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Abstract Skeletal muscle modelling requires a detailed
description of muscular force production. We have performed
a series of experiments on mouse skeletal muscles to give a
basis for an improved description of the muscular force pro-
duction. Our previous work introduced a force modification
in isometric phases, which was based on the work performed
by or on the muscle during transient-length-varying contrac-
tions. Here, state-space diagrams were used to investigate the
timing aspects of the force production. These show a domi-
nant exponential nature of the force development in isometric
phases of the contractions, reached after a non-exponential
phase, assumed as an activation or deactivation stage and
not further analysed here. The time constants of the expo-
nential functions describing isometric force redevelopment
after length variations appear to be related to the one for an
initial isometric contraction, but depending on the previous
history. The timing of force production calculated from the
state-space diagrams was in agreement with the generally
accepted muscle properties, thereby demonstrating the reli-
ability of the method. A macroscopic muscular model
consisting of a contractile element, parallel and series
elastic elements was developed. The parameters from the
experiment analysis, particularly the force modification
after non-isometric contractions and the time constants, were
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reproduced by the simulations. The relationship between
time constants introduced in a mechanistic model and the
measured macroscale timings is discussed.
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1 Introduction

Previous work by the authors focused on the isometric force
modifications taking place after transient-length muscular
contractions, commonly denoted as force depression follow-
ing concentric contractions and force enhancement following
eccentric contractions (Kosterina et al. 2008, 2009). These
studies were based on the introduction of systematic length
regimes during contraction in experiments on mouse soleus
(‘SOL’) and extensor digitorum longus (‘EDL’) muscles. It
was concluded that the work produced by the muscle during
shortening, and on the muscle during stretch, was a good pre-
dictor for this force modification when focusing on a macro-
scopic description of the muscle force production, rather than
on a phenomenological description of the inner mechanisms
(Abbott and Aubert 1952; Marechal and Plaghki 1979; Sugi
and Tsuchiya 1988; Lou et al. 1998; Schachar et al. 2004;
Bagni et al. 2005; Morgan 2007). The description thus aimed
at a model for numerical simulations of whole-body systems,
which can consider the history effects in the force producing
capacity.

For the active isometric force immediately continuing
a transient-length contraction, the description of a force
modification is focussed on an asymptotic, i.e. a theoreti-
cal long-term steady-state force value. This was compared
with the asymptotic force for an initial isometric contraction,
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Fig. 1 Examples of force-time traces on mouse SOL muscles. Thin
solid lines correspond to isometric contractions. Transient-length con-
tractions: a dash-dot line—stretching and dashed line—shortening by
0.36 mm in 0.12 s, b dotted line—two-step shortening by 0.18 mm in

0.06 s each with 0.12-s delay between them, thick solid line—stretch-
shortening cycle. All experiments end at the optimal length of the
muscle. Time t = 0 denotes the stimulation start, Length = 0 the
individual optimal length

where the same length was held constant from the start of
stimulation. Such values were evaluated from the force-time
trace by curve fitting (Kosterina et al. 2009). With experi-
mental length variations according to Fig. 1, the curve fitting
considered the isometric phases before and after a length var-
iation. A good numerical fit was generally obtained with an
exponential functions of the form:

F(t) = F∞ + (Fa − F∞) · e−(t−ta)/τ (1)

where the force F at a time t goes from a value Fa at a time
ta to a steady-state asymptotic value F∞ through an expo-
nential function with a time constant τ (Hancock et al. 2004;
Corr and Herzog 2005). The conclusion from Kosterina et al.
(2008) was that the time constant τr for an isometric phase
following shortening was—for practical purposes and on the
macroscale—well predicted by the one, τo, for an initial iso-
metric contraction.

The result from our previous papers, by Kosterina et al.
(2008, 2009), is thereby that the transient force production
in an isometric phase of a contraction following a length
variation can be well predicted by the introduction of a force
modification, considering the history through the work quan-
tity, and the initial time constant, being a typical parameter
for a muscle individual. The force modification, positive or
negative, is here seen as a difference between the isometric
forces obtainable at initial and at post-ramp isometric con-
tractions at the corresponding length. Examples of force-time
and length-time traces for one SOL muscle individual for iso-
metric, stretch, shortening, stretch-shortening and two-steps
shortening experiments are presented in Fig. 1.

Here, the further mathematical analysis of the force-time
traces takes the experience from fitting Eq. (1) to isometric
phases as inspiration. From a mechanical viewpoint, the con-
tents of the equation would indicate the presence of a viscous

damper in series with the force generator in the muscle. This
can be seen by identifying the equation as an evolution pro-
cess, where the time differential of the force is described by:

Ḟ(t) ≡ dF

dt
= 1

τ
(F∞ − F(t)) (2)

where F∞ is the asymptotic force, and the superposed dot
denotes a time differential, i.e. the slope of the time trace.
The expression emphasizes that the force value is constantly
approaching the asymptotic value, in each time interval
reducing the distance by the same ratio.

A common way to consider an evolution expression like
the one in Eq. (2), an autonomous differential equation, is
through the state-space (Thompson and Stewart 1986; Jeffrey
1990; Jordan and Smith 1999), where F(t) and Ḟ(t) are seen
as the axes in a plane diagram and where an expression of the
form in Eq. (2) will come out as a straight line, with a slope
of − 1

τ
, and coming to Ḟ = 0 for F = F∞. Utilization of this

technique for description of the macromuscular behaviour is
the main content of the present paper. We, however, would
like to point to the fact that this macrotiming is phenomeno-
logically an aggregate of several internal time constants and
not immediately comparable to other time constants used in
the interpolation or modelling of muscle experiments.

The state-space visualization of the experimental time-
data will thus reveal if the measured quantity, here muscular
force, is realistically described by a function like the one
in Eq. (1). Straight lines in the diagram will confirm this
assumption for a phase of the interval, whereas curved lines
will correspond to phases, where either the behaviour is not
exponential or the asymptotic value is not a constant attractor
(Jeffrey 1990). It is already here noted that the non-isometric
parts of the force-trace should not be straight lines, as the
changing length will in itself implicate the differences in
isometric force.
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Timing of muscular force production 949

There is always a time span before the force takes the path
of exponential development or redevelopment after stimu-
lation and destimulation, respectively. These time intervals
obviously correspond to some aspects of activation of the
muscle, but in order to not confuse previous definitions of
this term (Stephenson and Williams 1982; Stein et al. 1982),
we will here use a terminology not related to internal aspects
of muscle action. The present analysis thus defines periods
to reach maximum and minimum (i.e. the maximal negative)
rates of force-time derivative. We will denote them t� and
t�. The time stamps of the points in the diagram indicate the
different phases of behaviour. In particular, the time stamps
of the end points of the straight lines in the diagram carry a
meaning with respect to force-time differential extremum.

A skeletal muscle model described by Günther et al.
(2007) was considered as a basis for our simulations. The
model was adopted for mouse SOL and EDL muscles.
A so-called history effect, emergent after active shortening
and stretch (Abbott and Aubert 1952; Herzog and Leonard
1997), was introduced in the model in order to improve the
numerical muscular force description. Previous attempts to
include a history effect in muscle models used dependence of
the force modification on ramp parameters such as amplitude
and velocity, Edman (1979); Marechal and Plaghki (1979);
Meijer et al. (1998). Our previous study has shown linear
relationships between the force modification and mechani-
cal work produced during stretch and shortening, Kosterina
et al. (2008, 2009); this is also supported by Herzog et al.
(2000); McGowan et al. (2010). The need for reasonably
accurate macrolevel muscular models, considering the tim-
ing, is emphasized by studies on optimal human movements,
Pettersson et al. (2010).

The present paper will discuss the analysis of muscle con-
traction experiments performed, by means of the state-space
view, aiming at a macroscopic interpretation of the force pro-
duction in the isometric phases of contractions. These find-
ings were introduced in the rheological skeletal muscle model
presented in this study. A brief review of the experiments is
given in Sect. 2, which also describes the mathematical anal-
ysis procedure and the numerical muscle modelling aspects.
The results are given in Sect. 3 and discussed in Sect. 4.

2 Methods

2.1 Mouse muscle experiments

The present work is built upon a set of transient-length
experiments on dissected mouse SOL and EDL muscles,
(Kosterina et al. 2009). The maximum admissible decrease in
optimal force before discarding a specimen was set to 10%.
The experiment series contained a total of 11 SOL and 14
EDL muscles. As each muscle was only used in a subset of

experiments, the final results for each experiment are based
on results from n = 5 − 6 muscles. In each experiment, the
length was systematically varied during full tetanic stimula-
tion of the muscle. The forces and the lengths were recorded
for processing. Full experimental details are given in the ref-
erence, as are main characteristic data of the muscles inves-
tigated.

2.2 Data processing

Force and length data were recorded at 500 Hz during the
experiments. The noise level in the data was low, hardly vis-
ible in the time traces of the quantities. As, however, for the
present purposes the time differentials of the force data were
needed, a filtering of the force data was performed. This fil-
tering was defined by a second-order Butterworth lowpass
recursive filter with a cut-off frequency of 60 Hz, performed
in Matlab (version R2010a, The MathWorks, Inc., Natick,
MA, USA). The force differential was then evaluated in the
midpoints of the time steps recorded, through a central dif-
ference approximation; corresponding force values were the
averages between the neighbouring points:

ti+1/2 = 1

2
(ti + ti+1) (3)

Fi+1/2 = 1

2
(Fi + Fi+1) (4)

Ḟi+1/2 = 1

�t
(Fi+1 − Fi ) (5)

where the indices refer to experimental time ti = i · �t =
i · 0.002 [s] since the start of the stimulation.

2.3 State-space analysis

All the experiments were, after filtering, plotted in the state-
space diagrams, with F(t) as ordinate and Ḟ(t) as abscissa.
The borderlines between the different isometric and isokinet-
ic parts of the curves were marked, and each such segment
treated separately. As examples, the state-space diagrams of
some of the experiments are given in Figs. 2, 3, 4, and 5, with
the time stamps at interesting points.

It is obvious from Figs. 2, 3, 4, and 5 that the start and
end of stimulation cause non-straight lines corresponding
to a preparation for isometric active and passive phases of
force development and decay. In the figures, time stamps are
marked where the assumed straight lines start. These points
were defined as maximum and minimum values of the force-
time differential, Ḟ(t), reached from the start and end of
stimulation on a relevant time interval. Times t� and t� for
each experiment denote the intervals of this rise and drop of
force rate.

When the maximum rate of force rise was reached, an
exponential isometric force development began. This phase
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Fig. 2 State-space plot of example isometric test performed on mouse
SOL (a) and EDL (b) muscles, showing the relation between current
force and force-time differential values over experimental time. Time
t0 = 0 denotes the start of stimulation, the force-time differential, Ḟ(t),
increases during t� until reaching a maximum value at time t1. Then

the force, F(t), rises exponentially (‘isom0’) and reaches a steady-state
value when the Ḟ(t) drops to zero. After the stimulation terminates at
time t2, force and force derivative start to decrease. Ḟ(t) drops to its
minimum value during t� (until time t3), then the force decays expo-
nentially to its passive level (‘isom1’)
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Fig. 3 State-space plot of example shortening test performed on mouse
SOL (a) and EDL (b) muscles, showing the relationship between cur-
rent force and force-time differential values over experimental time.
Time t = 0 denotes the start of stimulation, and stimulation is ended at

t = 0.6 s. The straight lines are regression fits of the isometric phases
of muscle contractions: ‘isom0’—initial force development, ‘isomr’—
force redevelopment after shortening, ‘isom1’—force decay after des-
timulation. ‘Sho’ denotes the active shortening phase
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Fig. 4 State-space plot of example stretch test performed on mouse
SOL (a) and EDL (b) muscles, showing the relationship between current
force and force-time differential values over experimental time. Time
t = 0 denotes the start of stimulation, stimulation is ended at t = 0.6 s.

The straight lines are regression fits of the isometric phases of muscle
contractions: ‘isom0’—initial force development, ‘isomr’—force rede-
velopment after stretching, ‘isom1’—force decay after destimulation.
‘Str’ denotes the active stretch phase
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Fig. 5 State-space plot of example stretch-shortening test performed
on mouse SOL (a) and EDL (b) muscles, showing the relationship
between current force and force-time differential values over experi-
mental time. Time t = 0 denotes the start of stimulation, and stimula-
tion is ended at t = 0.6 s. The straight lines are regression fits of the

isometric phases of muscle contractions: ‘isom0’—initial force devel-
opment, ‘isomr’—force redevelopment after stretch-shortening ramp,
‘isom1’—force decay after destimulation. ‘Str’ and ‘Sho’ denote the
active stretch and shortening phases correspondingly

appeared as a straight line on the state-space diagram (Fig. 2).
Change in length or activation regime leads to clear changes
in the curve. A phase of force redevelopment after active
lengthening or shortening was identified using time stamps,
and this turned out as a straight line (Figs. 3, 4, 5). Passive
force deactivation was detected using the time stamps and
also appeared as a straight line.

Having defined these time instances, the time constants
for the straight lines of all isometric phases can be evalu-
ated from the straight-line fitting. The time constants can be
assumed to be valid for isometric, fully active or fully passive
phases. We denote by τ0 the time constant for an active initial
isometric case, by τ−

r , τ+
r and τ±

r the one for active recovery
after shortening, stretch and stretch-shortening cycle, and by
τ1 the one for passive force loss.

As will be shown below, the time constants τ−
r , τ+

r and
τ±

r for the active phases of the experiments are related to the
initial time constant, τ0, for a specific muscle individual.

2.4 Modelling

Simulation of muscular force generation was based on the
work done by Günther et al. (2007) and van Soest and Bobbert
(1993) and was implemented in Matlab. A muscle-tendon
complex was represented as a contractile element (CE) in par-
allel with an elastic element (PEE) and connected to a series
elastic element (SEE), Fig. 6. Both elastic elements contain
a damping components (DPE, DSE) in order to avoid high-
frequency oscillations that might occur in impact (Günther
et al. 2007; Rode et al. 2009). In our work, force modification
component (Mod) is added in parallel to both CE and SEE.

The activation dynamics of a muscle is modelled as
described by Ebashi and Endo (1968) and Hatze (1977),
where the isometric force FCE is scaled by the activation

Fig. 6 Schematic representation of the muscular model. The muscle-
tendon model consists of two main components: the contractile element
(CE) with parallel damped elastic element (PEE, DPE), both of the same
length, and the serial damped elastic element (SEE, DSE). In total, they
form a whole muscle of length lm , the sum of lCE and lSE. Force modi-
fication element (Mod) is placed parallel to CE and SE components

q, which in turn represents the Ca2+ concentration of the
muscle, Günther et al. (2007). The muscle deactivation after
stimulation termination differs from the activation dynam-
ics; therefore, βq coefficient was defined as a ratio of τ0

to τ1 (Eq. 1 in Günther et al. 2007). The force-length bell-
curve fitting gave four parameters, �Wasc, �Wdes, νCE,asc

and νCE,des, describing the isometric force as a function of
CE length (Eq. 5 in Günther et al. 2007).

When stimulation and muscle length regimes are defined,
contraction dynamics takes part. An equation for the contrac-
tile element velocity was derived by van Soest and Bobbert
(1993)

l̇CE = l̇CE(lm, lCE, q) (6)

as a function of the muscle length, CE length and activation q
from the Hill equation, Hill (1938). The Hill parameters in the
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Table 1 Parameters of a SOL muscle-tendon model for an adult male NMRI mouse used in the simulations

Constants and values Source

Individual muscle parameters lm (m) F0 (N) τ0 (s) τ1 (s)

(typical values) 0.011 0.210 0.063 0.052 Exp

General parameters lCE = lPE (m) lSE βq Khist(m−1)

0.6 · lm 0.4 · lm τ0/τ1 −3 Fit, Exp

Isometric force Fisom(lCE) �Wasc �Wdes νCE,asc νCE,des

0.39 0.3 2.7 2 Exp, Fit

Contraction dynamics (concentric, eccentric) Arel,0 Brel,0 (1/s) Secc Fecc

0.1 1 2 1.8 Fit, Günther

Parallel elastic element (nonlinear), damping LPEE,0 νPEE FPEE dPE (Ns/m)

0.9 2.5 1 6 · F0 Günther, Fit

Series elastic element (nonlinear) �USEE,nll �USEE,l �FSEE,0(N)

0.1825 0.073 2 · F0 Günther

Series damping (active force-dependent) dSE (Ns/m) DSE RSE

6 0.3 0.01 Günther

Some of the parameters kept as in Günther et al. (2007), and others were obtained from the experiments (Exp) or simulation fitting (Fit)

equation are dependent on current CE length, lCE, and acti-
vation, q, as in Günther et al. (2007) and also Gordon et al.
(1966); Julian and Morgan (1979); van Soest and Bobbert
(1993). The concentric contractions were extrapolated into
the eccentric region avoiding discontinuity on the boundary
(Günther et al. 2007). The forces produced by CE with PE
should be balanced with SE force. Considering damped PEE
and SEE, the force equilibrium is

FCE(lCE, l̇CE, q) + FPEE(lCE) + dPE ∗ l̇CE =
FSEE(lSE) + dSE(FCE) ∗ l̇SE. (7)

We solved the equation at each time instance by a secant
method, giving the CE length velocity, l̇CE. The series and
parallel elastic elements both have non-linear properties
(Table 1). The series damping is force dependent, and the
parallel damping is constant, scaled to the optimal force, F0,
to reflect individual parameters.

The history effect described in Kosterina et al. (2008,
2009) has been introduced in the model. Mechanical work,
w, performed by and on the muscle was calculated for all
transient phases from the beginning of stimulation. The force
modifications evaluated were fitted with a straight line, and
the history coefficient, Khist, was defined as the slope of
the line, seen as a parameter for the muscle individual.
Negative work during stretch-shortening contractions was
not taken into account for SOL muscles due to the abil-
ity of active shortening to suppress the effects from force
enhancement invoked by preceding lengthening, Herzog and
Leonard (2000); Lee et al. (2001). The force modification,
Fmod = Khist · w, was in the model added to the total force
from Eq. 7 (Fig. 6).

In order to adopt the model for the mouse muscles, 20
parameters had to be varied and tested. The anatomical mus-
cle length when generating the optimal force was equated to
lm,0. The optimal force, F0, and the rates of force develop-
ment and fall, τ0 and τ1, were extracted from the isometric
contractions, Sects. 2.2 and 2.3. These four parameters are
the only individual characteristics. The remaining parame-
ters were possible to keep invariable for SOL muscles, as
model predictions were not significantly improved by mod-
ifying these. In order to achieve a good fit for EDL muscle
contractions, more parameters must be varied for each spec-
imen, but the higher variability in results leads to difficulties.

The optimal CE and SE lengths, lCE,0 and lSE,0, were
always defined as 60 and 40% of the total length lm,0, rep-
resenting the ratio between the lengths of fibres and tendons
with connective tissue.

3 Results

The time constants of isometric force redevelopment after
non-isometric contractions are given in Table 2. The time
constants of isometric force redeveloping, τr , are different
from the initial timings, τ0. But these time constants are sim-
ilar inside the sets of experiments, as can be seen from the
standard deviations for τ−

r , τ+
r and τ±

r . A coefficient charac-
terizing the type of non-isometric contraction, k, can be used
to define the time constant, τr , of isometric force redevelop-
ment as follows:

τr = k · τ0. (8)

The multiplier k is presented in Table 2. The time constants
for passive force loss, τ1, appeared to be higher than the ones
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Table 2 The time constants of isometric force redevelopment after non-isometric contractions and their ratios with the initial time constant

Experiments SOL EDL

Isometric (rise) τ0 − τ0 −
0.076 ± 0.018 0.035 ± 0.007

Shortening τ−
r τ−

r /τ0 τ−
r τ−

r /τ0

0.046 ± 0.008 0.685 ± 0.112 0.027 ± 0.004 0.929 ± 0.129

Lengthening (negative) τ+
r τ+

r /τ0 τ+
r τ+

r /τ0

0.052 ± 0.009 0.721 ± 0.113 0.087 ± 0.014 2.342 ± 0.369

Lengthening-Shortening τ±
r τ±

r /τ0 τ±
r τ±

r /τ0

0.064 ± 0.006 0.775 ± 0.088 0.039 ± 0.005 1.086 ± 0.155

Isometric (fall) τ1 τ1/τ0 τ1 τ1/τ0

0.100 ± 0.025 1.335 ± 0.258 0.024 ± 0.003 0.709 ± 0.121

The time constants were calculated from a linear approximation of the F(t) − Ḟ(t) curve on isometric phases and averaged on all experiments in
the corresponding set and for n = 5 − 6 SOL and n = 5 EDL muscles. The results are given as mean ± standard deviation, [s]

Table 3 Times of the force rate drop after stimulation termination, t� ,
following isometric and non-isometric contractions

Experiments SOL EDL

Isometric 0.170 ± 0.021 0.054 ± 0.006

Shortening 0.170 ± 0.014 0.132 ± 0.081

Lengthening 0.293 ± 0.059 0.138 ± 0.055

Lengthening-shortening 0.154 ± 0.020 0.066 ± 0.021

Results from n = 5 − 6 SOL and n = 5 EDL muscles are given as
mean ± standard deviation, [s]

for active force development, τ0, for SOL and lower for EDL
(Table 2, the last line).

For isometric contractions, the times of pre-isometric
force rate rise, t�, were 0.037 ± 0.012 s for SOL and
0.012 ±0.005 s for EDL muscles. The times of pre-isometric
force rate fall, t�, were 0.170 ± 0.021 s for SOL and
0.054 ± 0.006 s for EDL muscles. We can see that the EDL
muscles are about 3 times faster than the SOL in activation
and deactivation.

The stretch and shortening ramps were applied when the
isometric force had almost reached a steady value. Therefore,
it was possible to measure the time t�, for different initial
muscle lengths. It has been noticed that a lengthened muscle
reaches the maximum rate of rise faster than a shortened one.
The time, t�, depends on the muscle length, Fig. 7, for both
fast- and slow-twitch muscles, though this occurrence is not
pronounced for EDL.

The force rate fall, t�, depends on the length history, Fig. 8,
Table 3. For SOL muscles, this time after active shortening
and stretch-shortening cycle is almost the same as after an
isometric contraction, while deactivation after active stretch
is twice as long. For EDL muscles, the fall of the force rate
to a minimum value after an isometric contraction happens
up to 3 times faster than after a non-isometric contraction.

The numerical muscle model has been described as a com-
bination of contractile, elastic and damping elements, Siebert
et al. (2008), Fig. 6. The set of equations used in the model
was taken from Günther et al. (2007). Six parameters were
obtained from the experimental force-time traces. Each of
20 other parameters was varied in order to fit the simula-
tion output with the experimental data (Table 1). If variation
did not improve the force prediction, the parameters were
kept as in Günther et al. (2007). Simulation of the force dur-
ing isometric, shortening, stretch and stretch-shortening con-
tractions for a SOL muscle from experiments is plotted in
Fig. 9.

The timing constants, τ , were obtained for the total force
development, while in the model only the CE force com-
ponent is described by the exponential function. The ser-
ial elastic element, which takes 40% of the muscle length,
slows down isometric development of the total force, Fm , and
speeds up isometric force fall. The time constant in the model
was found to be approximately 40% longer than the exper-
imental time constants for a good fit. Similar modifications
were done for force fall during deactivation. The resulting
fitting is shown on the force-time plots and the state-space
diagrams (Figs. 9, 10). The timing constants τ0,sim calculated
from the state-space plots for the simulated force appeared
as 0.067 ± 0.012 s, and this is about 80% of the experimen-
tal values τ0. The timing constants τr,sim are between 60 and
140% of the experimental values τr . The best fit was reached
for the concentric contractions.

4 Discussion

The study was motivated by an intention to improve the pre-
dictive capacity of available macroscopic transient muscle
models such as the common Hill-type models. The main
objectives were to evaluate an accurate description of the
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Fig. 7 Times of the force rate rise, t� , at different muscle lengths, lini,
compared with optimal length, lopt. The nodes of the thick solid line
relate to a mean t� time value of all experiments started at the corre-
sponding length, lini, for n = 5 − 6 SOL (a) and EDL (b) muscles.

The circles correspond to an individual muscles (mean values for iso-
metric force development at each length), and the dashed line connects
the individual values for a specific muscle

Fig. 8 Times of the force rate
drop, t� , as a function
of performed mechanical work.
Results from n = 5 − 6 SOL
(a) and n = 5 EDL (b) muscles
are presented as mean values:
Shortening—squares,
Lengthening—diamonds,
Lengthening-Shortening—
triangles. Average value of t�
after an isometric contraction
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muscular force during various regimes and to apply these
findings to reproduce the muscular force generation.

To create a basis for a numerical muscle model, the tim-
ing aspects of the force production should be described. An
exponential fitting of the force-time traces is generally used
(Hancock et al. 2004; Corr and Herzog 2005). The state-
space diagrams show linear relationships between the mus-
cular force and the force-time differential during isometric
force development. This observation confirms the admissi-
bility of the exponential nature of the muscular force devel-
opment (Stein et al. 1982), noting that the exponential phase
is not reached immediately in all contexts.

The time constants characterizing the macroscopic force
development at a constant muscle length were calculated
from the state-space diagrams. These constants appeared
approximately 2 times longer for SOL than for EDL muscles
(Table 2). This is expected due to the different fibre compo-
sitions of these muscles and is consistent with previous work
(Luff 1981; Ranatunga 1982; Stein et al. 1982; Brooks and
Faulkner 1988).

It has been noticed that the force after non-isometric
phases also follows an exponential function, Table 2. The
time constants related to isometric force redevelopment fol-
lowing different length variations differ from the initial time

constants by about 30% only. We suggest that this differ-
ence is not significant and can without major inaccuracies be
neglected in a muscle model for full body modelling. This
similarity makes easy the extraction of timing constant for
the force recovery using the time constant of initial isomet-
ric force development. It is prominent that the time constant
for the EDL muscle force redevelopment after lengthening is
more than double the initial one. We assume that the slower
force recovery occurs due to the vulnerability of fast muscle
fibres to an active stretch, but not due to the muscle damage,
since verification tests have been performed to control the
isometric force level (Kosterina et al. 2009).

Passive force loss following destimulation and deactiva-
tion of the muscles can also be described by an exponential
function of time (τ1). These findings give a more accurate
description of the transient muscular force variation and can
be applied in the skeletal muscle model.

The state-space description allows an evaluation of times
for the muscle force rate rise and fall. Here, these are defined
as the times between a change in the stimulation (0/100%)
and the time when the muscular force enters an exponen-
tial development curve, i.e. the straight lines in the state-
space diagram. As noted above, these time intervals can be
related to activation aspects of muscle, but we see them as
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Fig. 9 Simulations (black) and experiments (grey) of non-isometric
contractions: shortening (a), stretching (b) and stretch-shortening (c),
in each case compared with isometric contraction at the final length.
Force modification is plotted as dashed line. The length regime is plotted
below the force curves. SOL muscle

mathematical constants not to be compared with previously
used terms or to be related to specific internal mechanisms;
however, it seems obvious that the macrotiming aspects are
dependent on a set of internal events, each with its own time-
scale.

The t� and t� times of the muscle contractions have been
used as indicators of motor unit recruitment (Fang and Mor-
timer 1991). This is presumably based on the size principle,
implying that small and slow motor units are recruited at
low force levels and that gradually larger and faster motor
units are recruited with the force increasing (Henneman et al.
1965; Zajac and Faden 1985). Meanwhile, Savelberg (2000)
has shown that the fibre composition in a muscle also affects
the rise and relaxation times, and our study confirmed this
observation.

It can be noticed from Figs. 2, 3, 4, and 5 that the rela-
tionships between the force and the force-time differential
after destimulation become linear after a drop of force from
the steady value by approximately 50%. This validates the
observation by Stein et al. (1982), who showed that the force
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Fig. 10 Sample state-space plots of simulations of isometric contrac-
tion (iso) and non-isometric contractions: shortening (a), stretching (b)
and stretch-shortening (c), black lines. Experimental values are plotted
with grey lines. SOL muscle

decays exponentially after falling to a force value of one-half
to two-thirds of the peak. This, in essence, also agrees with
the concept of half-relaxation times, evaluated from experi-
ments and used as a measure for de-activation timing.

Regarding the modelling part, we achieved a fairly good
similarity between the experimental and the simulation
traces. The timings calculated from the state-space diagrams
were used to evaluate the time constants in the model, noting
that the time constants are defined in different ways, depend-
ing on context, terminology and modelling assumptions.
A non-isometric phase of the contractions was fairly well
simulated for shortening mode and less well simulated for
stretch mode due to a notable spread in the results for active
lengthening and peculiarity of eccentric contractions. How-
ever, a specific mechanism of eccentric force simulation
based on a recruitable elastic titin spring was proposed (Till
et al. 2008; Rode et al. 2009).

An interesting observation is that the force redevelop-
ment during the post-stretch and the post-shortening period
in the muscle model can be perfectly fitted to an exponential
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function, even though the total force is a solution for the
equilibrium equation and is not founded upon an exponential
function. Therefore, we affirm the correctness of the princi-
pal model by Günther et al. (2007) and reaffirm the rele-
vance of Hill’s equation. As we can see from Table 1, many
of the parameters used by Günther et al. (2007) were kept
unchanged, even though the model was used for the sim-
ulation of a different type of muscles and for another spe-
cies. Many more experiments would be needed to verify the
differences in these constants.

The force modification following non-isometric contrac-
tions remarkably improved the force description. Although
different mechanisms are believed to cause force depression
and force enhancement, these phenomena were reasonably
well described by a simple formula based on the previ-
ous observations (Kosterina et al. 2009). Force modification
after stretch-shortening contractions has not been thoroughly
investigated yet, and a mathematical description may vary
between different settings. Findings of Herzog and Leonard
(2000); Lee et al. (2001) show that the effect of force enhance-
ment disappears with the following shortening, though this
contradicts another observation (Bullimore et al. 2008). The
SOL and EDL mouse muscles show different force modifi-
cation after stretch-shortening cycles (Kosterina et al. 2009,
Fig. 3). Therefore, we did not count the negative work dur-
ing stretch-shortening cycles for SOL muscles in the history-
based force modification. The muscle model can be used in
movement simulations, for cases where the history effect on
the resulting movements is interesting.

5 Conclusions

The experimental analysis allowed us to evaluate the time
constants of the exponential functions describing isomet-
ric force redevelopment after non-isometric contractions.
The time constants calculated from the state-space diagrams
were in agreement with generally accepted muscle proper-
ties, thereby demonstrating the reliability of the method and
the presence of activation modification timing.

The numerical muscle model based on Günther et al.
(2007) was adapted for SOL mouse muscles. The history
effect and the timings obtained from the state-space diagrams
gave better simulation results for SOL mouse muscles in a
variety of length regimes.
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