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Abstract An anisotropic damage model for soft fibered
tissue is presented in this paper, using a multi-scale scheme
and focusing on the directionally dependent behavior of these
materials. For this purpose, a micro-structural or, more pre-
cisely, a microsphere-based approach is used to model the
contribution of the fibers. The link between micro-struc-
tural contribution and macroscopic response is achieved by
means of computational homogenization, involving numer-
ical integration over the surface of the unit sphere. In order
to deal with the distribution of the fibrils within the fiber,
a von Mises probability function is incorporated, and the
mechanical (phenomenological) behavior of the fibrils is
defined by an exponential-type model. We will restrict our-
selves to affine deformations of the network, neglecting any
cross-link between fibrils and sliding between fibers and the
surrounding ground matrix. Damage in the fiber bundles is
introduced through a thermodynamic formulation, which is
directly included in the hyperelastic model. When the fibers
are stretched far from their natural state, they become dam-
aged. The damage increases gradually due to the progressive
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failure of the fibrils that make up such a structure. This model
has been implemented in a finite element code, and different
boundary value problems are solved and discussed herein in
order to test the model features. Finally, a clinical application
with the material behavior obtained from actual experimental
data is also presented.

Keywords Soft tissue · Microsphere · Affine
deformations · Damage · Blood vessels

1 Introduction

Most biological soft tissues, and particularly blood vessels,
are composed of networks of collagen fiber bundles (Rhodin
1980) embedded in an almost isotropic ground substance
with a high water content, which provides a well-known
quasi-incompressible behavior (Carew et al. 1968; Chuong
and Fung 1984). These collagen bundles are made up of
fibrils, and these, in turn, are composed of aggregates of
collagen molecules. Blood vessels have three main layers,
intima, media, and adventitia (see, e.g., Fung 1990). The
media is mainly composed of smooth muscle cells and sheets
of collagen fibers oriented preferentially along the circum-
ferential direction. The adventitia is basically composed of a
more random distribution of collagen fiber bundles while
the intima is a thin layer of endothelial cells. The orien-
tation of the collagen fibers is mainly responsible for the
anisotropic response and the highly non-linear behavior of
blood vessels, as described in numerous works (see, e.g.,
Fung 1990; Humphrey 1995). This structure at the micro-
level is of crucial importance in the macroscopic behavior
and the characterization of these materials, as we will discuss
later.
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Many constitutive models have been proposed lasting
recent years to model these biological tissues within the
incompressible or quasi-incompressible hyperelastic frame-
work. In this context, the description of a given mate-
rial is related to the definition of a strain energy density
function (SEDF) from which all the mechanical relations
and variables can be obtained. Early SEDFs in soft tissue
mechanics were purely phenomenological, whereby non-
micro-structural information was gathered, so they were
able to describe only some aspects of the material behav-
ior, usually only under physiological loads. However, many
of them have been widely used for this purpose with satis-
factory results (Demiray et al. 1988). In order to provide a
more realistic characterization of the tissue, structural mod-
els, in which structural tensors are introduced in the free
energy function to take into account the anisotropy of the
material, have been proposed to deal with these limitations
(see, e.g., Boehler 1987; Holzapfel et al. 2000; Menzel and
Steinmann 2003; Holzapfel et al. 2005). Although these
represented a clear advance in the mechanical character-
ization of such materials, many of the more recent works
have tried to advance further toward a more detailed micro-
structural experimental characterization, which has allowed
improved micro-structural models. For example, the works
by Taber (1998); Humphrey and Rajagopal (2002) and
Ateshian (2007) are related to the growth of micro-constit-
uents, while Kuhl and Holzapfel (2007) and Himpel et al.
(2008) presented some results on the remodeling of colla-
gen and elastin. Moreover, Gasser et al. (2006) and later
Menzel et al. (2008) included micro-structural information
in the hyperelastic formulation through the assumption of a
statistical distribution of the fiber orientation around a pref-
erential direction.

The use of these models is usually limited to the range
of physiological loads remaining in the range of the elas-
tic region. Most finite element implementations carried out
have been limited to this region and only a few have dealt
with soft tissue failure. Some pathological processes, such
as aneurysms or over-stretched tendon, or clinical surger-
ies such as angioplasties or clamping lead to material dam-
age. Damage in soft biological tissue is produced by the
progressive failure or softening of either the matrix or the
fibers. In this context, some authors have proposed contin-
uum damage models for only one component of the mate-
rial (fibers or matrix), applied to transversally anisotropic
soft tissues following the approach of Simo (1987) (Natali
et al. 2005; Balzani et al. 2006; Calvo et al. 2007; Ehret and
Itskov 2009; Peña and Doblaré 2009), or that of Göktepe
and Miehe (2005) and Dal and Kaliske (2009) in connection
the microsphere framework for failure of rubber-like mate-
rials. Other models for the failure of fibrils (see e.g., Buehler
2008; Tang et al. 2010) use molecular simulations to provide
a more detailed insight into the failure process of collagen

fibrils, which is basically due to the rupture of the cross-links
between the tropocollagen molecules that compose the fib-
ril. In the framework of cytoskeletal and polymers networks,
Head et al. (2003) presented a different regime of elastic
response (affine and non-affine) depending on the quality
and density of the filament links, leading to an affine response
under an unlinked scenario. This is the situation where our
model is placed. Future works will take into account other
important features.

In short, the high complexity of biological tissues requires
mechanical models that include information of the underly-
ing constituents and look at the processes occurring within
the material. This behavior of the micro-constituents can
be incorporated into macroscopic models by means of
computational homogenization. It is in this context where
the microsphere-based approach acquires considerable rele-
vance. Miehe et al. (2004), Miehe and Göktepe (2005) and
Göktepe and Miehe (2005) used the microsphere approach
with emphasis on elastomers. Caner and Carol (2006) were
the first to apply this approach to soft biological tissues.
Later Alastrué et al. (2009a) focused on the anisotropy of
the material.

In this work, we present a three-dimensional decoupled
finite strain formulation with a multi-scale model for the
anisotropic part. We make use of a continuum damage model
through the classical [1 − D] theory. The damage model is
apply to the collagen fibers since damage along the fibers
has been shown to be the most important issue. The spatial
organization of the collagen fiber bundle, which is made up
of collagen fibrils placed around a preferential direction, is
taken into account by means of a von Mises statistical distri-
bution function. With this approach, a more realistic response
of the damage evolution is expected due to the evolution of
the damage from fibril to fibril that make up the fiber bundle.
We have limited ourself to an affine model, without taking
into account the existing cross-links between fibrils or the
sliding between fibers and matrix.

The paper is organized as follows: Sect. 2 describes the
formulation of the material model, including the micro-
sphere approach, damage model and the mechanical behav-
ior. Section 2.1 presents the essential kinematics while
Sect. 2.2 deals with the splitting of the strain energy den-
sity function (SEDF) into volumetric and deviatoric parts,
which can be split further into isotropic and anisotropic
parts. Next, the microsphere model is reviewed in Sect. 2.3.
Section 2.4 highlights the mechanical response for both
the matrix and fibers, while Sect. 2.5 discusses the dam-
age model and particularizes it to fiber damage under the
microsphere-based approach. Section 3 presents a sensitiv-
ity analysis of different parameters in different geometries.
Section 4 shows the results of an example of clinical inter-
est, and finally, Sect. 5 presents the main conclusions of this
work.
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2 Material model

2.1 Kinematics

Let �0 be the reference or material configuration of a con-
tinuum body B and � the current or spatial configuration
at time t , regarding an arbitrary reference system (Cartesian
from now on). Let X ∈ �0 be the position of a particle in
the reference configuration and x ∈ � the position of the
same particle at time t . The motion mapping ϕ : X → x
relates the position of x to X, x = ϕ(X). The gradient of ϕ

with respect to X, F = ∇Xϕ is known as the deformation
gradient tensor. The determinant of deformation gradient, J ,
is given by J = det(F).

In order to reproduce the quasi-incompressible behavior of
soft tissues, an uncoupled representation of the SEDF is used
(Flory 1961). The multiplicative decomposition of the defor-
mation gradient and the Cauchy-Green tensor C = FT · F
can be expressed as

F = [J 1/3I] · F, (1)

C = [J 2/3I] · C, (2)

where the terms J 1/3I and J 2/3I, with I being the second
order unit tensor, are associated with changes of volume,
while F and C are the isochoric deformation gradient and the
isochoric Cauchy-Green tensor, respectively.

Furthermore, let r be a vector in the reference configura-
tion. The so-called push-forward operator related to the iso-
choric part F̄ maps this vector field in t̄ ∈ �, in the deformed
configuration

t̄ = F · r = J−1/3t with
∥
∥t̄

∥
∥ = λ = J−1/3 ‖t‖ , (3)

where t̄ represents the isochoric push-forward of the material
vector r and λ̄ the isochoric stretch in the direction of r.

2.2 Hyperelastic framework

The free energy density function is given by a scalar-valued
function� defined per unit reference volume in the reference
configuration and for isothermal processes. Flory (1961) pos-
tulated the additive decoupled representation of this SEDF
in volumetric and isochoric parts as

� = �vol +�ich. (4)

As discussed in the introduction, soft biological tissues
are highly non-linear anisotropic materials. To differenti-
ate between the isotropic and the anisotropic parts, the free
energy density function can be split again as

� = �vol +�iso +�ani, (5)

where�vol describes the free energy associated with changes
of volume, �iso is the isochoric isotropic contribution of the

free energy (usually associated with the ground matrix) and
�ani takes into account the isochoric anisotropic contribution
(associated with the fibers). These equations are often written
in terms of invariants Ī1, Ī2, and Ī3 (first, second, and third
invariants, respectively) for the isotropic part and Ī4 and Ī6

for the anisotropic part (see e.g., Spencer 1971; Holzapfel
2000).

The stress and elasticity tensors can be obtained from the
strain energy function by simply deriving it with respect to
F once and twice respectively (see Menzel and Steinmann
(2003) and Truesdell and Noll (2004) for a complete review
of anisotropic hyperelasticity).

Taking the free energy density as a single function of
F, �(F) and under the premise that �(F) is an objective
function, it is possible to write �(F) in terms of C, �(C)
which leads to the classical expression of stress tensors
(Holzapfel 2000) as

τ = F · [Svol + Sich] · FT = τ vol + τ ich, (6)

where Svol and Sich are the volumetric and isochoric part
of the second Piola-Kirchhoff stress tensor respectively and
τ vol and τ ich the volumetric and isochoric Kirchhoff stress
tensors.

In a similar way, the elasticity tensor in the spatial config-
uration, defined as the push-forward of the material elasticity
tensor C = Cvol + Cich, multiplied by J−1, is

c = J−1χ∗(C), (7)

with Cvol and Cich the volumetric and isochoric parts of C
and χ∗(•) the push-forward operator (Marsden and Hughes
1994).

2.3 Microsphere-based model

In recent years, the most widely used approach for mod-
eling anisotropy in soft tissues has been representing fiber
directions by means of an invariant formulation. Lately, the
use of statistical distributions has increased, and is also
adopted in the present work. Furthermore, a microsphere-
based approach has been used at a micro-scale level. The
microsphere approach tries to capture micro-structural infor-
mation and transfer it into the macroscopic behavior via
a homogenization scheme over the unit sphere U

2. In
this approach, U

2 is integrated by m integration directions
{ri }i=1...m that are weighted by factors {wi }i=1...m , where
〈r〉 ≈

∑m
i=1w

i ri = 0 and 〈r ⊗ r〉 ≈
∑m

i=1w
i ri ⊗ ri = 1

3 I.
So an integral over the unit sphere U

2 can be approximated
by

〈(•)〉 = 1

4π

∫

U2

(•)dA ≈

m
∑

i=1

wi (•)i . (8)

123



598 P. Sáez et al.

The term 4π is a normalization factor, result of the surface
integral

∫ θ

0

∫ φ

0 sin(θ)dθdφ over the unit sphere. The unit vec-
tors can be expressed in terms of the spherical coordinates
θ ∈ [0, π) and φ ∈ [0, 2π) as r = sin(θ)cos(φ)ex +
sin(θ)sin(φ)ey + cos(φ)ez with {ex , ey, ez} the reference
Cartesian system. Previous works (Bažant and Oh 1986;
Alastrué et al. 2009a; Ehret et al. 2010) have used differ-
ent schemes and compared different number of integration
directions for isotropic and anisotropic functions, and in view
of the results therein, 368 directions (Heo and Xu 2001) will
be used in all the problems simulated in this work. This has
been demonstrated to provide sufficiently accurate results
for relatively highly anisotropic materials (see Alastrué et al.
2009a).

As described above, the anisotropic part of the SEDF is
related to the fibers in the material. In general, the anisotropic
part of the SEDF can be expressed as

�ani = 1

4π

∫

U2

nρψd A, (9)

where n is the chain density, ρ a statistical value associated
with the fibrils dispersion, andψ the free energy density func-
tion of the fibril. Note that to include more than one family
of fibers the above SEDF is modified as follow

�ani =
N

∑

j=1

⎡

⎢
⎣

1

4π

∫

U2

nρ jψ j d A

⎤

⎥
⎦

j

(10)

with ρ j andψ j being the distribution function and the SEDF
of the j-nth family. The following equations will be given
for one family only for the sake of clarity. We will adopt an
affine assumption (compare Miehe et al. (2004)). Since an
analytical integration of Eq. (9) is in general not possible, a
discretization of this equation is used

�ani ≈

m
∑

i=1

nρiw
iψ

(

λ
i
)

, (11)

whereλ
i
andψ(λ

i
) are the stretch and the free energy density

function associated with each integration direction.
The equations for the Kirchhoff stress and the elasticity

tensors in the spatial configuration are expressed as

τ̄ ani =
m

∑

i=1

[nρiψ
′
iλ

i −1
t̄i ⊗ t̄i ]wi , (12)

c̄ani =
m

∑

i=1

[

nρi

[

ψ ′′
i − ψ ′

iλ
i −1

]

λ
i −2

t̄i ⊗ t̄i ⊗ t̄i ⊗ t̄i
]

wi ,

(13)

where ψ ′
i and ψ ′′

i are the first and second derivative of the
fibril energy function with respect to λ̄i .

2.4 Material behavior

The definition of a given material in the hyperelastic frame-
work is associated therefore to establishing a free energy
density function for each part of the split discussed above.
Here, we have used

� = �vol(J )+�iso(I 1)+�ani(n, ρ, λ̄), (14)

with I 1 = I : C the first strain modified invariant of C and,

�vol(J ) = 1

k
ln2(J), (15)

�iso(I 1) = μ[I 1 − 3] with μ ≥ 0 and (16)

�ani(n, ρ, λ̄) = 〈nρψ〉 . (17)

The matrix is known to be composed of a significant water
content, which results in an almost incompressible behav-
ior, so the volumetric part of the energy density function
enforces the quasi-incompressibility constraint depending on
the value of the penalty parameter k Eq. (15). The matrix con-
tributes to the overall behavior through the volumetric and
the isotropic parts of the energy density function Eq. (16).

Regarding the anisotropic part of the model Eq. (17),
a statistical distribution of the fibrils around a preferential
orientation is considered through a von Mises statistical
function. This orientation distribution function is denoted
by ρ and has some interesting properties such as sym-
metry ρ(r; a) = ρ(−r; a) and rotational symmetry with
respect to the preferred orientation a and can be expressed
as ρ(Q · r; a) = ρ(r; a) ∀Q ∈ SO(3). Note that a could be
oriented in any direction of the space leading to a mismatch
angle θ = arccos(r · a). A π -periodic von Mises orienta-
tion density function (ODF) Eq. (18) has been adopted in
this work to take into account the fibrils dispersion (Alastrué
et al. 2009a)

ρ(θ) = 4

√

b

2π

exp(b[cos(2θ)+ 1])
erfi(

√
2b)

, (18)

where the concentration parameter b ∈ R
+ is a measure of

the anisotropy. b → 0 represents an isotropic material and
b → ∞ a transversally isotropic one. Erfi(x) is the imaginary
error function approximated by a sufficiently large number
of terms within its MacLaurin series expansion, which can
be written as

erfi(x) ≈ π−1/2

⎡

⎣2x + 2x3

3
+

k
∑

j=3

x2 j−1

a( j)

⎤

⎦, (19)

where a( j) = 0.5[2 j −1][ j −1]! provides a 60 term expan-
sion (Weisstein 2004), sufficiently accurate for values of
b ≤ 20. Figure 1 shows the spherical representation of two
distributions for different values of b.

The contribution of each single collagen fibril in the micro-
scale is herein assumed as a first approach, to be defined by
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Fig. 1 Shape of the von Mises ODF for b = 1 and b = 10

an exponential-type function, widely used in macroscopic
approaches (Holzapfel et al. 2000). In Alastrué et al. (2009a),
a comparison between this phenomenological function and
the worm-like chain model in the microsphere framework
is discussed. Note that, although the integration directions
are mathematically identified with the numerical integra-
tion scheme, they can also be physically associated with the
contribution of the fibrils around each integration direction
along its related area. The free density energy associated with
each fibril or, equivalently, with each integration direction is
assumed as

nψ
(

λ
i
)

=

⎧

⎪⎨

⎪⎩

0, if λ
i
< 1

k1

2k2

[

exp

(

k2

[[

λ
i
]2 − 1

]2
)]

if λ
i ≥ 1

(20)

with k1 ≥ 0 and k2 ≥ 0 material parameters.

2.5 Damage model

The damage model used in this work is able to describe
the initial softening effect of the material in a large strain
non-linear framework. To deal with behaviors closer to frac-
ture, other techniques such as cohesive models should be
used. However, this latter phenomenon is outside the scope
of the present work. The adopted damage model uses the con-
cept of internal variables, which provides a general descrip-
tion of materials involving irreversible effects and, therefore,
must fulfill the Clausius-Planck inequality. We refer, e.g., to
Holzapfel (2000) or Calvo et al. (2007), where this damage
formulation is adopted. In its material form and without ther-
mal effects, it can be expressed as D = −�̇ + P : Ḟ ≥ 0
where D is the internal dissipation and ˙(•) is the material
time derivative.

Since the volumetric part is related with the water content
in soft biological tissue, we shall assume that damage affects
only the isochoric part. Moreover, we will restrict ourselves
to damage on the anisotropic contribution of the isochoric
part. We refer to Holzapfel (2000) and Calvo et al. (2007)
for the damage formulation of the isotropic part. Using the

previous split form of the free energy, we postulate therefore

�ani ≈

m
∑

i=1

nρiw
iψ

(

λ
i
)

≈

m
∑

i=1

nρiw
i [1 − Di ]ψ0

(

λ
i
)

,

(21)

with Di ∈ [0, 1] the monotonically increasing damage inter-
nal variables (Simo 1987) for each integration direction and

ψ0(λ
i
) the effective strain energy density functions in each

integration direction (Eq. 17).
In order to fulfill the Clausius-Planck inequality, the inter-

nal dissipation Di
int = ψ0(λ

i
)Ḋi ≥ 0 must be satisfied for

i = 1 . . .m.

fi = −∂ψ
(

λ
i
)

/∂Di = ψ0

(

λ
i
)

≥ 0 (22)

is the thermodynamic driving force associated with damage
in each integration direction. The thermodynamic force fi is
conjugated to the internal variable Di , so the process could
be controlled by fi instead of Di (see e.g., Simo 1987; Calvo
et al. 2007). The damage evolution equations are given in
the strain space; therefore, the free energy is given just by
λ̄i . The damage variable Di is given by the damage energy

release rate �i =
√

2ψ0

(

λ
i
(s)

)

where λ
i
(s) are the mod-

ified stretches of each integration direction at pseudo-time
s ∈ R.

�∗
i = maxsε(−∞,t]

(√

2ψ0(λ̄i (s))

)

(23)

is the maximum thermodynamic force achieved along the
whole load history. Then, the damage criterion in the strain
space is given by the condition

i

(

λ
i
(s),�∗

i

)

=
√

2ψ0
(

λ̄i (s)
) −�∗

i ≤ 0, (24)

which leads to two different situations. If i < 0, no dam-
age occurs while i = 0 defines the damage surface. Note
that i > 0 is an impossible situation. An update of this
surface is needed when the free energy density of a material
point or fibril goes up over �∗

i . Defining the normal compo-
nents of the damage surface in that space as Ni = ∂λi

i , the
following situations may occur:

i = 0 and

⎧

⎪⎪⎨

⎪⎪⎩

Ni λ̇
i
< 0

Ni λ̇
i = 0

Ni λ̇
i
> 0

(25)

which correspond to unloading, neutral loading and load-
ing states, respectively (Simo and Hughes 1998).The last
equation needed for a complete definition of the model is
the irreversible rate of the damage variable Di
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Fig. 2 Representation of the reduction factor gi for different
parameters

dDi

dt
=

{

hi (�i )�̇i if i = 0 and Ni : λ̇i
> 0

0 otherwise
(26)

where hi (�i ) = dDi/d�i are the function that characterize
the damage evolution in the material. Finally, the evolution
of the maximum thermodynamic force is given as follows

�̇i
∗ =

{

ḟi = ∂
λ

iψ0
λ̇

i

2 if  = 0 and ḟi > 0
0 otherwise

(27)

The reduction factor is defined as gi = [1 − Di ] and par-
ticularized in this work to a sigmoidal function,

gi = 1

1 + exp(ai [�i − ci ]) , (28)

where the parameter ai controls the slope and ci defines the
value �i such that gi (�i ) = 0.5 (Fig. 2). Note that we con-
sider the damage parameters ai and ci equal for every inte-
gration direction.

The Kirchoff stress tensor τ and the spatial tangent oper-
ator, can be expressed for the anisotropic part as

τ̄ ani =
m

∑

i=1

giwi nρiψ
′
iλ

i −1
t̄i ⊗ t̄i (29)

c̄ani =
m

∑

i=1

nρ jwi

[

giψ
′′
i − giψ

′
iλ

i −1

+g′
iψ

′2
i

]

λ
i −2

t̄i ⊗ t̄i ⊗ t̄i ⊗ t̄, (30)

where τ̄ ani and c̄ani are the above mentioned anisotropic
stress and elasticity tensors. In Algorithm 1 the steps fol-
lowed to formulate the affine-stretch model with damage are
summarized.

Algorithm 1 Implementation of an affine-stretch micro-
sphere model with damage

1. Get data at time tn of reduction factors
{

gi
}

i=1...m and �∗
i for the m

integration directions as well as its orientation vectors r i and weightswi .
2. Use F as given data at time tn+1, calculate F, and compute the
spatial integration orientation vector t̄i = F · ri and the associated

micro-stretches λ
i
.

3. Compute the free energy density function given by Eq. 20. Note that

it just takes positive values for λ
i
> 1.

4. Compute reduction factor as follows: If �i n+1 ≥ �∗
i n then compute

gi
tn+1

and its derivates with Eq. 28; else gi
tn+1

= gi
tn .

5. Get the micro-stresses and micro-elasticity tensors for each fibril and
get the macroscopic quantities through Eqs. 12 and 13.

3 Numerical examples

The principal aim of this section is to illustrate the perfor-
mance and the physical mechanics involved in the above pre-
sented model. Some simulations are carried out to show the
behavior of the model in different situations. A homogeneous
deformation state and a thin holed plate have been investi-
gated. The examples have been implemented in the finite ele-
ment code ABAQUS by means of a UMAT user subroutine.
The developed sensitivity analysis responds to the knowledge
that several material parameters can be found for different
soft tissues and blood vessels in particular.

3.1 Micro-mechanics of the tissue

Several parameter sets have been used in the simulations
to investigate the influence of the damage parameters over
the microsphere model. We have imposed a homogeneous
deformation gradient as F = 1/

√
λex ⊗ ex + 1/

√
λey ⊗

ey + λez ⊗ ez . These simulations have been carried out up
to λ = 3. The mean direction of the fiber is placed along
ez . Table 1 presents the different sets of parameters for each
case while Fig. 3 shows a graphic representation of the mac-
roscopic behavior of the material. All the results in Fig. 3a, b
and c were obtained using 368 integration directions. More-
over, we present Online Resource 1, 2 and 3 (reduction fac-
tor, stress without damage and with damage respectively) to
show the evolution of the micro-structure along the load in
the stereographic projection (see Miehe et al. 2004; Alastrué
et al. 2009a), for the parameters of Set 1.

Variation of parameter a. As shown in Fig. 2, the param-
eter a controls the evolution of the damage evolving faster

Table 1 Parameter sets for the displacement driven uniaxial test

k1 [kPa] k2 [−] a [−] c [kPa] b [−]
Set 1 100 1 1 50 1

Set 2 100 1 0.1 50 1

Set 3 100 1 1 30 1

Set 4 100 1 1 50 10

123



Anisotropic microsphere-based approach to damage in soft fibered tissue 601

(b)(a)

(c) (d)

Stress in the ez direction for Set 1 and Set 2. Stress in the ez direction for Set 1 and Set 3.

Stress in the ez direction for Set 2 and Set 4. Stress in the ez direction using 78, 368 and 600
integration directions.

Fig. 3 Stress–stretch curves in the loading direction. The default parameters are k1 = 100 [k Pa], k2 = 1, b = 1, a = 1 and c = 50. a Results
for several values of a, b of c and c of b. d Results for 78, 368 and 18476 integration directions using Set 1

when a increases. The evolution of the stress over the stretch-
ing range is presented in Fig. 3a. A smoother response for
a = 0.1 than for a = 1.0 can be observed.

Variation of parameter c. The material parameter c rep-
resents the value of the energy density function at which
the damage reaches 50%. The lower the value of c the lower
the value of the stress achieved due to the earlier failure of the
fibers. This fact is captured in Fig. 3b where the c = 30 kPa
curve presents a lower stress than the c = 50 kPa one.

Variation of parameter b. Figure 3c shows the influence
of b in the model. Higher concentrations of the fibers cause a
faster failure of the material. As soon as the integration direc-
tions within the influence area of the statistical distribution
fails, there are not other fibrils to carry load.

Variation of the number of integration directions. To con-
clude with this section, 78, 368 and 18476 integration direc-
tions (ID) have been used with the parameter set 1, and
the results are shown in Fig. 3d. The two first schemes
come from the cubatures providing high-order approxima-

tions (Heo and Xu 2001). The 18476 integration direction
scheme was obtained by a finite element mesh of triangu-
lar elements over the surface of the unit sphere. The inte-
gration directions are the centroids of the element while
the weights are calculated by means of an area associated
with each element. As the number of directions increases,
the number of peaks also decreases, and for ID �→ ∞, the
curve tends to a smoother response without peaks. Therefore,
an increase in the integration directions leads to more accu-
rate results. Another possible choice would be to consider
another integration technique such as that used by Hardin and
Sloane (1996) or the non-linear transformation, proposed by
Alastrué et al. (2009b), in order to adjust the distribution of
the integration directions to the statistical distribution func-
tion. The discretization and associated peaks may be consid-
ered as lacking accuracy. However, in a recent work, Tang
et al. (2010) presented some results relating to the defor-
mation of collagen fibrils under uniaxial tension where, as
the fibril stretched, it started to fail showing a behavior very
similar to that presented in this section, demonstrating that
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Fig. 4 Geometry and mesh for
the thin perforated plate problem

u x

Y

X

40

10

40

m0

(a) (b)Boundary conditions. Finite element mesh, element and integration point
chosen for plotting results.

a finite number of fibrils in each fiber bundle could lead to
a more realistic behavior of fibers than that achieved by an
ideally perfect integration scheme for an affine scenario.

3.2 Thin perforated plate: macro-behavior

A thin perforated plate is a widely used critical benchmark
problem to check convergence and results in plasticity and
damage models (Miehe 1995; Souza Neto et al. 1998). Dif-
ferent parameter sets were also analyzed for this geometry.
The model consists of an eighth part of the whole geom-
etry applying symmetry conditions (symmetry on the three
planes) and pulling 15 mm along ex , as shown in Fig. 4a. The
finite element mesh consists of 200 hexaedral elements. We
performed several simulations with refined meshes, show-
ing the classical localization problem. We have included one
family of fibers, denoted by m0 Fig. (4a). For this partic-
ular example, we have oriented the fiber in ex . In order to
visualize the micro-stresses and micro-damage in the model,
a stereographic projection has been used on the integration
point of the finite element highlighted in Fig. 4b. The param-
eters selected and the maximum convergence level are shown
in Fig. 2.

Figures 5 and 6 show the contour plot of the reduction
factor and σx , the Cauchy stress tensor component in the X
direction for Cases 1 and 2 defined in Table 2. Figure 5a
and d present the stress field for σx at 50 and 100% of the
analysis respectively. Figure 5b and e show the reduction
factor g at both strain levels while Fig. 5c and f present the
micro-stresses σx . Similar figures for Case 2 are shown in
Fig. 6.

Some important differences can be remarked in both cases.
Case 1 presents a stiffer response, since the damage starts
later than in Case 2, while total damage is not achieved in
the former. At 50% of the analysis, Case 1 presents a maxi-
mum reduction factor of g = 0.84 and at the end reaches 0.6
along the integration directions most aligned with the ex axis
(note that when g decreases, the damage D increases). Case
2, with damage starting sooner, showed a reduction factor

of g = 0.9 at 50% with a more spread distribution and a
damage close to 1 is obtained at 100% of strain. It is worth
noting the evolution of the stress over the stereographic pro-
jection. Figure 6b makes clear that the fibers along the ex

axis present a higher value of stress (although lower than
that achieved without damage). Figure 6e shows a crown-
like shape caused by the total failure of these fibrils ori-
ented along ex . Moreover, the higher the achieved strains,
the higher the displacement of the crown toward the middle
plane.

4 Application to blood vessels

One of the aims of these models is the application to
soft biological tissue and the realistic simulation of clini-
cal applications. Angioplasty is one of the most widely used
techniques in vascular surgery. Therefore, the study of the
mechanical response of vessels in this situation is an impor-
tant task since this procedure can affect the vessel integrity
reducing its stiffness (Oktay 1994). In order to assess this
behavior, an angioplasty procedure was simulated using the
above presented model. A pig aorta artery was experimen-
tally tested to fit the elastic and damage material parameters
of the model which were subsequently used in the finite ele-
ment simulations.

4.1 Parameter identification

In the following section, the material parameters of the con-
stitutive behavior and the damage model are fitted using
experimental data (Peña et al. 2010). Vessel samples were
cut comprising longitudinal and a circumferential strips in
order to perform uniaxial tests. A least-square method was
used for the identification process. The fitting procedure was
carried out in two steps, the first for the elastic part (before
damage) and the second for the damage response, when the
softening phenomenon has started. The objective function to
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(a) Cauchy stress field [kPa] in the X axis at 36.9% of the analysis.

(b)g at 36.9%. (c) x at 36.9%.

(d)Cauchy stress field [kPa] in the X axis at 63.8% of the analysis.

(e) g at 63.8%. (f) x at 63.8%.

Fig. 5 Evolution of stress and reduction factor at the integration point
shown in Fig. 4b for Case 1

minimize was

X 2 =
p

∑

j=1

[[

σθθ − σ�θθ
]2

j + [

σzz − σ�zz

]2
j

]

(31)

(a) Cauchy stress field [kPa] in the X axis at 50% of the analysis.

(b) g at 50%. (c) x at 50%.

(d) Cauchy stress field [kPa] in the X axis at 100% of the analysis.

(e) g at 100%. (f) x at 100%.

Fig. 6 Evolution of stress and reduction factor at the integration point
shown in Fig. 4b for Case 2

where p is the number of points taken from the experimental
test, σθθ and σzz are the Cauchy stress experimental data, σ�θθ
and σ�zz the model-derived Cauchy stress (σ� = J−1τ�).
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Table 2 Parameter sets for the displacement driven plate

k1 [kPa] k2 [−] a [−] c [kPa] b [−] %

Case 1 50 1 1 10 1 63.8

Case 2 50 1 1 5 1 100

Table 3 Elastic and damage parameters for the uniaxial test

μ [kPa] k1 [kPa] k2 [−] b [−] a [−] c [kPa] α [deg]

1.051 286.36 1.40 10.62 0.41 20.10 47.77

Moreover, to quantify the goodness of the fitting, the root
mean square error ε (NRMSE) was used.

ε = 1

ν

√

X 2

[p − q] with ν = 1

p

p
∑

j=1

[σθθ − σzz], (32)

with q the number of parameters to be identified and ν the
mean stress. Holzapfel et al. (2005) reported that choosing
a right length-width ratio ensures a homogeneous state of
deformation in the measuring area. In this approach, incom-
pressible behavior has been considered with a deformation
gradient tensor given by F = 1/

√
λex ⊗ ex + 1/

√
λey ⊗

ey + λez ⊗ ez , considering strain in the direction of pull-
ing: eθ for the circumferential sample; or ez in the longitu-
dinal one. Following these assumptions, Table 3 shows the
identified parameters for the experimental test performed by
Peña et al. (2010). Note that α represents the angle of the
fibers with respect to the circumferential direction. Figure 7
presents the curves corresponding to the experimental data
and those derived from the fitted parameters. In order to fit
the experimental tests, we have used a homogeneous state
which corresponds to the state presented in Sect. 3.1. This is
not the real situation since, as discussed above, it is related
to the micro-structure. The optimum situation would be to fit
such experimental tests with a non-uniform geometric phan-
tom, in order to impose inhomogeneous states different for
all over the phantom. However, this leads to the classical
convergence problems making the fitting process difficult.

4.2 Simulation of angioplasty

The goal of this numerical example is to show the applica-
bility of the presented model to simulate the vessel behavior,
including damage, and not the rigorous simulation of a clin-
ical study. For that purpose, it would be necessary to take
into account further aspects (e.g., a separated experimental
test and simulation for each of the arterial layers should be
performed). The finite element simulation of the angioplasty
was performed in a eighth part of the model, applying sym-
metry conditions. The model consists of a 10 [mm] length

Fig. 7 Experimental and fitted curves

phantom with an external diameter of De = 5 [mm] and
an internal diameter of Di = 3.7 [mm] corresponding to
dimensions of coronary arteries. One layer only was con-
sidered since no experimental data were available for the
separate layers. The fiber angle with respect to the circum-
ferential direction together with the parameters is shown in
Table 3. The artery geometry was discretized in 5,500 hexa-
hedral elements. Balloon dimensions and material proper-
ties were previously reported in Alastrué et al. (2007b) and
Gasser and Holzapfel (2007). The load steps were applied
sequentially as follows: (i) imposition of an initial deforma-
tion gradient (Alastrué et al. 2007a), (ii) application of an
internal pressure of 13.3 [kPa] in the vessel assuming this as
the average physiological hemodynamic pressure, and (iii)
imposition of pressure to the internal face of the balloon fol-
lowing the curve shown in Alastrué et al. (2007b) in order to
achieve contact between vessel and balloon. The undeformed
and deformed configurations of the model are presented in
Fig. 8a and b respectively. The maximal principal Cauchy
stress field on the artery at the end of the analysis is pre-
sented in Fig. 9a. The maximal stresses appear at the inner
radius of the vessel due to the one layer simplification. Some
other authors (Alastrué et al. 2007b) observed different dis-
tributions of stresses due to the incorporation of two different
layers. In order to illustrate an average value of the damage
of every integration direction at the gauss integration points
of the mesh, an average reduction factor is defined as

Gave =
∫

U2

ρgdA ≈
m

∑

i=1

ρi giw
i . (33)

In agreement with the stress results, the Fig. 9b shows that
the highest damage value is localized at the inner radius.
Figure 10 presents the circumferential stress, showing that
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Z X

Y

Z

(a) (b)Undeformed shape. Deformed shape.

Fig. 8 Undeformed and deformed shapes for the angioplasty simulation

X

Y

Z X

Y

Z

(a) (b)Maximal principal Cauchy stress field. Average damage field.

Fig. 9 Stress and average damage at the end of the analysis

Fig. 10 Maximum Cauchy stress for circumferential direction along
the damaged and undamaged model

the vessel starts to suffer damage in the last increments of
the analysis where a clear softening effect appears. More-
over, we present the damage field in the integration direc-
tion aligned with ex (Fig. 11a), the averaged damage field
(Fig. 11b), maximum stress field (Fig. 11c), and minimum
stress field (Fig. 11d) in the plane of axial symmetry impo-

sition. Figure 11a shows an almost total failure of the fibrils
aligned in ex , although the average damage does not reach
such a high damage level (Fig. 11b).

5 Conclusions

The aim of this work is to present the complete formulation
of a damage model within an anisotropic microsphere-based
approach in order to achieve a better characterization of this
phenomenon for biological soft tissues. The model is for-
mulated in a hyperelastic framework, using the splitting of
the free Helmholtz energy density function into volumet-
ric and isochoric parts, which was additionally decoupled
into an isotropic part, associated with the ground matrix and
an anisotropic part, related to the collagen fibers. To this
end, the free energy density associated with the fibrils is
expressed in terms of the stretches. In the framework of a
multi-scale model, a homogenization scheme was required
to move from the micro- to the macrolevel. A microsphere-
based approach was used for this purpose, carrying out a
numerical integration of the stress and elasticity tensors over
the surface of the unit sphere. Moreover, within this approach,
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X

Y

Z

X

Y

Z

(c) (d)

(b)(a) Damage field for a integration direction aligned in
ez .

Average damage field.

Maximum principal stress field. Minimum principal stress field.

Fig. 11 Damage and stress fields in the axial symmetry plane

a phenomenological damage model, previously developed
for unidirectional families of fibers, was incorporated into
the microsphere-based approach, restricted to affine defor-
mations. Previous works (Alastrué et al. 2009a) studied dif-
ferent discretizations for an accurate numerical integration,
leading to a 368 discretization as an optimum value in the
elastic range.

The model was implemented in a commercial finite ele-
ment code (ABAQUS V6.9) through a material subroutine
(UMAT) and checked with different sets of material parame-
ters and geometries. A homogeneous deformation state was
imposed, and the results showed some important character-
istics of the proposed model. As far as the damage parame-
ters are concerned, the lower the parameter a (related to the
evolution rate of the damage), the smoother the evolution
of the stress; while the lower the value of c (energy level
at which damage starts) the lower the stress achieved. The
higher the concentration parameter, the higher the maximum
value of stress and the lower the strains needed for total fail-
ure. The integration scheme used showed that as the number
of integration directions increases (18476 ID), a smoother
response is achieved. However, schemes with a lower number
of integration directions provide a new approach to struc-
tures where non-smooth responses were reported. In order
to obtain the behavior in a non-homogeneous deformation

state, a thin perforated plate was investigated. Moreover, this
problem represents a classical convergence benchmark due
to localization and loss of ellipticity (see e.g., Pijaudier-Cabot
and Bazant 1987; Kuhl et al. 2006) and therefore, depend-
ing on the chosen parameters, the convergence rate increases
or decreases. Apart from this issue, the results showed high
levels of stress and damage concentrations around the hole.
Finally, an angioplasty simulation was presented, and in spite
of the lack of experimental data and the monolayer simplifi-
cation, the capability of the model to simulate clinical appli-
cations, including damage, was demonstrated, obtaining a
high level of information. Although the insufficient experi-
mental data available are still a handicap and some numerical
integration improvements should be included in the future,
these micro-structural models represent a step forward in the
inclusion of micro-structural information into macroscopic
models of inelastic phenomena.

Nevertheless, the present model has some limitations.
The first is the undetermined parameter fitting problem. The
approach followed in this work to fit the experimental data, a
least-square minimization, is known to lead to a non-unique
set of parameters able to reproduce the material behavior.
Although some restrictions were applied in order to reduce
the solution field, a unique solution cannot be ensured. The
best way to reduce this underdetermination would be a direct
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measurement of the micro-structural parameters, through
experimental tests. For example, Landuyt (2006) performed
measures with polarized light microscopy in order to obtain
the concentration parameters of the fibers. Moreover, the con-
vergence problems prevent us from fitting the experiment
curves with a non-uniform geometric phantom, in order to
impose inhomogeneous states. Therefore, we had to fit them
with the homogeneous state problem in Sect. 3.1, which was
related to the micro-structure and not to the macroscopic
behavior. Another limitation, which prevents an ideal appli-
cation of the model, is associated with the discrete inte-
gration performed that leads to a non-smooth response of
the micro-structure and the mismatch between the statistical
distribution of the concentration parameter and the uniform
placing of the integration directions. In cases with highly
concentrated distributions, many of the integration directions
are not used in an optimal way, since they correspond to
directions without fibrils. Moreover, for the damage prob-
lem only I D → ∞ leads to optimal results. Alastrué et al.
(2009b) presented a non-linear transformation in order to
reduce the number of integration directions and increase
accuracy for highly anisotropic cases. Although the dis-
crete integration performed can give rise to disadvantages,
it does produce a new view of micro-structural behavior,
as pointed out previously. The individual fibril contribution
presents a model of a collagen fiber bundle, and as assumed
in this work, the low density of cross-links between fibrils
may lead to an affine deformation state within the tissue.
The last important problem arises from the well-known loss
of ellipticity of the damage problem. Developing a model
that overcomes localization problems, such as those carried
out by Kuhl and Ramm (1999); Steinmann (1999); Peer-
lings et al. (2001) or Peña (2011) will subject for future
work.

In spite of these limitations, the one-dimensional charac-
ter of the constitutive equations applied at the micro-level
offers huge possibilities, due to its simplicity and the possi-
bility of incorporating other micro-structural variables. Men-
zel and Waffenschmidt (2009) reported a work related to
remodeling processes, while Göktepe and Miehe (2005) and
Miehe and Göktepe (2005) developed other inelastic mod-
els on the microsphere framework for isotropic materials.
Moreover, the incorporation of the von Mises ODF could
allow, in a more realistic way, the development of remodel-
ing models such as those reported by Kuhl et al. (2005) or
Menzel et al. (2008), with the preferential orientation direc-
tion evolving during the simulation. The use of other ODF,
such as the Bingham distribution, could lead to a more flexi-
ble description of the fiber distribution (Alastrue et al. 2010).
This probabilistic function may be coupled with growing and
remodeling models, accounting for the mass transference and
reorientation of the fibers. This latter could be modeled, for
example, by modification of the ODF parameters. Therefore,

it becomes clear that the research field associated with these
micro-structural models is extremely wide and can lead to
substantial improvements in constitutive models of soft bio-
logical tissue.
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