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Abstract An analytical model for the determination of the
permeability in the lacunar–canalicular porosity of bone
using cyclic loading is described in this contribution. The
objective of the analysis presented is to relate the lacunar–
canalicular permeability to a particular phase angle that is
measurable when the bone is subjected to infinitesimal cyclic
strain. The phase angle of interest is the lag angle between
the applied strain and the resultant stress. Cyclic strain causes
the interstitial fluid to move. This movement is essential for
the viability of osteocytes and is believed to play a major
role in the bone mechanotransduction mechanism. However,
certain bone fluid flow properties, notably the permeability
of the lacunar–canalicular porosity, are still not accurately
determined. In this paper, formulas for the phase angle as
a function of permeability for infinitesimal cyclic strain are
presented and mathematical expressions for the storage mod-
ulus, loss modulus, and loss tangent are obtained. An accurate
determination of the PLC permeability will improve our abil-
ity to understand mechanotransduction and mechanosensory
mechanisms, which are fundamental to the understanding of
how to treat osteoporosis, how to cope with microgravity
in long-term manned space flights, and how to increase the
longevity of prostheses that are implanted in bone tissue.
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List of symbols

Âr , Âθ , Âz Three components of the 6D vector
representing the Biot effective stress
coefficient for PLC

r Arbitrary radius of the osteon
ro Outer radius of the osteon
ri Inner radius of the osteon
a Non-dimensional inner radius of the

Osteon (a = ri/ro)

Ĉi (i = m, d, u) elasticity or stiffness matrix
for the matrix material, drained elastic
constants and undrained elastic constants
(2nd order tensor in 6D)

c Pore fluid pressure diffusion constant in
the lacunar–canalicular porosity

Ê Strain, a vector in 6D, equivalent to
the strain tensor in 3D

E Modulus of elasticity
fo Constant of integration determined

in Eq. (16)
Io, I1 Modified Bessel functions of the first kind
i Imaginary number

(
i = √−1

)

Kf Compressibility of the fluid
Ki

Reff Reuss lower bound on the effective
(isotropic) bulk modulus of the anisotropic
elastic material (i = m, d)

Ko,K1 Modified Bessel functions of the second kind
Krr Radial permeability
p̃(r, t) Pore fluid pressure in the PLC
ũ(r, t) Displacement vector

Greek symbols

εo Strain amplitude of the cyclic applied strain
φ Porosity
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λ Ratio of r/ro (non-dimensional)
ω Angular frequency associated with the cyclic

loading
ω̄ Dimensionless angular frequency
μ Viscosity of the pore fluid
νij Poisson’s ratios (i, j = r, θ, z)

σ ∗ Average resultant stress due the applied cyclic
strain

σo Magnitude of the average resultant stress
ϒ Constant of dimension force

 Solid–fluid compliance contrast coefficient
ζ̃ (r, t) Variation of fluid content and
C∗ Dynamic elastic modulus
δ Phase angle

Subscripts and superscripts

d The drained condition of the porous solid
u The undrained condition of the porous solid
f The fluid component
m The matrix material of the porous solid

1 Introduction

During the last decade, an increasing amount of evidence has
supported the hypothesis that osteocytes, the bone cells in the
lacunae (pores) of the lacunar–canalicular porosity (PLC),
are the principal mechanosensory cells of bone (Burger et al.
1995; Cowin et al. 1991; Han et al. 2004), and that they
are activated by the induced drag from fluid flowing through
the PLC (Cowin et al. 1995; Fritton and Weinbaum 2009;
Weinbaum et al. 1994). The movement of bone fluid from
the region of the bone vasculature through the canaliculi and
the lacunae of the surrounding mineralized tissue is related to
the poroelastic aspect of the loaded bone (Fritton et al. 2001;
Rémond et al. 2008; Wang et al. 2003) that exhibits creep,
stress relaxation, and a phase or lag angle between an applied
cyclic strain and the resultant stress (Buechner and Lakes
2003; Cowin 1999, 2001; Lakes 1982; Nguyen et al. 2009;
Swan et al. 2003). The deformation-driven fluid movement
in the bone tissue accomplishes three important tasks. First,
it transports nutrients to the cells in the lacunae buried in the
mineralized matrix. Second, it carries away the cell waste.
Third, the deformation-driven interstitial fluid movement in
the PLC exerts a force on the osteocyte process, a force that
is large enough for the cell to sense, which is considered
as the basic mechanotransduction mechanism in bone cells
in vivo.

Key to the understanding of mechanotransduction by
osteocytes is knowledge of the lacunar–canalicular network
permeability. An estimate of the PLC permeability was first
proposed by Zeng et al. (1994) based on an ultrastructural

model of the lacunar–canalicular system, predicting PLC
permeability on the order of 10−20 to 10−22 m2. Subsequent,
theoretical estimates were based on Biot’s poroelasticity the-
ory, including the study by Wang et al. (1999) in which the
PLC of bovine bone was found in the range of 10−20 m2,
the approach by Gururaja et al. (2005) who obtained an esti-
mate of the PLC permeability in both the radial and circum-
ferential directions to be 10−22 and 10−19 m2, respectively,
and the study by Zhou et al. (2008) in mice, with a PLC
permeability on the order of 10−22 m2. Traditional perme-
ability measurement techniques based on Darcy’s technique
of measuring the volume of fluid flow per unit area and per
unit time across a porous layer, which is then divided by the
pore pressure gradient across the layer, seem to be experi-
mentally unfeasible. Therefore, other approaches have been
developed to determine the PLC permeability. Smit et al.
(2002) obtained an estimate of the PLC permeability in the
order of 10−22 m2 based on the best fit between finite ele-
ment predictions and data from streaming potential mea-
surements. Beno et al. (2006) found the PLC permeability
in canine samples to vary from 10−19 to 10−22 m2. The PLC
permeability of human bone was estimated by Oyen (2008)
to be around 10−24 m2 using nanoindentation measurements
and poroelasticity theory. Curve fitting of stress relaxation
of single bovine osteons and poroelasticity theory was used
by Gailani et al. (2009), finding the PLC permeability to be
between 10−24 and 10−25 m2. An estimate of the PLC per-
meability was provided by Kameo et al. (2010) based on
measurements of fluorescent images taken with a laser con-
focal microscope in trabecular bone from a swine tibia and
an anisotropic poroelastic analytical model, resulting in pre-
dictions of the PLC permeability on the order of 10−17 m2.
In their discussion, Kameo et al. (2010) described difficulties
with their confocal laser scanning microscopy. Only recently,
the canine PLC was measured in situ by Gardinier et al.
(2010) and reported as 10−23 m2 (Table 1).

These estimates of PLC permeability exhibit a broad vari-
ability, with values ranging from 10−17 to 10−25 m2 (Table 1).
Such broad range of variability may be due to the different
approach/model taken to determine the PLC permeability
and/or by experimental challenges associated with the mea-
surement of small quantities as in the case of Kameo et al.
(2010). Importantly, the PV and the PLC are interconnected,
occupying the same three-dimensional volume of bone tis-
sue. Thus, the pore pressure in the PLC depends upon the
permeability of the PV and vice versa. In order to investigate
the interaction of the pore pressure and fluid flow between
the PV and the PLC, a hierarchical poroelastic model was
recently developed by our group (Cowin et al. 2009). On one
hand, it is difficult to measure the PV permeability without
the effect of the PLC since the PLC is always contained in
the tissue matrix material of samples used to measure the PV.
On the other hand, the PLC permeability can be measured
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Table 1 Values of the PLC
permeability collected from
different studies. The values are
ranging from 3.32 × 10−17 m2

to 7.00 × 10−25 m2

Reference Method Permeability at the PLC

Kameo et al. (2010) Morphology of the PLC 3.32 × 10−17 to 1.26 × 10−18 m2

Wang et al. (1999) Theoretical study 1.47 × 10−20 m2

Smit et al. (2002) Finite element analysis 2.20 × 10−22 m2

Beno et al. (2006) Biot theory 3.32 × 10−19 to 1.26 × 10−22 m2

Zeng et al. (1994) Ultrastructural model 10−19 to 10−22 m2

Gururaja et al. (2005) Poroelasticity model 10−19 to 10−22 m2

Zhou et al. (2008) FRAP 10−22 m2

Gardinier et al. (2010) Step loading experiment 2.80 × 10−23 m2

Oyen (2008) Nanoindentation 4.14 × 10−24 m2

Gailani et al. (2009) Stress relaxation 3.00 × 10−24 to 7.00 × 10−25 m2

Fig. 1 Single osteon specimen immersed in water and subjected to
unconfined cyclic loading. The specimen is compressed between rigid
plates that are parallel, smooth, and impermeable. The interstitial fluid
is forced to flow out of the PLC in the radial direction across the inner
boundary of the annular region into the Haversian canal. No fluid flow
is produced at the outer boundary since the cement line is assumed to
be impermeable

without the effect of the PV if a sample that contains PLC
only is obtained. For this purpose, the analytical solution of a
saturated compressible poroelastic annular cylinder under an
unconfined stress-relaxation test was developed (Gailani and
Cowin 2008). Predictions made by this model were compared
to experimental stress-relaxation measurements made on iso-
lated osteons in vitro (zero blood pressure), and the curve
fitting between data and experiments was used to obtain the
PLC permeability without the influence of the PV (Gailani
et al. 2009).

In this paper, the solution presented in Cowin et al. (2009)
and the experimental approach developed in Gailani et al.
(2009) are extended to the case of harmonic loading (Fig. 1).
A description of the osteon’s anatomy and physiology is pre-
sented in Sect. 2. A single osteon is idealized as a fully sat-
urated porous annular cylinder subjected to an axial cyclic
mechanical loading in order to determine formulas for the
phase angle as a function of permeability and frequency in
Sect. 3. The phase angle of interest corresponds to the differ-
ence between the applied cyclic strain and the resultant stress.
Also, expressions for the storage modulus, the loss modulus,

and the loss tangent are obtained in Sect. 3. Numerical exam-
ples are presented in Sect. 4, the sensitivity of the analytical
model to the variation in the model parameters is consid-
ered in Sect. 5, and a discussion of the results is in Sect. 6.
The analytical model of this paper will be used as a basis
of a future experimental study in which an isolated osteo-
nal specimen will be subjected to an applied cyclic strain in
order to determine the phase angle between the applied cyclic
strain and the resultant stress and thus evaluate the frequency
dependence of the PLC permeability experimentally.

2 The anatomy and physiology of an osteon

The osteon is a fundamental building unit of adult human
long bones at the microscopic scale. The osteon geometry is
roughly cylindrical with a radius of about 100–150µm, and it
contains at its center a Haversian or osteonal canal of about
40 µm radii (Fig. 2). It is composed of two phases, liquid
and solid. The fluid phase is an interstitial liquid that sur-
rounds blood vessels in the Haversian canal and fills all the
pores in the PLC; it functions as an interchange path between
the two porosities. The fluid movement depends upon the
applied loading and the difference of pore pressure between
the two chambers, the PLC and the central Haversian canal.
The interchange occurs in two different directions, (i) trans-
port of nutrients and oxygen from arterioles to the bone cells
into the PLC and (ii) transfer of the cell waste from the lacu-
nae to the venules in the central Haversian canal, part of vas-
cular porosity (PV). The osteonal solid phase formation unit
is a lamella 3–7 µm thick composed of mineralized collagen
fibers oriented parallel to one another. The small regularly
placed cavities observed in between lamellae are lacunae, in
which osteocytes (bone cells) reside. Lacunae are connected
by small canals (approximately 0.3 µm in diameter) called
canaliculi. Each canaliculum contains an osteocyte cell pro-
cess, and these processes are connected with each other by
gap junctions. The canaliculi also join the lacunae with the
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Fig. 2 A cartoon depicting how
the cut of the osteonal
cylindrical specimen should be
performed in order to estimate
the PLC permeability free of the
influence of the PV

Haversian canal (Fig. 2). At the outer border of each osteon
are roughly 2 µm thick cement lines comprised of a miner-
alized matrix (Jee 1988). The annular region of the approx-
imately cylindrical osteon is entirely composed of the PLC
and the cement line. The Haversian or osteonal canal is part
of the PV and has a diameter of roughly 40 µm. The oste-
onal canal is considered as PV because of its size and the
fact that it houses vasculature and nerves as well. Beyond
the fact that the PLC houses osteocytes in the lacunae, it rep-
resents all the fluid-occupied space in an osteon. In terms of
movement and velocity, the interstitial fluid behaves differ-
ently under a cyclic mechanical loading in the PLC from its
behavior in the Haversian canal. The difference of the bone
fluid behavior stems from the differences in geometry and the
intrinsic characteristic of each domain (Fornells et al. 2007).
On one hand, the Haversian canal is the large-scale poros-
ity with roughly ten orders of magnitude greater permeability
(Gardinier et al. 2010) that houses blood vessels and in which
pressure pulses will decay rapidly. Any significant increase
of pressure in response to mechanical loading beyond blood
pressure in this porosity could collapse the vessels, which
will render the bone tissue ischemic if the collapse is pro-
longed (Cowin et al. 2009); in other words, this means that
the PV remains most of the time under a lower pressure.
However, on other hand, the PLC is the porosity associated
with the higher pressure compared to the PV as well as longer
relaxation time for pressure pulses (Yang et al. 1999; Zhang
et al. 1998). Moreover, the PLC has a much lower permeabil-
ity and contains osteocytes, the bone sensory cells, with their
interconnected processes. The difference of pressures created
between the PLC and the PV causes the fluid movement that
creates forces large enough to be sensed by osteocytes. These
forces are thought to activate the molecular sensor structures
that are part of the mechanosensory phenomena. The whole
process allows the osteocytes to orchestrate the bone resorp-
tion and manage the bone remodeling. Therefore, one can see

how the determination of the PLC permeability represents a
major key to improve the understanding of mechanotrans-
duction phenomena.

3 Phase angle as a function of permeability

We consider a transverse segment of an isolated osteonal
specimen whose annular region (PLC) between the Haver-
sian canal and cement line is subjected to an axial cyclic load-
ing between two smooth, parallel and impermeable plates
(Figs. 1, 2). The contact between the specimen and the plates
is assumed to be frictionless and the applied load is con-
sidered to be uniformly distributed on the loaded surface.
The axial cyclic loading is in the form of an applied strain,
εoe

iωt , where εo and ω are the amplitude of the cyclic strain
and its angular frequency, respectively. Axial symmetry is
assumed, and cylindrical coordinates are employed to rep-
resent the specimen; r is the radial coordinate, and z is the
axial coordinate. The displacement in the radial direction is
then denoted by ũ(r, t) where t is time. These displacement
components, in addition to the pore pressure field p̃(r, t) and
the variation in fluid content ζ̃ (r, t), a dimensionless measure
of the fluid mass per unit volume of the porous material, are
assumed to have the following temporal dependencies when
subjected to the applied axial loading ε(t) = εoe

iωt :

ũ(r, t) = zε(t), p̃(r, t) = p(r)eiωt , ζ̃ (r, t) = ζ(r)eiωt .

(1)

The differential equation governing the pore pressure field is
specialized from Cowin et al. (2009, equation (5.16)), as

∂2p̃

∂r2 + 1

r

∂p̃

∂r
− μ

Krr

(
Â2

r

Ĉd
rr

+ 


)
∂p̃

∂t

= iω
μ

Krr

(
Âzεo + Ârfo

)
eiωt . (2)
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Table 2 Relationships between model parameters employed

Formulas

Constants Transverse isotropy compressible

1
Km

r

1−νm
rθ −νm

rz

Em
r

1
Km

z

1−2νm
rz

Em
z

1
Km

Reff

2
Km

r
+ 1

Km
z

�1 1 − νd
rθ − 2νd

rzν
d
zr

�2
(
1 − νd

rzν
d
zr

)
/
(
1 + νd

rθ

)

�3
(
1 − 2νd

zr

)
�2/�1

1
Kd

Reff

2
(
1−νd

rθ −νd
rz

)

Ed
r

+ 1−2νd
zr

Ed
z

Cd
eff

1
Kd

Reff
− 1

Km
Reff

+ φ
(

1
Kf − 1

Km
Reff

)


 Cd
eff − 1

Kd
Reff

+ 2
Km

Reff
− 1

�1

[
2Ed

r

Km2
r

+ 4Ed
r νd

zr

Km
r Km

z
+ Ed

z

(
1−νd

rθ

)

Km2
z

]

J

[
1 − Ed

r

�1

(
1

Km
r

+ νd
zr

Km
z

)]2

+ 

Ed

r �2
�1

Âr 1 − Ed
r

�1

(
1

Km
r

+ νd
zr

Km
z

)

Âz 1 − Ez

�1

(
2νd

rz

Km
r

+ 1−νd
rθ

Km
z

)

Ĉd
rr

�2
�1

Ed
r

Ĉd
zz

(
1−νd

rθ

)

�1
Ed

z

Ĉd
rθ

1−�2
�1

Ed
r

Ĉd
rz

νrz

�1
Ed

z

c
KrrC

d
rr

μJ

The notations in Eq. (2) that were not introduced above
include the expressions for the radial elastic constant Ĉd

rr , the
radial intrinsic permeability Krr , the coefficient 
 describing
the contrast between the compliance of the solid tissue matrix
material and the pore fluid, and the two components of the 6D
vector representing the Biot effective stress coefficients Âz

and Âr . These symbols are introduced in the nomenclature,
and their formulas are provided in Table 2. fo is a constant
of integration to be determined. Equation (2) may be written
more conveniently by introducing the dimensionless driving
frequency constant ω̄ and a constant of dimension force ϒ as

ω̄ = ωr2
o

c
, ϒ = μÂrc, (3)

where c is the pore fluid diffusion constant in the PLC
(Table 2), the dimensionless radius λ = r/ro, noting that
ro corresponds to the outer radius of the osteon: Eq. (2) then
takes the form

∂2p̃

∂λ2 + 1

λ

∂p̃

∂λ
− iω̄p̃ = iω̄ϒ

Krr

(
Âz

Âr

εo + fo

)

. (4)

The fluid flow is only in the radial direction within the annular
region of the osteon (the PLC), and the solution of this ODE
requires thus only two boundary conditions, (i) at λ = 1,

(the outer boundary of the osteon), it is considered that there
is no flow crossing the cement line, and (ii) at λ = a, (the
Haversian canal wall), where a is a non-dimensional inner
radius of the osteon, there is a free fluid flow between the
Haversian canal and the PLC, thus

∂p̃

∂λ
(1, t) = 0, p̃(a, t) = 0. (5)

The solution of the ODE (4) subjected to the boundary con-
ditions (5) is

p̃(λ, t) = (
�̄(λ, 1) − 1

) (Az

Ar

εo + fo

)
ϒ

Krr

eiωt , (6)

where

�̄(λ, α) = �(λ, α)

�(a, α)
and �(λ, α)

= Io

(√
iω̄λ

)
K1

(√
iω̄α

)

+I1

(√
iω̄α

)
Ko

(√
iω̄λ

)
. (7)

Concerning the thought experiment associated with this
model, no flow is permitted across the upper and bottom
boundaries of the annular section of the osteon due to close
contact with the impervious and frictionless loading plates.
There also exists a free fluid exchange between the Haversian
canal fluid and the fluid contacting the osteonal canal at the
top and bottom of the specimen.

The non-zero stress components are given in terms of the
radial displacement ũ(r, t) and the pore fluid pressure by
Cowin et al. (2009, equation (5.3)),

Trr = −Âr p̃ + Ĉd
rr

∂ũ

∂r
+ Ĉd

rθ

ũ

r
+ Ĉd

rzεoe
iωt ,

Tθθ = −Âr p̃ + Ĉd
rθ

∂ũ

∂r
+ Ĉd

rr

ũ

r
+ Ĉd

rzεoe
iωt ,

Tzz = −Âzp̃ + Ĉd
rz

(
∂ũ

∂r
+ ũ

r

)
+ Ĉd

zzεoe
iωt . (8)

The relationship between ũ(r, t) and p̃(r, t),

∂ũ

∂r
+ ũ

r
= 1

λ

∂

∂λ
(λũ) = Âr

Ĉd
rr

rop̃(λ, t) + rofoe
iωt , (9)

is obtained by substituting the expressions for Trr and Tθθ

given in (8) into the stress equilibrium condition

∂Trr

∂r
+ Trr − Tθθ

r
= 0, (10)

thus, the expression for ũ(λ, t) is given by

ũ(λ, t) =
[

1

2
+
(

�̄(λ, 1)

λ
− 1

2

)]
roλfoe

iωt

+ λ

Cd
rr

(
�̄(λ, 1)

λ
− 1

2

)
roAzεoe

iωt + go

λ
eiωt , (11)
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where

�(λ, α) = 1√
iω̄

∂�(λ, α)

∂λ
,

∫
λ�(λ, α)dλ = λ�(λ, α)√

iω̄
, �̄(λ, α) = �(λ, α)

�(λ, α)
,

(12)

and go is a constant of integration obtained by solving Eq. (9).
The substitution of Eqs. (11) and (9) into the expression of
Trr in (8) yields to the desired formula for the radial stress,

Trr = −Âr p̃ +
{

Ĉd
rθ + Ĉd

rr

2
+
[
�̄(λ, 1) − 1

+ Ĉd
rθ − Ĉd

rr

Ĉd
rr

(
�̄ (λ, 1)

λ
√

iω̄
− 1

2

)]
Ârϒ

Krr

}

foe
iωt

+
{

Ĉd
rz +

[

�̄(λ, 1) − 1 + Ĉd
rθ − Ĉd

rr

Ĉd
rr

×
(

�̄ (λ1)

λ
√

iω̄
− 1

2

)]
Âzϒ

Krr

}

εoe
iωt

+
(
Ĉd

rθ − Ĉd
rr

) go

roλ2 eiωt (13)

Because of the free fluid flow at the inner surface of the hol-
low cylinder, both the radial stress and the pore fluid pressure
vanish. At this boundary, λ = a and the function �̄(λ, 1) in
Eq. (7) becomes �̄(a, 1) = 1, thus

Trr (a, t) = 0 =
{

Ĉd
rθ + Ĉd

rr

2

+
[

Ĉd
rθ − Ĉd

rr

Ĉd
rr

(
�̄(a, 1)

a
√

iω̄
− 1

2

)]
Ârϒ

Krr

}

foe
iωt

+
{

Ĉd
rz +

[
Ĉd

rθ − Ĉd
rr

Ĉd
rr

(
�̄(a, 1)

a
√

iω̄
− 1

2

)]
Âzϒ

Krr

}

εoe
iωt

+
(
Ĉd

rθ − Ĉd
rr

) go

roa2 eiωt . (14)

If we now require that the effective radial stress Trr + Âr p̃

vanishes at the outer surface of the osteon that corresponds
to λ = 1, we obtain the following restriction:

Trr (1, t) + Âr p̃ = 0 =
[

Ĉd
rθ + Ĉd

rr

2

+
(

1√
iω̄�(a, 1)

− Ĉd
rθ + Ĉd

rr

2Ĉd
rr

)
Ârϒ

Krr

]

foe
iωt

+
[

Ĉd
rz +

(
1√

iω̄�(a, 1)
− Ĉd

rθ + Ĉd
rr

2Ĉd
rr

)
Âzϒ

Krr

]

εoe
iωt

+
(
Ĉd

rθ − Ĉd
rr

) go

ro
eiωt , (15)

where �̄(1, 1) = 0 and �̄(1, 1) = 1√
iω̄�(a,1)

. Equations (14)

and (15) permit the evaluation of the two constant of integra-
tions fo and go. As go is not needed to define the expression
of the pore pressure (Eq. 6), only fo is evaluated. This is
accomplished by multiplying Eq. (14) by a2 and subtracting
the result from (15); thus,

fo =
[
a1 − Ĉd

rz

(
1 − a2

)
Krr

]
εo

Ĉd
rθ+Ĉd

rr

2

(
1 − a2

)
Krr +

(
Âr−Âz√
iω̄�(a,1)

− Âr

)
ϒ − a1

,

(16)

where we have defined

a1 =
(

Ĉd
rθ − Ĉd

rr

Ĉd
rr

(
a�̄(a, 1)√

iω̄
+ 1 − a2

2

)

− 1√
iω̄�(a, 1)

)
Âzϒ. (17)

Then, by substituting Eq. (16) into (6), the expression for the
pore pressure may be written in the form

p̃(λ, t) = (
�̄(λ, 1) − 1

)

×
⎛

⎜
⎝

Âz

Âr

+
[
a1 − Ĉd

rz

(
1 − a2

)
Krr

]
εo

Ĉd
rθ +Ĉd

rr

2

(
1−a2

)
Krr +

(
Âr−Âz√
iω̄�(a,1)

−Âr

)
ϒ−a1

⎞

⎟
⎠

× ϒ

Krr

εoe
iωt . (18)

We are now in a position to calculate σ ∗(t), the aver-
age resultant stress due to the applied cyclic strain loading
ε(t) = εoe

iωt . In this case σ ∗(t) is defined by

σ ∗(t) = 2

1 − a2

1∫

a

Tzzλ dλ, (19)

where λ = r/ro is the dimensionless radial coordinate and a

is the value of λ at the inner cylindrical surface. The substitu-
tion of Eqs. (9) and (11) into the expression of Tzz in Eq. (8)
leads to

Tzz = − (
�̄(λ, 1) − 1

)
(

Âz

Âr

εo + fo

)
Âzϒ

Krr

eiωt

+Ĉd
rz

[

1 + (
�̄(λ, 1) − 1

) Âzϒ

Ĉd
rrKrr

]

foe
iωt

+ (
�̄(λ, 1) − 1

) Ĉd
rzÂzϒ

Ĉd
rrKrr

εoe
iωt + Ĉd

zzεoe
iωt ; (20)

then, after replacing the expression of Tzz from Eq. (20) into
Eq. (19) and solving the integral, the final form of σ ∗(t)
becomes

σ ∗(t) = C∗(ω̄)ε(t), (21)
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where the dynamic modulus C∗(ω̄) is expressed as

C∗(ω̄) = 2

1 − a2

{[

Ĉd
rz

1 − a2

2
−
(

Âr

Ĉd
rr

Ĉd
rz − Âz

)

×
(

a�̄(a, 1)√
iω̄

+ 1 − a2

2

)]

×
[
a1 − Ĉd

rz

(
1 − a2

)
Krr

]

Ĉd
rθ +Ĉd

rr

2

(
1 − a2

)
Krr +

(
Âr−Âz√
iω̄�(a,1)

− Âr

)
ϒ − a1

+Ĉd
zz

1−a2

2
−
(

Ĉd
rz

Ĉd
rr

− Âz

Âr

)(
a�̄(a, 1)√

iω̄
+1−a2

2

)
Âz

ϒ

Krr

}

.

(22)

In this case C∗(ω̄) can take the following expression

C∗(ω̄) = Cd
zz + c1 − c2Krr

c3Krr + c4
− c5

Krr

, (23)

with ci , (i = 1, 2, 3, 4, 5), constants, defined as

c1 =
[

Ĉd
rz −

(
Âr

Ĉd
rr

Ĉd
rz − Âz

)(
2a�̄(a, 1)

(
1 − a2

)√
iω̄

+ 1

)]

a1,

c2 = 2Ĉd
rz

[

Ĉd
rz−

(
Âr

Ĉd
rr

Ĉd
rz−Âz

)(
a�̄(a, 1)√

iω̄
+ 1 − a2

2

)]

,

c3 = Ĉd
rθ + Ĉd

rr

2

(
1 − a2),

c4 =
(

Âr − Âz√
iω̄�(a, 1)

− Âr

)

ϒ − a1, and

c5 =
(

Ĉd
rz

Ĉd
rr

− Âz

Âr

)(
2a�̄(a, 1)

(
1 − a2

)√
iω̄

+ 1

)

Âzϒ. (24)

The average resultant stress can also be written as

σ ∗(t) = σoe
i(ωt−δ(ω̄)) = σoe

−iδ(ω̄)eiωt , (25)

thus

C∗(ω̄) = Coe
−iδ(ω̄), Co = σo

εo

, (26)

where εo and σo are, respectively, the magnitudes of the
applied cyclic strain and the average resultant stress in the
osteon while δ(ω̄) is the phase angle representing the time
delay between the harmonic strain and the resultant stress.
Equation (26) is an explicit form of the frequency-dependent
stiffness (or dynamic modulus of elasticity) of the tissue,
which is a function of the porosity and the unknown perme-
ability as shown in Eqs. (22) and (23). The dynamic modulus
C∗(ω̄) is thus dependent on the symmetry and compressibil-
ity conditions of the material. In this paper, we will restrict
our study to the case of the transverse isotropic symmetry
with compressible matrix material and a compressible fluid
that corresponds to the physical properties of the osteon. In
soft tissues such as cartilage, the assumption that the fluid and

Table 3 Numerical values of the model parameters employed

PLC parameter values

Constant Value Unit

Em
r = Em

θ 18.6 GPa

Em
z 22.32 GPa

νm
rθ = νm

θr 0.322

νm
zr = νm

zθ 0.312

Krr 10−22, 10−23 and 10−24 m2

Kf 2.3 GPa

φ [0.05, .15]
�1 0.5103

�2 0.6939

Ĉd
rr 20.63 GPa

Ĉd
rz 7.479 GPa

Ĉd
rθ 7.194 GPa

Ĉd
zz 18.949 GPa

1/Km
Reff 6.23 × 10−9 GPa−1

1/Kd
Reff 8.58 × 10−9 GPa−1


 4.52 × 10−9 GPa−1

Âr 0.236 × 10−9

Âz 0.216 × 10−9

J 0.712

c 53.71 × 10−9 m2 s−1

solid constituents of the poroelastic medium are both incom-
pressible is reasonable because the bulk modulus of the tissue
and its constituent fluid are about the same magnitude. For
bone tissue, however, the effective bulk modulus of the poro-
elastic solid constituent of bone tissue is approximately six
times stiffer than that of the fluid constituent (Cowin and Doty
2007). Therefore, it is apparent that the pressures in the solid
and fluid phases are significantly different compared to the
soft tissue situation where they are approximately the same.
Thus, the constituent incompressibility assumption that is
acceptable for soft tissues is inappropriate for hard tissues
and if this incompressibility assumption is kept for bone tis-
sue, large errors in the determination of bone fluid pressures
will emerge.

All the parameters appearing in Eq. (22) are summarized
in Table 2, and the values used for the numerical examples in
Sect. 4 are expressed in Table 3. Using Euler’s formula, we
can write

C∗(ω̄) = Coe
iδ(ω̄) = Co cos[δ(ω̄)]

+iCo sin[δ(ω̄)] = C′(ω̄) + iC′′(ω̄), (27)

where C′(ω̄) is known as the storage modulus and C′′(ω̄)

as the loss modulus of the osteon. From the Eq. (27), the
expression of the loss tangent is
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tan[δ(ω̄)] = C′′(ω̄)

C′(ω̄)
= sin[δ(ω̄)]

cos[δ(ω̄)] . (28)

The detail of calculating the storage modulus and loss
modulus that represent the real and imaginary parts of C∗(ω̄)

is recorded in the appendix, Eq. (23A), where their formulas
for C′(ω̄) and C′′(ω̄) are given as

C′(ω̄) = 2

1 − a2 (m6 + m7) and

C′′(ω̄) = 2

1 − a2 (n6 + n7), (29)

where the coefficients m6, n6,m7, and n7 are defined as
⎧
⎪⎪⎨

⎪⎪⎩

m6 = (β1β3 − β2β4)β5 + (β1β4 + β2β3)β6

β2
5 + β2

6

,

n6 = [(β1β3 − β2β4)β6 + (β1β4 + β2β3)β5]
β2

5 + β2
6

,

(30)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = Ĉd
rz

1−a2

2 +
(

Âr

Ĉd
rr

Ĉd
rz − Âz

)(
am4 + 1−a2

2

)
,

β2 = a

(
Âr

Ĉd
rr

Ĉd
rz − Âz

)
n4,

β3 =
[
Ĉd

rz

(
a2 − 1

)
Krr − m5

]
, β4 = n5,

β5 = Ĉd
rθ+Ĉd

rr

2

(
1−a2

)
Krr+

(
m2

(
Âr−Âz

)
−Âr

)

× Âzϒ−m5, β6 =
(
Âr − Âz

)
n2ϒ − n5.

(31)

and
⎧
⎪⎪⎨

⎪⎪⎩

m7 = Ĉd
zz

1−a2

2 + Âzϒ
Krr

(
Ĉd

rz

Ĉd
rr

− Âz

Âr

)(
am4 + 1−a2

2

)
,

n7 =
(

Ĉd
rz

Ĉd
rr

− Âz

Âr

)
aÂzn4ϒ

Krr
,

(32)

where m1, n1,m2, n2,m4, n4,m5, and n5 are defined in the
appendix A, Eqs. (7A, 8A, 9A, 11A, and 13A) and involve
the Kelvin functions bern and bein (n = 0, 1).

4 Numerical results

The loss modulus, storage modulus, and loss tangent are
calculated as functions of the permeability, porosity, and
frequency for the case of a cylindrical osteon subjected to
cyclic loading using Eqs. (28) and (29). For these calcu-
lations, two sets of bone elastic constants are needed. The
first set is the matrix material constants (Em

r ,Em
z , vm

rθ , v
m
rz,

and vm
zr ), and the second set is the drained poroelastic con-

stants (Ed
r , Ed

z , vd
rθ , v

d
rz, and vd

zr ). The values of the matrix
material constants are adopted from Cowin et al. (2009) and
summarized in Table 3. The drained elastic constants and the
drained Poisson’s ratios can be approximated as a function
of the porosity and the matrix material constants (Yang et al.
1999),

Fig. 3 Plots of the storage modulus C′(ω̄), Eq. (29), as a function of
frequency in the PLC, considering 10% porosity (φ) and three different
values of permeability, Krr = {10−22, 10−23, 10−24 (m2)}

Fig. 4 Plots of the loss modulus C′′(ω̄) Eq. (29), as a function
of frequency in the PLC, using φ = 0.01 and Krr ={10−22, 10−23,

10−24 (m2)} as a function of frequency

Ed
r = Em

r (1 − φ)1.92, Ed
z = Em

z (1 − φ)2.80,

vd
rθ = 0.298(1 − φ)−0.45, vd

rz = 0.246(1 − φ)−0.19,

vd
zr = 0.295(1 − φ)−0.69. (33)

The behavior of the storage and loss moduli as functions
of frequency in an osteon is shown, respectively, in Figs. 3
and 4. This result was obtained considering 10% porosity
(Table 4) and using three different values of intrinsic per-
meability, 10−22, 10−23, and 10−24 m2 of the PLC. In these
two figures, the loss modulus decreases and the storage mod-
ulus increases as the permeability decreases from 10−22 to
10−24 m2 within the range of frequency analyzed (0.01 to
100 Hz). Therefore, the loss tangent, the ratio of the loss mod-
ulus to the storage modulus, should decrease when the perme-
ability decreases, as shown in Fig. 5, the plot of loss tangent.

The storage modulus, the loss modulus, and the loss tan-
gent are larger at low frequencies, respectively, from Figs. 3,
4, and 5; therefore, the calculations of loss tangent shown
in Fig. 6 were limited to the frequency range [0.01–1 (Hz)].
Figure 6 is a 3D plot of the loss tangent with respect to poros-
ity and permeability at three different frequencies [0.01, 0.1,
1 (Hz)]. This figure provides the possibility of analyzing the
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Table 4 Values of the PLC porosity collected from different studies

Reference Method PLC porosity (%)

Gardinier et al. (2010) Based on Cowin
(1999)

5

Fritton, Sa Confocal
microscopy and
microstructural
measurements

10

Goulet et al. (2009) Theoretical
estimation
based on
capillaric and
spherical-shell
models

12

Ciani et al. (2007) Scanning
electron
microscopy

19

Kameo et al. (2010) Confocal
microscopy and
microstructural
measurements

23

The values are ranging from 5 to 23%
a Personnel communication based on on-going study

Fig. 5 Plots of the loss tangent tan[δ(ω̄)] in the PLC, Eq. (28), using
φ = 0.01 and Krr = {10−22, 10−23, 10−24 (m2)} versus frequency.
The loss tangent is the ratio of the imaginary and real parts of the nor-
malized average resultant stress

behavior of the loss tangent from three different perspec-
tives. First, it shows how the loss tangent decreases as the
frequency increases for different values of porosity and per-
meability. Second, at any constant value of porosity, it shows
that the loss tangent increases with an increase in permeabil-
ity. Third, it illustrates how the loss tangent decreases when
the porosity increases at any constant value of permeability.

5 Sensitivity of the analytical model

The study of sensitivity of the loss tangent to the variability of
the parameters employed in the evaluation of the expression
for the loss tangent can be performed in two different ways.
The first method is called derivative-based sensitivity anal-
ysis (Wu et al. 2011) and consists of determining the partial
derivative of the loss tangent with respect to each parame-
ter that may play a key role in determining the value of the
expression for the loss tangent. Each partial derivative repre-
sents the rate of change of the loss tangent with respect to the
related parameter. In other words, the output of each partial
derivative illustrates how the corresponding parameter influ-
ences the loss tangent, and a plot of all the partial derivatives
will depict the hierarchy of the corresponding parameters in
terms of their degree of influence on the behavior of the loss
tangent. The second method is called numerical parametric
sensitivity analysis (Ramtani 2007), and it is based on per-
turbing the value of each parameter individually with a given
percentage of variation considered to be representative of the
physiological variability in the osteon. The coefficient of var-
iation, CV, produced in the output of the model (loss tangent)
as a consequence of the change in value of an input parame-
ter was calculated as the ratio between the standard deviation
SD and the mean value of the loss tangent generated by the
variation on each input of the model individually (Eq. 30),

CV = 100
SD (tan[δ(ω̄)])

mean (tan[δ(ω̄)]) . (34)

Fig. 6 3D plots of loss tangent
tan[δ(ω̄)] with respect to
porosity and permeability at
three different frequencies, 0.01,
0.1, and 1 (Hz). The ranges of
permeability and porosity are,
respectively,
[10−22, 10−24 (m2)] and
[0.05, 0.15]
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Fig. 7 Derivative-based sensitivity plot of the loss tangent with respect
to porosity and dimensionless matrix material Young’s moduli with
Krr = 10−23 m2. The higher curve with the solid linetype corresponds
to the partial parametric derivative of the loss tangent while the two other
curves with the dotted and the dashed linetypes correspond, respectively,
to the partial parametric derivatives of the loss tangent with respect to
the normalized elastic matrix material constants Emo

r and Emo
z

The sensitivity of the solution for the loss tangent with
respect to its significant parameters other than the perme-
ability, specifically the porosity and the two Young’s mod-
uli of the matrix material, the radial Em

r and the axial Em
z ,

was evaluated. The algebraic expressions for the loss tangent
and its derivative with respect to porosity are dimensionless
while the derivatives of the loss tangent with respect to the
elastic material constants are not. In order to plot and com-
pare the partial parametric derivatives of the loss tangent,
the derivatives with respect to the Young’s moduli are made
non-dimensional. The non-dimensionalized radial Em

r and
the axial Em

z Young’s moduli are then given by

Emo
i = Em

i

Kf
(i = r, z), (35)

where Emo
i are the dimensionless Young’s moduli in the

radial (i = r) and axial (i = z) directions while Kf is
the compressibility of the interstitial fluid. Figure 7 shows the
results of the derivative-based sensitivity analysis by indicat-
ing the degree of influence of each parameter on the output of
the loss tangent model. The higher curve with the solid line-
type corresponds to the partial derivative of the loss tangent
with respect to porosity while the two lower curves with the
dotted and the dashed linetypes correspond to the derivatives
of the loss tangent with respect to the dimensionless matrix
material Young’s moduli Emo

r and Emo
z . The hierarchy of the

three curves shows that the influence of the porosity on the
values of the loss tangent is much higher than the influence
of the axial or radial matrix material Young’s moduli. This
behavior was confirmed by using the numerical parametric
sensitivity analysis method. A −20% to +20% perturbation
was applied independently to each set of parameters, result-
ing in an average deviation on the loss tangent of 20% in
the case of the porosity while it did not exceed, respectively,

0.8% and 1% for the case of the radial and the axial matrix
material Young’s moduli.

6 Discussion

This paper is a part of a continuing work aimed at the devel-
opment of a model describing fluid transport in bone. More
specifically, the present study is an extension of previous
work (Cowin et al. 2009), which addressed the question of
pore fluid movement due to cyclic loading and blood pressure
from the perivascular region to the bone cells in the lacunae.
The governing equation for the theory of poroelastic material
with hierarchical pore structure and compressible constitu-
ents in Cowin et al. (2009) was adjusted to fit this case where
only the PLC is included and the PV is excluded.

Recently, we have determined the PLC permeability of
an isolated osteon using stress-relaxation measurements
(Gailani et al. 2009) that were based on a stress-relaxa-
tion poroelastic model of an annular poroelastic cylinder as
described in Gailani and Cowin (2008). The stress-relaxation
test procedure was replaced in this study by cyclic loading,
which is closer to the normal physiological loading condi-
tion in bones than the stress-relaxation test. Ambulation of a
human body involves frequencies of about 1 Hz, and muscles
have operational frequencies in the 30 Hz range while mea-
surements have shown that frequencies of several hundred
Hertz occur in moving living bones (Cowin and Doty 2007).

The phase angle that an osteonal specimen exhibits under
cyclic mechanical loading in the case of specified elastic
constants depends mainly upon the permeability and poros-
ity. Expressions for the storage modulus, loss modulus,
and loss tangent are obtained from the poroelastic model.
Figures 3, 4, and 5 depict, respectively, the 2D plots of the
storage modulus, the loss modulus, and the loss tangent with
respect to frequency for the parameter values specified in
Table 3. Figure 6 illustrates the 3D plots of the loss tan-
gent with respect to permeability and porosity at different
frequencies [0.01, 0.1, 1 (Hz)] while Fig. 7 represents the
plots of the loss tangent derivatives with respect to the poros-
ity and the elastic matrix material Young’s moduli at a perme-
ability of 10−23 m2. The plots in Fig. 3 refer to the storage
modulus, which illustrate how the effective stiffness of an
osteon specimen behaves with frequency. At low frequen-
cies, these curves increase sharply; then, the increasing rate
of the storage modulus starts decreasing monotonically until
it becomes almost steady around 102 Hz. The plots of Fig. 4
represent the loss modulus while Figs. 5 and 6 represent
the loss tangent. The plots of loss tangent and loss modulus
express how the energy dissipation and mechanical damping
vary in an osteonal sample with respect to frequency, per-
meability, and porosity. In contrast to the curves for the stor-
age modulus that are increasing with frequency, the curves
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for the loss modulus (Fig. 4) and the loss tangent (Fig. 5)
are decreasing. At high frequencies, these curves converge
toward zero asymptotically, which means that the behavior
of the bone sample at high frequencies is purely elastic. The
storage modulus, the loss modulus, and the loss tangent are,
respectively, represented with cosine, sine, and tangent of
the phase angle by the formulas represented in Eqs. (27) and
(28). In other words, this means that there is a causal relation
between the variability of these physical properties and the
variation of the phase angle. The results from this analytical
model are the foundation for the experimental design of a
forthcoming study, in which the variation of the phase angle
with respect to frequency will be used to determine the per-
meability of the lacunar–canalicular porosity in a section of a
single osteon. In particular, it can be inferred from the curves
in Figs. 3, 4, 5, and 7 that the most sensitive range of fre-
quency for the planned experimental study would be between
10−2 and 101 Hz. Importantly, this range of frequency con-
tains the physiological level of frequency at which mechan-
ical loading is considered to be applied to bone in humans.
Moreover, it can be concluded from Fig. 7 that the porosity
is the most influential parameter affecting the magnitude of
the loss tangent, and that the loss tangent is highly sensitive
to the frequency, decreasing exponentially as the frequency
increases.

The numerical results produced by our model are close to
the results of loss tangent previously reported in the litera-
ture. For instance, the values of loss tangent predicted by this
model and presented in Fig. 5 are close to the experimental
loss tangent curves presented by Garner et al. (2000). From
their Figs. 5 and 4, the reported values of loss tangent are
between 0.06 at 10−2 Hz and 0.02 at 102 Hz. In another study
by Drabousky (2009), the loss modulus and storage modulus
are plotted in their figures 3.20 and 3.22, respectively. At the
same frequencies, the values of loss tangent calculated from
their curves vary from 0.075 to 0.015. In this study, the val-
ues of the loss tangent obtained from our analytical model
are between 0.14 at 10−2 Hz and 0.005 at 102 Hz. The small
differences in the behavior of the storage modulus, the loss
modulus, and the loss tangent that can be observed with a
comparison of the plots in Figs. 3, 4, and 5 with the corre-
sponding figures from Garner et al. (2000) and Drabousky
(2009) may be attributed to two facts. First, we assumed that
our specimens were microscopic cylindrical sections of ost-
eons that included only the PLC and excluded the PV, while
they used in both studies macroscopic samples that included
the PLC and the PV. Second, we calculated our analytical
models based on cyclic strain and resultant stresses, while in
both papers, they adopted different experimental approaches
to determine their data. In Garner et al. (2000), the loss tan-
gent was determined in cylindrical specimen harvested from
human tibia in the transversal and longitudinal directions. For
the transversal direction, the authors used bending moments

and resultant bending deformation while in the longitudi-
nal direction, they used harmonic torque and resultant angu-
lar displacement experiments. Concerning the second paper,
Drabousky (2009) used tensile relaxation tests at different
load magnitudes and strain rates to determine the loss mod-
ulus and the storage modulus in cylindrical equine cortical
bone specimens.

Finally, the present work contains two limitations. First,
the geometrical idealization of the osteonal specimen as
a right circular cylinder approximately corresponds to the
shape of the osteon. Second, the impermeable boundary con-
dition assumed at the cement line for the ODE (4) might not
be totally correct. Wang et al. (1999) assumed that the cement
line is slightly permeable. However, even if this permeability
exists, it is negligible in comparison to the one at the inner
boundary between the PLC and the PV porosities.
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Appendix: Determination of the real and imaginary
parts of C∗(ω̄)

The expression of the modulus C∗(ω̄) in Eq. (22) contains

hierarchical complex components such as a1 and a�̄(a,1)√
iω̄

with

�̄(a, 1) = �(a, 1)

�(a, 1)
, (1A)

and
⎧
⎨
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(2A)

where In and Kn (n = 0, 1) are Bessel functions. Now if
we let x1 = √

ω̄ and x2 = a
√

ω̄, the forms of �(a, 1) and
�(a, 1) in (2A) are rewritten as
⎧
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(3A)

From Abramowitz and Stegun (1964, equations (9.9.1) and
(9.9.2)), we have
⎧
⎨

⎩

Io

(
xe

iπ
4

)
=berox+i(beiox), I1

(
xe

iπ
4

)
=bei1x−i(ber1x),

Ko

(
xe

iπ
4

)
=kerox+i(keiox), K1

(
xe

iπ
4

)
=−keiox+i(kerox),

(4A)
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where bern, bein (n = 0, 1) are Kelvin functions. Thus,

Io

(
x2

√
i
)

K1

(
x1

√
i
)

= [berox2 + i(beiox2)][−kei1x + i(ker1x)]
= −berox2kei1x1 + i(berox2 ker1 x1)

−i(beiox2kei1x1) − beiox2ker1x1

= −berox2kei1x1 − beiox2ker1x1

+i(berox2ker11x1 − beiox2kei1x1), (5A)
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= m1 + in1. (7A)

Following the expression (7A) the term 1√
iω̄�(a,1)

in Eq. (8)

is rewritten as

1√
iω̄�(a, 1)

= 1√
iω̄(m1 + in1)

= m2 + in2 since

√
iω̄ = √

ω̄e
iπ
4 =

√
ω̄

2
(1 + i) (8A)

with

m2 = m1 − n1√
ω̄
2 ((m1 − n1)2 + (m1 + n1)2)

and

n2 = −m1 − n1√
ω̄
2

(
(m1 − n1)2 + (m1 + n1)2

) . (9A)

From the other side the substitution of Eqs. (4A) into the
form of �(a, 1) from (3A) leads to

�(a, 1)

= I1

(
x2

√
i
)

K1

(
x1

√
i
)

− I1

(
x1

√
i
)

K1

(
x2

√
i
)

= −ber1x2kei1x1 − bei1x2ker1x1

+i(ber1x2ker1x1 − bei1x2kei1x1)

−bei1x1ker1x2 − ber1x1kei1x2

−i(−bei1x1kei1x2 + ber1x1ker1x2)

= −ber1x2kei1x1 − bei1x2ker1x1 − bei1x1ker1x2

−ber1x1kei1x2

+i(ber1x2ker1x1 − bei1x2kei1x1 − bei1x1kei1x2

+ber1x1ker1x2)

= m3 + in3, (10A)

and by replacing (8A) and (10A) in �̄(a,1)√
iω̄

defined in Eqs.
(1A) and (8A), the general form becomes

�̄(a, 1)√
iω̄

= m4 + in4, (11A)

where
⎧
⎪⎨

⎪⎩

m4 =
√

2
ω̄

m3(m1+n1)+n3(n1−m1)

m2
1+n2

1
,

n4 =
√

2
ω̄

m3(m1−n1)+n3(n1+m1)

m2
1+n2

1
.

(12A)

Then, by substituting Eqs. (11A) and (8A) into Eq. (17) the
expression of a1 is rewritten as

a1 = m5 + in5, (13A)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m5 =
(
Ĉd

rr−Ĉd
rθ

)

Ĉd
rr

(
am4 + 1−a2

2 − m2

)
Âzϒ,

n5 =
(

a

(
Ĉd

rr−Ĉd
rθ

)

Ĉd
rr

n4 − n2

)

Âzϒ.

(14A)

Now let’s write C∗(ω̄) from Eq. (22) as

C∗(ω̄) = 2

1 − a2 [H1 + H2], (15A)

where

H1 =
[

Ĉd
rz

1 − a2

2
−
(

Âr

Ĉd
rr

Ĉd
rz−Âz

)(
a�̄(a, 1)√

iω̄
+ 1 − a2

2

)]

×
[
a1 − Ĉd

rz

(
1 − a2

)
Krr

]
εo

Ĉd
rθ +Ĉd

rr

2

(
1 − a2

)
Krr +

(
Âr−Âz√
iω̄�(a,1)

− Âr

)
Âz − a1

,

(16A)

and

H2 = Ĉd
zz

1 − a2

2
+
(

Ĉd
rz

Ĉd
rr

− Âz

Âr

)

×
(

a�̄(a, 1)√
iω̄

+ 1 − a2

2

)
Âzϒ

Krr

. (17A)
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Thus, from one side the substitution of Eqs. (11A) and (13A)
into Eq. (16A) gives

H1 =
[

Ĉd
rz

1−a2

2
+
(

Âr

Ĉd
rr

Ĉd
rz−Âz

)(

a(m4 + in4)+ 1−a2

2

)]

×
{[

m5 + in5−Ĉd
rz(a

2 − 1)Krr

}

Ĉd
rθ

+Ĉd
rr

2 (1−a2)Krr +
[
(m2 + in2)(Âr −Âz)−Âr

]
ϒ − m5 − in5

]

= m6 + in6, (18A)

where
⎧
⎪⎪⎨

⎪⎪⎩

m7 = (β1β3 − β2β4)β5 + (β1β4 + β2β3)β6

β2
5 + β2

6

,

n7 = (β1β4 + β2β3)β5 + (β2β4 − β1β3)β6

β2
5 + β2

6

,

(19A)

with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = Ĉd
rz

1−a2

2 +
(

Âr

Ĉd
rr

Ĉd
rz − Âz

)(
am4 + 1−a2

2

)
,

β2 = a

(
Âr

Ĉd
rr

Ĉd
rz − Âz

)
n4,

β3 =
[
Ĉd

rz

(
a2 − 1

)
Krr − m5

]
, β4 = n5,

β5 = Ĉd
rθ+Ĉd

rr

2

(
1 − a2

)
Krr +

(
m2

(
Âr − Âz

)
− Âr

)

× Âzϒ − m5, β6 =
(
Âr − Âz

)
n2ϒ − n5.

(20A)

From the other side, by substituting Eq. (11A) into Eq. (17A),
the expression of H2 is rewritten as

H2 = m7 + in7, (21A)

where
⎧
⎪⎪⎨

⎪⎪⎩

m7 = Ĉd
zz

1−a2

2 + Âzϒ
Krr

(
Ĉd

rz

Ĉd
rr

− Âz

Âr

)(
am4 + 1−a2

2

)
,

n7 =
(

Ĉd
rz

Ĉd
rr

− Âz

Âr

)
aÂzn4ϒ

Krr
,

(22A)

Finally by introducing Eqs. (23) and (18A) into Eq. (15A)
the expression of the normalized pressure C∗(ω̄) is rewritten
as

C∗(ω̄) = C′(ω̄) + iC′′(ω̄), (23A)

where
{

C′(ω̄) = 2
1−a2 (m6 + m7),

C′′(ω̄) = 2
1−a2 (n6 + n7).

(24A)
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