = 0, (10b)

where kGAG is the GAG synthesis rate, ξcells(t) =
N tot

cells/Vb(t) the time-dependent volumetric density of
cells secreting biomass, and cm = cm(t) the average
Microscale nutrient concentration in the biomass. Prod-
uct inhibition is taken into account by including in the
right-hand side of (10a) the dependence on a satura-
tion GAG level mGAG,inh. This term represents in a
simplified way the inhibitory feedback effect exerted
by cell surface hyaluronan receptors and integrins in
the assembly of the matrix, which “sense” the location
and quantity of GAG and collagen and send messages
to maintain homeostatic concentrations (Knudson and
Knudson 1991). To close the problem, we need to con-
nect the GAG mass production to the whole biomass

amount. With this aim, we assume the following con-
stitutive relation

mb(t) = mb(0) + E mGAG(t), (11)

where the parameter E > 1 keeps into account the
fact that the natural cartilagineous ECM is composed
for the 70–80 % of its wet weight of water, while in
the remaining fraction of the wet weight, the 10–15 %
are collagen fibrils and the 5 % are GAG components,
respectively (Buschmann et al. 1992). Introducing for
brevity the auxiliary variable y(t) := 1−hb(t)/rw, rep-
resenting the normalized radius of the fluid domain, so
that y(0) = 1 − h0/rw, the following functional rela-
tion between the biomass thickness and the secreted
GAG mass holds

y(t) = y(0) 3

√
1 − E mGAG(t)

ρbVw(y(0))3 , (12)

where mGAG(t), in practical computations, will be the
result of an appropriate numerical approximation of
problem (10). Since y(t) must be a non-negative quan-
tity, we immediately get the following constraint on the
GAG mass that can be accumulated at each time level
t ≥ 0 due to sole geometrical restrictions

0 ≤ mGAG(t) ≤ ρbVw

E
(y(0))3 := mGAG∗ .

At the same time, contact inhibition effects included in
model (10) imply that

mGAG(t) ≤ mGAG,inh ∀t ≥ 0.

Combining the two bounds, we obtain that the max-
imum theoretical value of the biomass thickness,
denoted by hb,max, is given by

hb,max = rw min

{(
1, 1 − y(0) 3

√
1 − mGAG,inh

mGAG∗

)}
.

(13)

2.2.2 The Macroscale model

The Macroscale problem is formulated in the idealized biore-
actor domain ΩM ≡ Ω shown in Fig. 3a. The main modeling
assumption to reduce the complexity of the 3DFS model is
to consider a homogenized continuum version of the cor-
responding equations, that is uniformly valid in the whole
domain ΩM. To further reduce the computational cost, we
also assume that nutrient mass transport across neighboring
pores in the (y, z) plane can be neglected and that boundary
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effects on the lateral walls of the construct can be ignored as
well. Let us denote by PH the collection of NL cubic pores
P of size 2b that constitute an ordered stack composing ΩM:
due to the above hypothesis, the stack is a 1D (x-dependent)
domain, over which solutions requiring a low computational
effort will be sought. Moreover, even if each stack has in
principle its own dynamics, in the present device configura-
tion, it is reasonable to assume that all the pores located in the
same (y, z) plane are indistinguishable, that is, they are sup-
plied with the same amount of nutrient and they exhibit the
same cellular metabolic activity, so that they have the same
bio-physical behavior. The global bioreactor behavior is thus
the overall contribution of the parallel of the NS indistin-
guishable stacks. All the above hypotheses are supported by
our computational experience with multi-dimensional sim-
ulations (Sacco et al. 2011; Raimondi et al. 2012) and by
several other simulations reported in the literature (see, e.g.,
Cioffi et al. 2008).

The 3DFS model localized at the Macroscale level
amounts to solving in ΩM the following coupled differen-
tial sub-systems for every t ∈ It :

a) model for nutrient concentration cM = cM(x, t):

∂ JM(cM)

∂x
= QM(cM), (14a)

JM(cM) = −D(m,M)

∂cM

∂x
+ vM cM, (14b)

where vM is the Macroscale velocity field determined
from system (15) and

QM(cM) = R(m,M) cM

K1/2 + cM
.

The coefficients D(m,M) and R(m,M) are the effective
nutrient diffusivity and consumption rate, respectively,
computed as described in Sect. 2.3. The equation system
(14) is supplied by the boundary conditions cM = c0 at
x = 0 and −D(m,M)

∂cM
∂x = 0 at x = L/2 := �. This lat-

ter condition amounts to assuming that the concentration
profile is a symmetric function around x = �. Despite
this property is not in general rigorously verified at any
instant t , the null-flux condition is computationally con-
venient, albeit not necessary, and tries to represent the
fact that in the bioengineering practice, it is customary
to invert the flow direction in order to obtain the most
possibly uniform cultivated tissue.

(b) Darcy model for fluid velocity vM = vM(x, t) and pie-
zometric head pM = pM(x, t):

∂vM

∂x
= 0, (15a)

−∂pM

∂x
+ BM = 0, (15b)

BM = − μfl Φ(m,M)

K(m,M)(Φ(m,M))
vM, (15c)

where K(m,M) is the effective hydraulic permeability,
computed as described in Sect. 2.3. The equation sys-
tem (15) is the 1D homogenized macroscale version of
the Navier–Stokes system (2) under the assumption of
neglecting inertial terms (see Hsu and Cheng 1990 for
a complete derivation). The body force term BM repre-
sents the total drag force per unit volume exerted on the
perfusion fluid particles by the scaffold/biomass com-
ponent of the bioreactor. The equation system (15) is
supplied by the boundary conditions pM = p0 at x = 0
and pM = 0 at x = �. The boundary term p0 is deter-
mined by enforcing the global balance

− pM(�) − pM(0)

�
= p0

�
= μfl Φ0

K(m,M)(Φ0)
vin.

(c) biomass growth: included through the effective coeffi-
cients obtained from Micro- to Macro-scale bridging.

2.3 Micro- to Macro-scale transition

The Micro- to Macro-scale transition gives rise to effective
coefficients that keep track, in the homogenized macroscopic
model, of the microscale phenomena. Here below we detail
the computation of the various coefficients.

2.3.1 Effective porosity

The initial design porosity of the scaffold Φ0 undergoes sig-
nificant changes during culture time due to biomass growth.
To compute the value of Φ(m,M) = Φ(m,M)(xP , t) at each
time level t and at the centroid of each pore P ∈ PH , we refer
to the same simplified geometry proposed in Fu et al. (1998),
consisting of a cubic hollow box of side 2b and cubic hol-
low portion of side 2a. The results obtained for this geometry
provide a remarkably accurate approximation of the porosity
of the cubic pore of Fig. 3b (Fu et al. 1998)

Φ(m,M) = 6(b − a)(2(a − hb))
2 + (2(a − hb))

3

(2b)3 , (16)

where hb = hb(xP , t) is the biomass thickness predicted
from Eq. (12) using the Microscale model in each pore P ∈
PH and a is determined as the only admissible solution of
the cubic equation ζ 3 − 3

2ζ 2 + Φ0
2 = 0, where ζ := a/b,

such that 0 ≤ ζ ≤ 1.
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Fig. 4 Effective parameters computed at different culture times for
a design porosity Φ0 = 0.8. a Effective permeability computed from
Eq. (17). Logarithmic scale is used on the y axis to emphasize the signif-
icant variation (two orders of magnitude) of the permeability. b Effective
diffusivity normalized to clear fluid diffusivity computed from Eq. (18).

Notice that even in the uncellularized condition, the obstruction to diffu-
sion exerted by the presence of the scaffold phase causes a reduction of
25 % of the diffusivity. The presence of the growing biomass enhances
such a reduction up to 50 %. The reduction is not uniform along the
scaffold depth due to the different evolution of biomass growth

2.3.2 Effective permeability

The homogenized permeability is computed from the Car-
man–Kozeny relation (Nield and Bejan 1998) as

K(m,M)(Φ(m,M)) = Ki
Φ3

(m,M)

(1 − Φ(m,M))2 . (17)

The intrinsic permeability of the uncellularized scaffold Ki

is determined by adapting the microscopic theory of dilute
random array of spherical particles developed in Hsu and
Cheng (1990) to the actual geometry of the scaffold and
is given by Ki = d2

K /150, dK = 2b 3
√

6(1 − Φ0)/π being
the equivalent particle diameter of the solid fraction of the
scaffold pore. The effective permeability resulting from the
numerical simulations and obtained using Eq. (17) is shown
in Fig. 4a as a function of scaffold depth.

2.3.3 Effective diffusivity

Let us denote by s = s(xP , t) = hb(xP , t)/b the nondimen-
sional thickness of the biomass layer of pore P . Assuming the
scaffold to be impermeable to nutrient diffusion, the follow-
ing relation is used to compute the homogenized diffusivity
D(m,M) = D(m,M)(xP , t)

D(m,M)

Dfl
= ((1 − ζ )/((ζ − s)2 + s(2ζ − s)Db/Dfl)

+ (ζ−s)/((1−(s+1−ζ )2)+s(s+2(1−ζ ))Db/Dfl)

+ s/((ζ−s)+(1−(1−ζ )2−(ζ−s))Db/Dfl))−1.

(18)

The above relation generalizes the ideas of Fu et al. (1998)
to the multiphase pore system (scaffold/biomass/fluid). The

ratio D(m,M)/Dfl resulting from the numerical simulations
and obtained using Eq. (18) is shown in Fig. 4b as a function
of scaffold depth.

2.3.4 Effective consumption rate

To characterize the effective consumption rate R(m,M), we
require that∫

Vcub

R(m,M) dV =
∫
Vb

R dV .

The above bridging condition states that oxygen consump-
tion per unit time referred to the volume of the cubic pore
is equal to the consumption per unit time occurring in the
biomass layer at the microscopic scale and yields

R(m,M) = ΨmaxξcellsVb(t)

Vcub
= Ψmax N tot

cells

Vcub
. (19)

2.4 Macro- to Micro-scale transition

The function c
(M,m)

= c
(M,m)

(xP , t) is defined at each time t as
the average macroscopic concentration of each pore P ∈ PH

and can be numerically computed using Eq. (25).

2.5 Computational algorithm

We partition the time interval It into Nt ≥ 1 subintervals
It,n := [tn, tn+1] of uniform width Δt = It/Nt , in such
a way that tn = tstart + nΔt, n = 0, . . . , Nt − 1. For any
function f = f (x, t), we set f n := f (x, tn). At each time
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Fig. 5 Staggered algorithm for numerically solving the multiscale
model. The initial distribution of nutrient concentration along the scaf-
fold depth is determined by a first run (outside the time loop) of the
Macroscale model. Notice that the solution of the Microscale problems
at Step A and Scale transition computations at Steps B and D can be
carried out in parallel over the stack for each representative pore of the
layer. Macroscale computations are serial, but their cost is negligible

level tn+1, n = 0, . . . , Nt − 1, the Microscale and Macro-
scale problems are solved in sequence in a staggered fash-
ion. Moreover, both the Microscale and Macroscale sub-sys-
tems are separately linearized, as detailed in the following
sections. The resulting computational algorithm is shown in
Fig. 5.

2.5.1 Solution of the Microscale problem at Step A.1

The nutrient problem in Step A.1 is beforehand linearized
by replacing in (8a) the consumption term Q(cm) with
Q̃(cm) = χncm, where χn = − Ψmax

K1/2+cn
m
ξn

cells. At each time
level tn+1, n = 0, . . . , Nt − 1, the solution of the linearized
Microscale nutrient problem is then the following piecewise
smooth function cm : Ωn

m,fl ∪ Ωn
m,b :→ R:

cn+1
m (r) =

⎧⎨
⎩

cn
(M,m)

for r ∈ (0, rn
b ),

κcn
(M,m)

F (r)

F
(
rn

b

) for r ∈ (rn
b , rw),

(20)

where F is the shape function defined as

F(r) = 1

r

((
rw

√
χn

Db
+ 1

)
exp

{
(r − rw)

√
χn

Db

}

+
(

rw

√
χn

Db
− 1

)
exp

{
− (r − rw)

√
χn

Db

})
.

Having determined the new biomass position, one can com-
pute the constant α that uniquely specifies the admissible

fluid velocity in the spherical pore by enforcing the flux con-
tinuity condition (6b), to obtain

αn+1 = −κ Db
(rn+1

b )2

cn
(M,m)

F ′
(

rn+1
b

)

F
(

rn+1
b

) . (21)

2.5.2 Solution of the Microscale problem at Step A.2

We first solve analytically the linearized version of problem
(10) obtained by setting

ξcells = N tot
cells/Vb(tn) := ξn

cells,

cm =
rw∫

rn
b

cn+1
m (r)dr/(rw − rn

b ) := cn+1
m

to get

mGAG(t) = mn
GAGe−Kn(t−tn)

+mGAG,inh

(
1 − e−Kn(t−tn)

)
t ∈ [tn, tn+1]

(22)

where Kn := (kGAGξn
cellsc

n+1
m )/mGAG,inh. This allows us to

compute the updated level of secreted biomass mn+1
GAG :=

mGAG(tn+1) and the corresponding new biomass thickness
hn+1

b using (12).

2.5.3 Micro-to-Macro transition: Step B

Having computed the new biomass thickness hn+1
b , for each

pore of the scaffold matrix, we first compute the new porosity
Φn+1 through Eq. (16), and then, we compute the new effec-
tive parameters K n+1

(m,M) (permeability), Dn+1
(m,M) (diffusivity)

and Rn+1
(m,M) (consumption rate) using Eqs. (17), (18) and (19),

respectively.

2.5.4 Solution of the Macroscale problem at Step C

Let Th be a uniform partition of [0, �] into Nh subintervals
T of size h < H and cM,h, JM,h be the numerical approx-
imations of cM and JM, respectively, with cM,h piecewise
linear continuous and JM,h piecewise constant over Th . At
time level tn+1, the first step is to compute the constant value
of the Darcy velocity, solution of problem (15)

vn+1
M = vin

H(K (Φn+1)/Φn+1)

K (Φ0)/Φ0
in Th, (23)

H( f ) being the harmonic average of the function f over
[0, �], defined as H( f ) := (

∫ �

0 f −1(s)ds/�)−1. Then, the
next step consists of solving the nutrient problem (14) using
the velocity computed from (23) and using internal fixed
point iterations to deal with the non-linear consumption term.
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Table 1 Biophysical parameters

Capital letters Small letters Greek letters

Symbol Value Units Symbol Value Units Symbol Value Units

Db 2.2 × 10−5 cm2s−1 csat 6.4 × 10−6 g cm−3 κ 0.5 –

Dfl 3.2 × 10−5 cm2 s−1 h0 5 × 10−4 cm μfl 8.26 × 10−3 g cm−1 s−1

E 20 – kGAG,ref 2.38 %ww (day mM (cell/mm3))−1 ρfl 1 g cm−3

K1/2 1.92 × 10−7 g cm−3 mGAG,inh 3.5 %ww Φ0 0.8 –

N tot
cells 300 – vin 50 × 10−4 cm s−1 Ψmax 1.28 × 10−16 g(cells s)−1

The Galerkin approximation of (14) with the exponentially
fitted finite element method proposed and studied in Brezzi
et al. (1989), Gatti et al. (1998) is then carried out. This
scheme enjoys several interesting properties. The function
cM,h satisfies a discrete maximum principle irrespective of
the value of the local Péclet number (Roos et al. 2005). This
property prevents the numerical scheme from the onset of
spurious oscillations, if the fluid velocity becomes large, and
ensures that the discrete Macroscale nutrient concentration
is strictly positive and uniformly bounded by c0. The func-
tion JM,h satisfies at each (internal) mesh node xi separating
elements T −

i and T +
i the following discrete conservation law

J+
M,h − J−

M,h = Q̃M(cM,i )h. (24)

Multiplying both sides of (24) by the cross-section pore area
in the transverse (y, z) plane, we obtain the “mass flux”
equivalent of a Kirchhoff current balance with respect to node
xi (see also Wyatt et al. 1980 for a discussion of the electrical
analog of reaction–diffusion systems). The average concen-
tration required by Macro- to Micro-scale bridging can be
computed as

cn+1
(M,m)

(xP ) = H−1
∑
T ∈P

∫
T

cn+1
M,h dx . (25)

3 Results of the simulations

Simulations are carried out using the reference values of the
biophysical parameters listed in Table 1 (if not otherwise
specified). Adopted values for Db, Dfl, csat, K1/2, h0, N tot

cells,

vin, μfl and Φ0 are taken from Sacco et al. (2011) and
references cited therein. Adopted values for E, kGAG,ref , Ψmax

and mGAG,inh are taken from Nikolaev et al. (2010).
Moreover, we set NS = 1,000, b = 70 µm, NL = 16, so

that L = (2b)NL = 0.224 cm (cf. Sacco et al. 2011 and ref-
erences cited therein). We let [tstart, tend] = [0, 30] days and
we use a space discretization parameter in the simulations
h = 1 µm and a time discretization parameter Δt = 1.5 h.

3.1 The effect of fluid perfusion

We first investigate the oxygen distribution throughout the
scaffold thickness for an inlet oxygen tension pO2 = 20 %.
Figure 6a shows the concentration profiles computed from
the Macroscale model as a function of culture time. Each
point on the reported curves represents the average concen-
tration in the scaffold at different depths, identified by the
layer number, 1 = surface, 8 = center. Results are shown in
the static (no perfusion, dotted line) and interstitially per-
fused (vin = 50 µm/s, solid line) case. Figure 6b shows
the biomass thickness in the interstitially perfused regime at
different layers, while the difference Δh with respect to the
biomass thickness in the static case is represented in Fig. 6c.
Perfusion yields a higher biomass production, this phenome-
non being much more evident for innermost layers, because
fluid velocity favorably conveys a larger amount of nutrient
to the deepest regions than in static conditions. However, dif-
fusion barriers tend to smooth out the differences for longer
culture times, due to the net decrease in permeability (see
also Fig. 4b) and—consequently—of fluid velocity magni-
tude caused by pore obstruction.

3.2 The effect of the inlet oxygen tension

Referring from now on to the perfused case with vin =
50 µm/s, we investigate more in detail the statistical dis-
tribution of oxygen tension experienced by cells. The com-
mon practice in many bioreactor systems is simply to fix
the inlet oxygen concentration at the saturation level csat. In
reality, the situation is more complex, since cartilage cells
are in vivo physiologically exposed to lower oxygen levels.
Figure 7a–c shows the percentage of cells experiencing a
certain range of oxygen tension at time t = 5, 15, 30 days
parametrized as a function of the inlet concentration (bars
represented in different colors). Simulations reveal that dif-
ferent inlet concentrations in the bioreactor result in signif-
icantly different distributions of oxygen levels throughout
the construct and not only in a shift of the distribution. In
particular, an inlet concentration equal to csat gives rise, as
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Fig. 6 Effect of fluid perfusion. a Macroscale nutrient concentration
as a function of time at different scaffold depths (layer 1 = surface,
8 = center of the construct) with c0 = csat . Solid line vin = 50 µms−1,

dashed line static condition vin = 0, b time evolution of biomass thick-
ness under vin = 50 µms−1, c difference Δh between biomass thickness
in perfused versus static case parameterized by layer number

culture time advances, to increasingly more non uniform dis-
tributions (“flattened bars”) of the number of cells receiving
a certain level of oxygen, a point which might contrast with
the target of obtaining uniform oxygen levels throughout the
construct.

3.3 The effect of metabolic parameters and scaffold
porosity

Eventually, we use the model to investigate the role of the
metabolic regulation parameters and their interplay with
scaffold matrix porosity. To this purpose, we first carry out
a sensitivity study on effect of the rate of biomass synthe-
sis kGAG (for a fixed porosity Φ0 = 0.8). Motivated by the
experimental analysis carried out in Das et al. (2010) to mon-
itor the effect of oxygen tension in regulating chondrocyte
metabolic activity, we assume in this paper a dependence for
kGAG on the local oxygen concentration c in the form of a
Gaussian distribution kGAG(c) = Ae−(c−μ)2/(2 std2), where

A = kGAG,ref is the maximal amplitude, μ is the average
and std the standard deviation (all expressed in oxygen ten-
sion units). Different choices of μ and std are considered,
in accordance with the indications obtained from the results
shown in Fig. 7.

In Fig. 8a, we show the percentage variation of the bio-
mass thickness obtained at t = 30 days, to be compared to
that obtained using the constant value kGAG,ref , as a function
of the layer number (1 = surface, 8 = center of the con-
struct). We see that oxygen variations are more important for
the innermost scaffold layers, which attain a lower value of
nutrient concentration. More precisely, simulations suggest
a scenario for which a metabolic optimization on relatively
high oxygen levels (μ = 10 %) is disadvantageous, since
these levels cannot be attained uniformly in the scaffold due
to diffusion barriers. In the case μ = 5 %, if a “too narrow
metabolic regulation” is displayed by cells (std = 3.125 %),
again biomass secretion could be disadvantaged. Then, we
discuss the role of the parameter mGAG,inh, which is a lumped
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Fig. 7 Percentage of cells in the construct experiencing a certain oxy-
gen tension as a function of the inlet oxygen tensions indicated by differ-
ent colors and corresponding to: 20 % “hyperoxic” condition, 5–10 %

“physiological hypoxic” conditions, 1 % “strongly hypoxic” condition,
computed at culture times 5, 15, 30 days

representation of biomass production inhibition exerted on
cells to maintain a certain homeostatic condition. Before-
hand, we need to investigate more thoroughly the relation
between biomass thickness, geometry and contact inhibition
effects. Relation (13) reveals that for a given pore geome-
try and cellular post-initial conditions, there exists a thresh-
old value mGAG∗ such that if mGAG,inh < mGAG∗ , satu-
ration occurs due to geometrical factors (pore obstruction)
irrespective of biophysical homeostatic effects; otherwise,
biomass growth is limited by contact inhibition phenom-
ena. These considerations are well represented in Fig. 8b
which shows the (theoretical) value of hb,max obtained from
Eq. (13) as a function of mGAG,inh parametrized on differ-
ent initial porosities chosen within a physiological interval.
The above-mentioned regimes of biomass formation can be
clearly distinguished, the threshold value mGAG∗ being iden-
tified on each curve by the abrupt change of slope. We con-

clude our simulation analysis by investigating the combined
effect of contact inhibition and scaffold porosity on the time
evolution of secreted biomass. Figure 8c shows the biomass
thickness computed by the multiscale model, as a function
of time having set tend = 120 days (steady-state condition).
Curves are parametrized for different values of design poros-
ity Φ0 and different values of mGAG,inh chosen below and
above the threshold value mGAG∗ . Computed biomass pro-
duced in each layer of the scaffold is shown as a function
of time till long culture periods (120 days) for two different
values of design scaffold porosity Φ0 and for the two cases
mGAG,inh ≶ mGAG∗ . Most superficial layers correspond in
all cases to the uppermost curve of each family. Two classes
of conclusions can be drawn. First, a higher accumulation of
biomass is attained if mGAG,inh > mGAG∗ , for both porosi-
ties, even when considering medium to short culture times
(blue vs. red or magenta vs. green curves). Second, when the
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Fig. 8 Sensitivity analysis. a Percentage variation of biomass produc-
tion as a function of the matrix synthesis coefficient kGAG distributed as
a random normal variable with respect to results obtained in correspon-

dence of its constant reference value, b maximum biomass thickness
as a function of the GAG saturation level, c combined effect of contact
inhibition and scaffold porosity on the time evolution of biomass

driving parameter is design porosity, a higher porosity pro-
duces more uniform results along the whole scaffold depth
(spread of the curves along the y axis at a given time) due
to diffusion barriers exerting a severe influence at later times
(blue vs. magenta or red vs. green curves).

4 Discussion

Tissue Engineering is a strategy of regenerative medicine
aimed at producing functional substitutes of tissues and
organs, starting from donor cells cultivated in a controlled
environment (bioreactor) capable of providing adequate con-
ditions for cell viability and metabolism.

A main challenge in bioreactor optimization is the dif-
ficulty of establishing a relation between local biochemical
and biomechanical processes and design parameters which,
properly combined together, lead to achieve specified engi-
neered tissue properties (Freed and Vunjak-Novakovic 2001;
Freyria et al. 2005). The usefulness of a more quantitative

understanding of the phenomena occurring in bioreactor-
based tissue regeneration is thus clear. In this perspective,
the interaction with computational models may be profitably
exploited to gain information which are often unaccessible to
experimental measurements, for example, the effect of a fine
tuning of cellular metabolic mechanisms on biomass growth
(Knudson and Knudson 1991; Klein and Sah 2007) in con-
junction with a given scaffold matrix porosity.

There are numerous computational models of engi-
neered tissue regeneration, based on homogenized averaged
approaches (Obradovic et al. 1999; Galban and Locke 1999b;
Chung et al. 2007; Sacco et al. 2011; Raimondi et al. 2012)
or restricted to small portions of the domain including a
selection of biophysical mechanisms with a strong empha-
sis on CFD (Boschetti et al. 2006; Galbusera et al. 2007;
Lesman et al. 2010). The common characteristic of all the
above models is that they are restricted on a single scale of
the problem.

The model presented in this study is focused on articu-
lar cartilage tissue engineered constructs and describes in a
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multiscale coupled framework nutrient (oxygen) transport
and biomass growth. Despite in Cioffi et al. (2008), an attempt
was already made to couple phenomena occurring at different
length scales, the model proposed in this article represents,
to our knowledge, the first multiscale approach which keeps
into account in a self-consistent manner the effect of barrier to
the nutrient diffusive process caused by the pore obstruction
due to biomass accumulation. This fundamental aspect of the
engineered tissue growth process was not covered in Cioffi
et al. (2008), because cellular metabolism and consequent
production of ECM were not accounted for, thus making the
predictions of the proposed Micro- to Macro-scale model
significant only for the early stages of the growth process.
In this sense, the formulation proposed in the present work
provides, in our opinion, a substantial improvement of the
multiscale approach of Cioffi et al. (2008).

The mechanism of inter-communication between the two
representative scales, Macroscale and Microscale, at which
the tissue growth problem is solved in this article, is based
on the principle of scale separation and relies on the intro-
duction of suitable scale transition operators (see Lee and
Sundararaghavan 2011). Our aim was to obtain a simulation
tool able to cover a much wider range of applications and
capable of predicting bioreactor performance, even for long
culture intervals, requiring at the same time a very limited
computational effort. Geometrical simplifications and mod-
eling simplifications allowed us to end up with a first version
of such a tool. The validity of such simplifications is, in some
cases, biophysically consistent, in others more questionable,
and this deserves future investigation. Moreover, in order for
the proposed formulation to be employed as a reliable support
to the Bioengineer’s design activity, an intensive campaign
of model validation against experimental data is mandatory.
This important and necessary research step might benefit,
in a future work, from experimental measurements based
on micro–imaging techniques which provide high-resolution
time-continuous data (Singh et al. 2005), used in conjunc-
tion with novel optically accessible 3D scaffold architectures
such as, for example, the miniaturised perfusion chamber
(mini-bioreactor) recently presented in Laganà and Raimondi
(2011).

Having established that comparison with laboratory resu-
lts is definitely required for model validation, what kind of
biological conclusions can we draw right now from our model
to improve bioreactor design?

Biological studies indicate that in vivo cartilage is presum-
ably exposed to “physiologically hypoxic” conditions with
an oxygen tension ranging from 10 % in the superficial lay-
ers to 1 % in the deepest layers (Grimshaw and Mason 2001;
Das et al. 2010). A widespread approach in TE practice is,
however, to set a “hyper-physiological” (20 %) oxygen ten-
sion at the device inlet, in order to prevent from nutrient
shortage in the internal regions of the construct. With the

present model, we were able to compute the local distribu-
tion of nutrient in the porous scaffold matrix resulting from
a certain inlet oxygen tension. For a 20 % inlet oxygen ten-
sion, computed oxygen levels (Fig. 6a) encompass a wide
spectrum of values throughout the device thickness, ranging
from nearly hyper-physiological conditions in the superfi-
cial layers to strongly hypoxia in the innermost layers (Freed
and Vunjak-Novakovic 2001; Freyria et al. 2005; Devarapalli
et al. 2009). We also investigated the spatial dependence of
the oxygen distribution as a function of the inlet oxygen ten-
sion. Under hyperoxic inlet conditions, the distribution of
cell percentage as a function of received oxygen tension is
more smoothed out than under hypoxic conditions (Fig. 7).
Such a detailed knowledge (in contrast to a simpler read-out
approach) of the oxygen tension experienced by cells can
be used as a more sophisticated control parameter for cell’s
metabolism than the sole oxygen inlet tension. This advanced
concept is based on the evidence that a certain oxygen ten-
sion—which may, but not necessarily, be correspondent to
the physiological levels—can be used to finely tune the in
vitro synthesis of the various components of the ECM, cell
proliferation and differentiation (Das et al. 2010).

Direct perfusion bioreactors have been demonstrated to
enhance nutrient convey, while applying hydrodynamic shear
to cells, both conditions being believed to favor in vitro chon-
drogenesis (Cioffi et al. 2008). With the model, we were able
to quantify the role of perfusion on the local oxygen dis-
tribution in the construct. While the final level of oxygen is
strongly influenced by diffusion barriers, the transient behav-
ior to reach steady state is significantly different from static
culture conditions (Fig. 6a). As a result, in the same time
interval, biomass production is strongly promoted by intersti-
tial flow, this fact being much more evident in the innermost
layers (Fig. 6b).

As for the mechanical stimulus exerted on the cells by
the fluid-dynamical field, it is known that moderate values of
shear stress can enhance ECM production (Raimondi et al.
2006). On the one side, shear stress is not experimentally
accessible at the Microscale level, while existing CFD com-
putational models at this scale do not account in a self-consis-
tent manner for the presence of cells (Raimondi et al. 2005).
In the model we propose in this article, the shear stress infor-
mation can be extracted either at the macroscopic level as
the Darcy stress or estimated using the Microscopic radial
velocity field at the fluid–biomass interface combined with a
Coulomb-like friction law to obtain a tangential-like compo-
nent needed to evaluate the shear stress at the fluid–biomass
interface. An extension of this approach to model interstitial
fluid flow throughout the growing biomass at the Microscale
level is the object of ongoing research activity and will be
reported in a subsequent publication.

More in general, we notice that mechanical issues are
crucial when describing biomass growth and remodeling.
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In this perspective, advanced models of biomass growth
incorporating elements of mechanical theory of mixtures
to describe the evolving mechanical properties of the tissue
during articular cartilage regeneration from explant samples
have been proposed, for example, in Klisch et al. (2003),
Cowin (2004), Lemon et al. (2006). Such models are sophis-
ticated and promising, but, at the same time, their adoption
in the framework of a realistic and quantitative description
of the phenomena occurring in a dynamically perfused bio-
reactor seems to be still a too ambitious goal, especially from
the computational point of view.

The regulatory role of biomass production rate is another
fundamental biophysical mechanism that we were able to
explore. The idea was to test the evolution of biomass growth
when not all the cells are subjected to the same “opti-
mal” environmental conditions. Namely, for a given value
of scaffold matrix porosity, a Gaussian distribution depend-
ing on the nutrient concentration is assumed for kGAG and the
resulting biomass thickness at the various scaffold levels is
compared to that obtained taking kGAG equal to the constant
reference value kGAG,ref (Fig. 8a). The Gaussian distribution
causes in general a reduction in biomass production, due to
the fact that oxygen levels in the scaffold vary significantly.
More specifically, the reduction is more important when the
oxygen tension corresponding to the given central value μ

of the Gaussian is experienced by a restricted percentage of
cells. A much better performance is achieved when μ is close
to a level of oxygenation that is more uniformly represented
in the scaffold (case μ = 5 %). Notice that this latter value of
μ has been selected to reproduce the average oxygen tension
experienced by chondrocytes in vivo (Malda et al. 2003). For
the same reason, given a certain value of μ, it turns out that
tuning metabolic regulation around a narrow range of the
concentration parameter (smaller std) is again more disad-
vantageous in terms of biomass production.

Eventually, reduction of biomass production due to cel-
lular contact inhibition has been investigated in conjunc-
tion with different values of scaffold matrix porosity Φ0,
a technologically relevant design parameter (Raimondi et al.
2005; Lesman et al. 2010). The maximum biomass produc-
tion that can be obtained in a given scaffold pore depends, in
a non easily predictable manner, on the interplay between
contact effects and available void space. The theoretical
results in Fig. 8b indicate that for each considered poros-
ity, the threshold value mGAG∗ separates a regime where
additional biomass formation is limited by contact effects
(mGAG,inh ≤ mGAG∗ ) from a saturation regime at which
biomass production is only determined by pore obstruction
(mGAG,inh > mGAG∗). Figure 8c shows the computed tem-
poral evolution of the biomass thickness in each layer for a
very long culture process. Two classes of conclusions can be
drawn. First, a higher accumulation of biomass is attained if
mGAG,inh > mGAG∗ , for both porosities, even when consider-

ing medium to short culture times (blue vs. red or magenta vs.
green curves). Second, when the driving parameter is design
porosity, a higher porosity produces more uniform results
along the whole scaffold depth (spread of the curves along
the y axis at a given time) due to diffusion barriers exerting
a severe influence at later times (blue vs. magenta or red vs.
green curves).

Further aspects of the problem which deserve consider-
ation for future investigation are: (i) the inclusion of more
detailed 3D effects while maintaining the computational cost
at an affordable level. In this perspective, inhomogeneities in
the (y, z) plane can be easily accounted for in our multiscale
setting by assuming that the effective parameters are stochas-
tic variables with average value given by the Micro-to-Macro
transition proposed in the present model and a certain vari-
ability which can be inferred from experimental data; (ii) the
inclusion of more detailed models of cell life-cycle, distin-
guishing between pools of cells in resting, proliferating and
secreting states. In this perspective, the change of state of
a cell can be monitored via a system of integro-differential
equation depending on age maturity parameters (see, e.g.,
Bernard et al. 2003); (iii) the inclusion of interstitial flow
through the growing biomass in the Microscale model by
using the same Darcy equations (15) adopted in the Macro-
scale model for fluid flow. This would allow the calculation of
mechanical shear as a function of the radial coordinate in the
spherical pore and could be used for future development of a
model for the GAG synthesis rate depending on time, position
and shear within the biomass; (iv) the inclusion of unbound
and degraded GAG fractions in the model for biomass syn-
thesis at the microscale level, to account for degradation of
the matrix components due to proteases whose production by
chondrocytes and activation may be modulated by a variety
of factors (see DiMicco and Sah 2003; Klein and Sah 2007
and references cited therein). More in general, the present
Micro- to Macro-scale transition techniques can be extended
to other applications in Biology, for example, microcircula-
tion problems where different scales co-exist and computa-
tional efficiency is often a major constraint (Secomb et al.
2008).
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