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Abstract The insufficient load-bearing capacity of today’s
tissue-engineered (TE) cartilage limits its clinical applica-
tion. Focus has been on engineering cartilage with enhanced
mechanical stiffness by reproducing native biochemical com-
positions. More recently, depth dependency of the biochemi-
cal content and the collagen network architecture has gained
interest. However, it is unknown whether the mechanical per-
formance of TE cartilage would benefit more from higher
content of biochemical compositions or from achieving an
appropriate collagen organization. Furthermore, the rela-
tive synthesis rate of collagen and proteoglycans during the
TE process may affect implant performance. Such insights
would assist tissue engineers to focus on those aspects that
are most important. The aim of the present study is there-
fore to elucidate the relative importance of implant ground
substance stiffness, collagen content, and collagen architec-
ture of the implant, as well as the synthesis rate of the bio-
chemical constituents for the post-implantation mechanical
behavior of the implant. We approach this by computing the
post-implantation mechanical conditions using a composi-
tion-based fibril-reinforced poro-viscoelastic swelling model
of the medial tibia plateau. Results show that adverse implant
composition and ultrastructure may lead to post-implantation
excessive mechanical loads, with collagen orientation being
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the most critical variable. In addition, we predict that a faster
synthesis rate of proteoglycans compared to that of collagen
during TE culture may result in excessive loads on collagen
fibers post-implantation. This indicates that even with similar
final contents, constructs may behave differently depending
on their development. Considering these aspects may help to
engineer TE cartilage implants with improved survival rates.

Keywords Tissue engineering - Implantation - Collagen
architecture - Finite element modeling

1 Introduction

Among the main limitations of therapies such as chondro-
plasty for treatment for local cartilage damage is the lack of
donor tissue as well as the lack of grafts that contain biologi-
cally and mechanically functional tissue (Schek et al. 2004).
Tissue engineering (TE) approaches have the potential to
overcome these limitations (Risbud and Sittinger 2002; Kuo
etal. 2006; Nesic et al. 2006; Noth et al. 2008). Despite prom-
ising improvements, the insufficient load-bearing capacity of
today’s TE cartilage is an important limiting factor in its clini-
cal application. Physiologic mechanical forces are thought to
induce long-term implant failure (Scotti et al. 2007). The suc-
cess rate of cartilage replacement by TE implants is thought
to be enhanced if the implant had the functional load-bearing
properties of the native tissue.

Native cartilage derives its compressive properties from
the interaction between proteoglycans (PG’s), which attract
water through osmotic pressure, and collagen fibers, which
resist tension. The functional significance of the specific
physiological depth-dependent collagen structure in native
tissue (with vertical fibers in the deep zone and horizon-
tal fibers in the superficial zone) is well emphasized in the
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literature (Korhonen et al. 2002; Owen and Wayne 2006;
Wilson et al. 2007; Korhonen et al. 2008; Shirazi and Shirazi-
Adl 2008; Shirazi et al. 2008). Vertical fibrils in the deep
zone resist swelling (Wilson et al. 2006b) and protects the
solid matrix against large strains at the subchondral junction
(Shirazi and Shirazi-Adl 2008). The superficial zone plays
a crucial role in resisting elevated tensile stresses parallel to
the articular surface (Owen and Wayne 2006). Experimental
and numerical studies have demonstrated that the removal of
the superficial zone from normal cartilage reduces the ability
of the tissue to support axial loads and retain fluids (Glaser
and Putz 2002; Torzilli et al. 1983; Torzilli 1993; Owen and
Wayne 2006). Given these important roles of ultrastructure
in load-bearing capabilities of native tissue, one of the main
challenges for tissue engineering of mechanically stable car-
tilage is to find the cues to create an engineered tissue with
the ultrastructure components and organizations similar to
those of native tissue.

Using mechanical stimuli to enhance matrix production
in TE constructs, it is possible to tissue engineer carti-
lage with almost native PG’s content. However, collagen
reaches only 15-35% of the native content after 5—12 weeks
(Eyrich et al. 2007; Hu and Athanasiou 2006; Miot et al.
2006), and the native collagen network architecture is not
reproduced. In particular, Kelly et al. (2006) observed that
under unconfined compression, the most common loading
regime in cartilage TE, collagen fibers align perpendicular
to the loading direction rather than in physiological architec-
ture. Approaches to create a depth-dependent tissue include
using depth-dependent scaffold properties or cell sources.
Unfortunately, these approaches had limited success in the
(mid)long-term (Kim et al. 2003; Malda et al. 2005; Ng et al.
2005, 2009; Klein et al. 2007; Moutos et al. 2007). Recently,
depth dependency of the collagen network architecture has
gained interest in cartilage TE (Kock et al. 2010; Khoshgoftar
et al. 2011). However, it is unknown whether the mechani-
cal performance of TE cartilage after implantation would
benefit more from higher biochemical compositions content
of the implant or from achieving an appropriate depth-
dependent collagen organization. This is important to under-
stand because engineering a tissue with more matrix content
would require a different experimental approach than engi-
neering a tissue with depth-dependent structure or with phys-
iological collagen architecture (Khoshgoftar et al. 2011).

Regarding biochemical constituents, not only their con-
tent but also the rate of their synthesis during TE culture may
influence mechanical behavior of engineered tissues. Indeed,
previous experimental studies showed significant influences
of the synthesis rate of PGs and collagen on mechanical
properties of the cartilage explants (Asanbaeva et al. 2007)
and TE constructs (Bian et al. 2009). Effects of such phe-
nomena on post-implantation mechanical performance of TE
implants have not been reported so far, and it is unknown how
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different synthesis rate of the PGs and collagen during TE
process may change mechanical conditions in TE implants
after implantation.

Insight into the relative importance of the above-men-
tioned aspects would assist tissue engineers to focus on those
aspects that are likely to improve implant performance most.
The aim of the present study is, therefore, to elucidate the
relative importance of ground substance stiffness, collagen
content, and collagen architecture of the implant for the post-
implantation mechanical performance of the implant. Fur-
thermore, we evaluate how implant performance depends on
the relationship between PG and collagen synthesis rates dur-
ing TE. Implants with various composition and structural
organizations, implanted in intact cartilage with native con-
tents and a physiological collagen architecture, are examined
to elucidate which particular aspect of the implant is to be
improved for a better match between implant and host tissue.

2 Methods
2.1 General approach

We investigated the role of ground substance stiffness, colla-
gen content, and collagen architecture of TE implants on the
post-implantation mechanical condition of the implant when
the implant was attached to the native tissue and mechanically
loaded. Mechanical condition of the implant was compared
against the mechanical condition of loaded native tissue with-
outimplant. A numerical approach was used, because it is not
feasible/possible to experimentally examine implants with
different ultrastructure and collagen organization and evalu-
ate mechanical strains and stresses throughout the implants.

To evaluate the importance of the collagen network archi-
tecture, the direction of the collagen fibers was varied in the
implant, such that they were random, horizontal, and phys-
iological. To evaluate the importance of the collagen con-
tent and ground substance stiffness, for each implant type,
implants with three different constituents were compared,
first, implant with 1/2 native non-fibrilar ground substance
stiffness and 1/4 native collagen content, which represents
the currently producible collagen content in TE studies;
second, implant with native ground substance stiffness and
1/4 native collagen content; third, implant with 1/2 native
ground substance stiffness and 3/4 native collagen content.
List of the evaluated cases is summarized in Table 1.

2.2 Finite element mesh and material model

We created an axisymmetric finite element model (ABAQUS
v6.9, Pawtucket, RI, USA) of the medial tibia plateau car-
tilage in which a cylindrical part of the mesh at the central
region of the model represented a TE implant (Fig. 1). A val-
idated composition-based fibril-reinforced poro-viscoelastic
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Table 1 List of the evaluated ratio of the implants GAG content, matrix
stiffness, and collagen content to those in native tissue for implants with
random, horizontal, and native-like primary fibers

Implant collagen  Implant ground substance  Implant collagen

architecture stiffness/native ground content/native

substance stiffness collagen content
Random 172 1/4

1 1/4

172 3/4
Horizontal 172 1/4

1 1/4

172 3/4
Physiological 172 1/4

1 1/4

172 3/4

swelling material model was adopted in which the porous
matrix of the biphasic tissue consisted of a swelling non-
fibrillar ground substance, which contains mainly PG’s and
TE scaffold substance, and a fibrillar part representing the
collagen network (Wilson et al. 2004, 2006b, 2007). The
mechanical behavior of the material model was the direct
consequence of the composition (fluid fraction, collagen frac-
tion, fixed charge density) and the structure (collagen orienta-
tion) of the tissue. The governing stress equation was (Wilson
et al. 2007):

totf totf

I—Zpé a,,f—i—z/oéa"f

i=1 i=1
—Arl ey

Otor = _Mfl + 150

where uf was the water chemical potential, I the unit tensor,
Am the osmotic pressure gradient, n, ¢ the initial solid vol-
ume (in the unloaded and non-swollen state), o, the stress
in the non-fibrillar ground substance, O’} the fibril stress in
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Fig. 1 a Axisymmetric finite element model of the medial tibia pla-
teau cartilage with a TE implant located at the central region, b Finite
element mesh of the implant (fop) with initial height H and length L

" Articular cartilage

the ith fibril direction, pé the volume fraction of the non-
linear, viscoelastic collagen fibrils with respect to the total
solid volume, i detonated the number of the fibril compart-
ment, and totf the total number of the fibrils. In all cases,
PG’s content in the implant was assumed to be 75% of the
native tissue in agreement with experimental studies (Kelly
et al. 2006). Expressions for osmotic swelling pressure can
be found in Wilson et al. (2006b). Permeability was chosen to
be twice that in native tissue (Buschmann et al. 1992; Owen
and Wayne 2006). The composition and mechanical proper-
ties used for native tissue were the same as in Wilson et al.
(2006b). The material model was implemented in ABAQUS
using the user subroutine UMAT.

2.2.1 Non-fibrillar ground substance

For the non-fibrillar ground substance, a compressible Neo-
Hookean model was used of which the compressibility was
dependent on the solid fraction by the following expression
for the Poisson’s ratio (Wilson et al. 2007):

vy = 0.5n, = 0.5”}*O

@

where J was the determinant of the deformation gradient ten-
sor F. Having the following expressions for the bulk modulus
K, and the shear modulus G,, as a function of the Young’s
Modulus E,,, and the Poisson’s ratio v, as:

Ky = — 3)
T30 = 2up)
En
Gp=—"" 4
"2(1+ ) @
K, can be expressed as:
2 (1+40.5n50/J)

Ky ==Gp—-""2 5
"3 (L =ng0/)) ®

The Cauchy stress of the non-fibrillar ground substance was
given by (Wilson et al. 2007):

-

i
—

16.5 mm I

before swelling equilibrium and native host cartilage (bottom) with a
central hole with radius of 6 mm and height of 2.36 mm
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2.2.2 Collagen fiber network; material model and
architecture

To capture the nonlinear strain-dependent viscoelastic behav-
ior of collagen fibers, the mechanical behavior of the fibers
was represented by two parallel nonlinear springs, P; and
P>, and a dashpot with damping coefficient 1 in series with
P>. For the springs, two-parameter exponential stress—strain
relationship was used (Wilson et al. 2006b):

ke s
P1=E1(e'f—1) for e >0

(7
Pr=0 for e, <0
Py = Ex(@™ —1) for & >0 ®)
P,=0 for g, <0

with E1, E3, k1 and k positive material constants and ¢ , the
total fibril logarithmic strain and &, the logarithmic strain in
the spring P,.

Since the strains in the upper and lower part of the spring
system were the same, the total fibril stress was given by:

Pr=P +P for g7>0 )
Pr=0 for e <0
The time derivative of the fibril strain was given by:
P P
£y 2 2 (10)

= -+
(P, + E)ky 1

Determination of the viscoelastic fibril stress can be found
in Wilson et al. (2006b).

Due to deformation, the surface associated with a fibril
changes. To include this, the fibril stress was expressed with
reference to its original state. The 2nd Piola-Kirchhoff stress
tensor was given by Wilson et al. (2006b, 2007):

Sf = Sfé'fﬁogf’o (11)

where € was the initial fibril direction. The 2nd Piola-
Kirchhoff stress in the initial fibril direction Sy was given
by:

Py Py

S = —— =T ",
I TR

12)

where A was the elongation of the fibril. The total Cauchy
stress expressed as a function of the deformed state was given
by:

Uf=lF'Sf 'FTzlP—F~5fozfo‘FTZ&PfEfEf
J J A o J
(13)
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where ¢y was the current fibril direction and the factor 1 /J
represents the change in surface associated with the fibril.

For more details on the fibers material model, the reader
is referred to Wilson et al. (2004, 2006b, 2007). Based on
Wilson et al. (2006b, 2007), the material constants we used
were E1 = 4.316 MPa, E) = 19.97 MPa, k| = 16.85,k; =
41.49, and n = 1.424 x 10°MPas.

A collagen network with physiological architecture was
captured by prescribing the local orientation of primary col-
lagen fibrils in each integration point, such that they extended
perpendicular from the subchondral bone in the deep zone,
curve over in the transitional zone, and flush with the articular
surface in the superficial zone. In addition, seven secondary
fibrils were included per integration point: three running in
the directions of the r-, y-, and z-axis in the axisymmetric
configuration, and four running in directions between those
axes. The relative collagen fractions were then given by:

Pc = Pec,tot %f = Pc,tot ﬁ for the primary fibrils

(14)

Oc = Pc,tot ﬁ = Pc,tot ﬁ for the secondary fibrils

where C was a positive constant, p. o; the depth-dependent
total collagen volume fraction per total solid volume.

In the case of constructs with collagen fibers predomi-
nantly oriented parallel to the articular surface, primary fibers
were considered to be horizontal throughout the entire depth
of the construct, and C was chosen 3.0 to represent the rel-
ative importance of primary fibrils over secondary fibrils.
In the case of constructs with randomly oriented collagen
fibers, C was chosen 0, i.e., no preferred fiber direction was
considered.

2.3 Simulations

Simulations required a two-step approach. In the initial equil-
ibration step, the implant and the cartilage were allowed to
swell independently until equilibrium. During this swelling
step, the implant was allowed to freely expand in radial and
axial directions while the symmetry axis was confined in
radial direction. The bottom plane of the native tissue region
was confined in all directions to mimic the attachment of the
cartilage to the subchondral bone. At the end of this step, we
adjusted the pre-swollen implant size such that the swollen
size of the implant exactly matched the gap region in the host
cartilage, i.e., L =6 mm in radius and H = 2.36 mm in height.

In the subsequent loading step, full integration between
native tissue and the implant was prescribed using tie con-
tact between them. Loading by the femoral condyle was sim-
ulated by using a rigid impermeable indenter with a curvature
similar to the femoral condyle (Wilson et al. 2003). The con-
tact between the femur and the tibia cartilage was assumed to
be frictionless. Fluid outflow was only allowed at the parts of
the articular surface that were not in contact with the femur.
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Fig. 2 a Peak fiber strain, b deviatoric strain, ¢ volumetric strain and d contact pressure in native cartilage without implant

The bottom plane was confined in all directions, and the sym-
metry axis was confined in the radial direction. A ramp stance
load of 162.5N was applied in 1 s, and this load was kept con-
stant for 30 s to achieve a natural loading condition. This was
followed by a ramp gait load of 568.75N that was applied in
1 s to simulate the loads during a walking step (Wilson et al.
2006a; Morlock et al. 2001).

Swelling equilibrium and post-implantation condition of
implants with different synthesis rates for PG’s and collagen
were simulated as follows. The equilibrium condition that
was reached for the implant after the initial swelling step was
dependent on the balance between swelling pressure and col-
lagen stress. Consequently, a different equilibrium state was
reached when it was assumed that all collagen was produced
early, after which the implant started to swell, or whether
swelling due to proteoglycan synthesis occurred first and col-
lagen was added later, assuming late synthesis. We consid-
ered these effects by comparing three cases in which all, half,
or one-third of the fibers were active in resisting swelling
pressure in initial swelling equilibrium step (i.e., these fibers
were synthesized early) and the remainder was not active
in resisting swelling pressure in initial swelling equilibrium
step (i.e., these fibers were synthesized late). In the model,
zero strain was prescribed for that portion of the fibers that
were inactive in resisting swelling pressure. Implants with 3/4
native collagen content and native ground substance stiffness
were compared while the collagen orientation in the implant
was varied.

3 Results
3.1 Native tissue without implant

In the loaded area of native tissue without implant, superficial
collagen was strained on average 4% (Fig. 2a). Matrix in the
middle and the deep zone was under compression, and there-
fore, collagen fibers remained unstrained in the loaded area,
but they were strained by osmotic pressure in the unloaded
periphery. Average matrix deviatoric strain was 2%, and

the strain was inhomogeneously distributed. Average matrix
volumetric strain was 2.5% with rather homogeneous distri-
bution under the femoral indenter (Fig. 2b, c). The contact
pressure at the cartilage surface was 4.2 MPa (Fig. 2d), which
isinrange of the reported data in the literature (Mononen et al.
2011; Agneskirchner et al. 2004; Meyer et al. 2008; Marzo
and Gurske-DePerio 2009; Morimoto et al. 2009).

3.2 Implants with randomly oriented collagen fibers

When TE cartilage with randomly oriented fibers, 1/4 native
collagen content and 1/2 the native ground substance stiff-
ness were implanted in the central region of the cartilage,
fibers in the deep zone experienced 12% strain (Fig 3a top).
Local deviatoric strain increased by 50% (Fig. 3b top) and the
average volumetric strain increased up to sevenfold (Fig. 3c
top). Increasing the ground substance stiffness to that of the
native tissue had negligible effect on the magnitude and dis-
tribution of the strains (Fig 3a—c middle), but it increased
the interface shear stress in the middle zone (Fig. 3d mid-
dle). Keeping the ground substance stiffness to be 1/2 that of
native tissue but increasing the collagen content from 1/4 to
3/4 that of the native content reduced fiber strains in the deep
zone (Fig. 3a bottom), deviatoric strain (Fig. 3b bottom), and
volumetric strain (Fig. 3¢ bottom). Furthermore, the interface
shear stress was considerably decreased (Fig. 3d bottom).

3.3 Implants with horizontally oriented collagen fibers

In the implant with horizontally oriented primary fibers and
randomly oriented secondary fibers, 1/4 native collagen con-
tent and 1/2 of the ground substance stiffness of the native
tissue, primary fibers experienced an inhomogeneous strain
with peak tensile strains of 9% concentrated at the superficial
and middle zone, ameliorating to 4% in the deep zone (Fig. 4a
top). Compared to the implant with randomly oriented fibers,
the distribution of the deviatoric strain was different with
slightly higher maximum magnitude (Fig. 4b top), the distri-
bution and magnitude of the volumetric strain were slightly
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Fig. 3 a Peak fiber strain, b (a) (b)

deviatoric strain, ¢ volumetric Fiber Strain i >  peviatoric Strain
strain and d interface shear 3mm | 4mm

stress in implants with randomly I%:%ﬁi‘_g}_ +7.60e-02
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consisting of 1/2 native ground +4.17e-02 +3.98e-02
substance stiffness and 1/4 :(2)'.%?}?;-?%0 1}_‘_;;‘;;3’2
native collagen content (top), +3.67e-03

native ground substance
stiffness and 1/4 native collagen
content (middle), and 1/2 native
ground substance stiffness and
3/4 native collagen content
(bottom)

(c)
Volumetric Strain

+2.45e-01
+1.63e-01
+8.00e-02
-2.50e-03
-8.50e-02
-1.67e-01
-2.50e-01

different (Fig. 4c top), and the interface shear stress had
similar distribution with smaller magnitude in the middle and
superficial zones. Increasing the ground substance stiffness
to that of the native tissue had negligible effect on the magni-
tude and distribution of the strains (Fig. 4a—c middle), but it
increased the interface shear stress (Fig. 4d middle). Increas-
ing the collagen content from 1/4 to 3/4 native content while
the ground substance stiffness was 1/2 that of native tissue
resulted in strain reduction, yet, with different distributions
and magnitudes compared to the native tissue (Fig. 4 bottom).

3.4 Implants with physiological collagen fibers

In the implant with physiological predominant fibers and ran-
domly oriented secondary fibers, 1/4 native collagen content
and 1/2 of the ground substance stiffness of the native tissue,
the distribution of primary fiber strain was similar to that
of native tissue without implant. However, the magnitude of
the fiber strain was higher (13%) (Fig. 5a top). Increasing
the ground substance stiffness to that of the native tissue had
negligible effect on the strain magnitudes (Fig. S5a—c middle).
Increasing the collagen content from 1/4 to 3/4 native content
while the ground substance stiffness was 1/2 that of native
tissue decreased the fiber strains to 9% (Fig. 5a bottom).
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The average volumetric strain was considerably decreased
(Fig. 4c bottom).

3.5 Implants with different synthesis rates of PGs and
collagen

Pre-implantation (Fig. 6a left) fiber strain in the implant with
randomly oriented fibers, 3/4 native collagen content and
native ground substance stiffness, increased from 4% when
all collagen fibers were synthesized early (Fig. 6a top) to 5
and 6% when half (Fig. 6a middle) and one-third (Fig. 6a
bottom) of the fibers were synthesized early. This resulted in
excessive collagen strains of 10 and 13% for the two later
cases under loading, respectively (Fig. 6a right).

In the implant with horizontally oriented primary fibers
and randomly oriented secondary fibers, 3/4 native collagen
content and native ground substance stiffness, pre-implanta-
tion (Fig. 6b left) peak fiber strain was concentrated toward
the center of the implant increasing from 3% when all colla-
gen fibers were synthesized early (Fig. 6b top) to 4 and 4.7%
when half (Fig. 6b middle) and one-third (Fig. 6b bottom)
of the fibers were synthesized early. This resulted in colla-
gen strains of 7 and 9% for the two later cases under loading
(Fig. 6b right).
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Fig. 4 a Peak fiber strain, b deviatoric strain, ¢ volumetric strain and
d interface shear stress in implants with horizontally oriented primary
fibers consisting of 1/2 native ground substance stiffness and 1/4 native

In the implant with native-like primary fibers and ran-
domly oriented secondary fibers, 3/4 native collagen con-
tent and native ground substance stiffness, pre-implantation
(Fig. 6c left) peak fiber strain was concentrated at the super-
ficial layer increasing from 5% when all collagen fibers were
synthesized early (Fig. 6¢ top) to 6 and 8% when half (Fig. 6¢
middle) and one-third (Fig. 6¢ bottom) of the fibers were
synthesized early. Thus, late collagen synthesis resulted in
excessive collagen strains of 11 and 13% for the two later
cases under loading (Fig. 6¢ right).

4 Discussion

In the present study, the mechanical conditions inside and
around a TE construct after implantation in intact cartilage

(b)

Deviatoric Strain

+8.30e-02
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+5.60e-02
+4.25e-02
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+1.56e-02
+2.09e-03

(d)

Shear Stress at Interface (MPa)

+0.00e+00
-2.34e-02
-4.67e-02
-7.01e-02
-9.34e-02
-1.17e-01
-1.40e-01

collagen content (fop), native ground substance stiffness and 1/4 native
collagen content (middle), and 1/2 native ground substance stiffness and
3/4 native collagen content (bottom)

were analyzed to elucidate the relative importance of com-
position and structural organizations of the implant for its
post-implantation mechanical performance. In particular, the
importance of the implant ground substance stiffness, colla-
gen content, and collagen architecture was investigated. This
study showed that adverse parameters for each of these vari-
ables may lead to excessive mechanical loads, with collagen
architecture being the most critical variable. Without phys-
iological collagen architecture, a TE implant experiences a
different distribution of the mechanical loads, independent of
total tissue content. The most effective way to develop a tissue
in which strains approach those in native tissue throughout
the depth of the cartilage is to create a tissue with a physio-
logical collagen structure. However, if physiological collagen
architecture was formed but total collagen content was insuf-
ficient, then excessive strains were predicted to occur in the
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Fig. 5 a Peak fiber strain, b deviatoric strain, ¢ volumetric strain and
d interface shear stress in implants with physiological collagen net-
work consisting of 1/2 native ground substance stiffness and 1/4 native

superficial collagen fibers. These may lead to fiber disruption
and consequent loss of functionality.

A TE implant with insufficient ground substance stiffness
and collagen content creates a different mechanical environ-
ment after implantation than an implant with inappropriate
collagen architecture. In particular, with random orientation
of the collagen, as the most probable case in free swelling
TE studies, the distribution of the collagen fiber strain var-
ied, and local strain magnitudes in some areas reached three-
fold those that were computed for native tissue. Increasing
the ground substance stiffness to that of the native tissue
had negligible effects on the magnitude and distribution of
strains. Increasing the collagen content from 1/4 to 3/4 native
content decreased fiber strain, volumetric strain, and inter-
face shear stress. However, distribution and magnitudes of
the strains were considerably different from that in native
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collagen content (fop), native ground substance stiffness and 1/4 native
collagen content (middle), and 1/2 native ground substance stiffness and
3/4 native collagen content (bottomn)

tissue. Both low and excessive straining may result in the
degradation of the collagen network. It has been shown that
collagen fibers undergo failure beyond 8—10% strain (Wang
2006) and that cyclic compressive strains with rates in the
range of 8—25%/s cause immediate damage to collagen fibers
(Thibault et al. 2002). When strain remains below 4%, enzy-
matic degradation of collagen increases (Huang and Yannas
1977; Ruberti and Hallab 2005). Collagen network degener-
ation at the articular surface may lead to chondrocyte death,
even at physiological loads/strains (Chen et al. 2003). In addi-
tion to such direct effects, changes in the collagen network
may have indirect effects at the tissue and cell level. Because
the PGs are retained by and swelling is restricted by the colla-
gen network, loss of PGs and tissue swelling may occur with
collagen failure resulting in tissue softening. Any of these
changes to the collagen, PGs and water content of cartilage
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Fig. 6 Pre-implantation (/eft) and post-implantation (right) peak fiber
strain in implants with randomly oriented fibers (a), horizontally ori-
ented fibers (b), and physiological collagen network consisting of 1/2

may alter the local mechanical environment of the cell, under
the same physiological loads, thus altering cell anabolic/cata-
bolic behavior and metabolism (Kurz et al. 2001; Smith et al.
2000).

Collagen content was found to be the most important
parameter in determining interface shear stress. Assuming
that high shear stresses at the interface between tissues will
prohibit tissue integration, we postulate that implants with
higher total collagen contents may have a higher chance to
become integrated in the native host cartilage.

A second purpose of the present study was to evaluate how
implant performance depends on the relationship between
PG and collagen synthesis rates during TE. Interestingly,
our pre-implantation free swelling results showed that rapid
synthesis of PG’s compare to that of collagen during carti-
lage TE leads to high strains in early synthesized collagen
fibers while those fibers which are produced in later stages
remain unstrained. This may explain experimentally different
mechanical properties of TE construct with similar total PG
and collagen contents (Bian et al. 2009). We predict that those
fibers which are experiencing high strains at the moment of
implantation are at danger of disruption when the tissue is

i

(b)
Pre-implantation
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Under Loading Condition
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native ground substance stiffness and 3/4 native collagen content when
all (top), half (middle), and one-third (bottom) of the collagen are syn-
thesized early

mechanically loaded post-implantation, while those fibers
which remain unstrained or experience a very low strain do
not contribute much to the mechanical performance of the tis-
sue. In addition, we may speculate that unstrained fibers may
be degraded after implantation, because of their enhanced
susceptibility to enzymatic degradation (Huang and Yannas
1977; Nabeshima et al. 1996; Ruberti and Hallab 2005). Such
effects have not been reported before, and it may be worth-
while to explore this experimentally, or using models that
include effects of transient development of cartilage matrix
(Klisch et al. 2003; van Donkelaar and Wilson 2011). Hence,
we postulate that a mismatch between collagen and PG syn-
thesis rates in cartilage TE may lead to adverse mechani-
cal conditions in the collagen fiber network. Modulation of
osmotic pressure in constructs can be a solution to prevent
excessive tension on newly synthesized collagen fibers. This
may support the benefit of cartilage TE approaches in which
glycosaminoglycan production is suppressed early during the
TE process (Bian et al. 2009), to allow for first significant
increase of collagen content.

In the present study, we focused on collagen fibers/cells
susceptibility to disruption/damage due to high strains, which
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may occur upon join loading after implantation. At the
time scale of months or years, biological adaptation involv-
ing tissue composition and realignment of collagen fibers
may dominate the long-term clinical success rate of tissue
engineering implants. However, for this to occur, the TE
implants must be strong enough to survive immediate post-
implantation loading.

In our simulations, PG content in the implant was assumed
to be distributed homogeneously and to reach 75% of the
native content, which is in the range of frequently reported
amounts in TE studies (Mauck et al. 2003; Kelly et al. 2006).
Future studies may consider the effects of the distribution of
PG’s for the mechanical properties of the constructs. In the
present study, ground substance stiffness of the TE implants
was varied independent from PG content to reflect the effects
of using scaffolds with different mechanical stiffness.

Full integration has been reported in long-term experi-
ments (Petersen et al. 2008), whereas others reported a cleft
between the recipient articular cartilage and osteochondral
plugs in goats and human (Lane et al. 2004; Horas et al.
2003). Our study suggests that these results may reflect a dif-
ference in the total content of collagen in the implants, which
is important for the interface shear strains. In the present sim-
ulations, full implant-native tissue integration was assumed.
Future numerical studies may address the effect of imperfect
integration on the mechanical environment inside and around
the engineered implants.

Implant size is a vital factor for clinical outcome of car-
tilage transplantation. The bigger the implant’s dimensions,
the larger the contact area between implant and surrounding
subchondral bone. Because of more friction, higher forces
are needed to displace an implant; thus, the implant is more
stable (Kock et al. 2006; Duchow et al. 2000). Small diam-
eter implants are less susceptible to damaging strains; yet,
they are less stable. This may increase the chance of implant
failure (Kock et al. 2006; Hurtig et al. 1999). Indeed, in clin-
ical practice, treatment depends on defect size. Small defects
are normally treated by microfracturing or abrasion, rather
than transplantation. Accordingly, the implant diameter that
we have considered in our study is chosen to be clinically
relevant (Kock et al. 2006).

To answer our research questions, we required the use
of a cartilage material model that includes reinforcement
by collagen fibers in a depth-dependent organization, as
well as a swelling proteoglycan network (Wilson et al.
2006b, 2007). For reasons of computational costs, we used
a general axisymmetric model to represent the medial tibia
plateau, similar to previous studies (Wilson et al. 2003,
2006a), rather than a more realistic three-dimensional geom-
etry of the knee. Because we only compare simulations
with the same loading and boundary conditions, we assume
that this geometrical limitation does not affect our general
conclusions.

@ Springer

5 Conclusion

Based on our results, we conclude that reproduction of the
physiological collagen architecture enables sufficient load-
bearing capacities of TE implants. However, such a structure
is only functional if sufficient collagen is present. Therefore,
we suggest that tissue engineering studies should best focus
on collagen synthesis, rather than on engineering implants
with abundant proteoglycan and enhanced ground substance
stiffness.

In addition, we conclude that the faster synthesis rate of
proteoglycans compared to that of collagen during TE may
result in excessive swelling of the implant pre-implantation
and may enhance the range of strains in the collagen net-
work. We showed why both effects are undesirable to the
mechanical functioning of a TE implant.

We believe that these aspects are worth to be considered
in future tissue engineering studies, as they may result in
mechanically superior engineered cartilage with enhanced
long-term survival and improved integration.
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