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Abstract The objective of this work is to address the for-
mulation of an adequate model of the external tissue envi-
ronment when studying a portion of the arterial tree with
fluid–structure interaction. Whereas much work has already
been accomplished concerning flow and pressure boundary
conditions associated with truncations in the fluid domain,
very few studies take into account the tissues surrounding
the region of interest to derive adequate boundary conditions
for the solid domain. In this paper, we propose to model
the effect of external tissues by introducing viscoelastic sup-
port conditions along the artery wall, with two—possibly
distributed—parameters that can be adjusted to mimic the
response of various physiological tissues. In order to illus-
trate the versatility and effectiveness of our approach, we
apply this strategy to perform patient-specific modeling of
thoracic aortae based on clinical data, in two different cases
and using a distinct fluid–structure interaction methodology
for each, namely an Arbitrary Lagrangian–Eulerian (ALE)
approach with prescribed inlet motion in the first case and
the coupled momentum method in the second case. In both
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cases, the resulting simulations are quantitatively assessed by
detailed comparisons with dynamic image sequences, and the
model results are shown to be in very good adequacy with
the data.

Keywords Blood flows · Boundary conditions · Tissue
support · Fluid-structure interaction · Aorta modeling ·
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1 Introduction

Fluid–structure interaction (FSI) in arteries has been addres-
sed in numerous works during the last decade. With a view to
performing meaningful and accurate simulations in a clini-
cally relevant timeframe—and for patient-specific modeling,
in particular—it is currently unfeasible to consider the entire
arterial tree when modeling three-dimensional blood flows in
compliant arteries. Therefore, artificial truncations must be
introduced in the computational domains and some adequate
boundary conditions considered. In the blood flow domain,
much work has already been accomplished concerning flow
and pressure boundary conditions. For example, as advocated
in Formaggia et al. (2001), the three-dimensional FSI prob-
lem can be coupled to a one-dimensional hyperbolic system
to obtain appropriate boundary conditions. This study was
further extended in Formaggia et al. (2007) and similar ideas
can be found in Vignon-Clementel et al. (2006), Blanco et al.
(2007), Blanco et al. (2009), and Papadakis (2009) using one-
dimensional or ordinary differential equations models for
the downstream flows. However, notwithstanding these arti-
ficial boundaries, regarding the natural boundaries on the
vessel walls, few approaches take into account the tissues
surrounding the region of interest to derive adequate bound-
ary conditions for the vessel wall domain. In fact, in all the
FSI studies we are aware of, a constant—frequently zero—
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2 P. Moireau et al.

Fig. 1 Schematic representation of aorta and its surrounding organs. Model domain and boundary conditions

pressure is applied on the outer part of the artery wall. This
simple boundary condition is not able to sustain the artery
and typically results in artificial motion patterns of the arte-
rial wall. In practice, this motion induces inaccuracies much
greater than those introduced by spurious reflections on arti-
ficial boundaries. It is of course out of the question to model
in detail the organs surrounding the vessels. Another option
could be to directly prescribe displacements inferred from the
image sequence as time-dependent Dirichlet boundary condi-
tions. However, this approach would directly be impacted by
the noise contained in the data sequence—especially regard-
ing the time sampling. Furthermore, such an image-driven
fluid model would have a quite limited predictive character,
as for example some fast wave propagation phenomena in
the arteries—or various hemodynamic states without prior
corresponding imaging—could not be described.

By contrast, in this paper, we introduce boundary con-
ditions along the artery wall that consist of a viscoelastic
term representing the support provided by the surrounding
tissues. We show that this simple model corresponds to a
generalized Robin boundary condition on the walls. It relies
on two parameters, possibly distributed, that can be adjusted
to mimic the response of various physiological tissues.

In order to illustrate the versatility of this approach, we will
demonstrate its effectiveness for two classes of FSI models.
In the first model, the motion of the blood flow domain is
handled through an Arbitrary Lagrangian–Eulerian (ALE)
formulation and the structure is nonlinear. In the second
model, we use the coupled momentum method—introduced
in Figueroa et al. (2006)—by which the blood flow domain
is assumed to be fixed and the structure is modeled as a lin-
ear elastic membrane. In both cases, we have focused our
attention on the thoracic aorta, since it can undergo large
displacements and experiences a complex coupling with sur-
rounding organs, namely interactions with the spine on the
outer wall and with the heart in the ascending thoracic aorta
(see Fig. 1), in particular.

The outline of this paper is as follows. After presenting
the clinical data—and the image processing techniques—
on which the subsequent patient-specific modeling is based,
we introduce the fluid–structure modeling formulations in
Sect. 3, with an emphasis on the specific boundary condi-
tions proposed for representing the effect of external tis-
sues on blood vessels, in particular for the aorta. Then, in
Sect. 4, we present detailed simulation results for two clinical
examples modeled with the two aforementioned FSI formu-
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External tissue support and fluid–structure simulation in blood flows 3

lations. Finally, in Sect. 5, we discuss these results based on
a comparison of the computed wall motion—with and with-
out the external tissue support conditions—with the motion
observed in the medical imaging data. We finally give some
concluding remarks in Sect. 6.

2 Cardiovascular data

Image data. Two subjects were selected for this study: the
first subject is a 37-year-old man with significant thoracic
aorta wall motion, whereas the second subject is a 59-year-
old man with relatively small thoracic aorta wall motion.
Informed consent was obtained from each subject, and all
imaging protocols were approved by the Institutional Review
Board. Medical data of the chest anatomy were obtained
using a 64-row multidetector computed tomography (CT)
scanner (Somatom Sensation Cardiac 64, Siemens Medi-
cal Solutions). Ten phases were reconstructed through the
cardiac cycle with a temporal resolution of 164 millisec-
onds. For the 37-year-old man, each phase consists of a
512x512x299 voxel image, with an in-plane resolution of
0.62x0.62 mm and a slice thickness of 1.00 mm. The
display field of view (DFOV) is 31.6x31.6 cm. For the
59-year-old man, each phase consists of a 512x512x395
voxel image, with an in-plane resolution of 0.7x0.7 mm
and a slice thickness of 0.7 mm. The DFOV is 35.9x35.9
cm. The ten-phase cardiac-gated computed tomography (CT)
data provide a description of the arterial lumen motion for the
main vessels in the chest, namely the ascending aorta, aor-
tic arch, descending aorta, brachiocephalic trunk, left carotid,
and left subclavian arteries, as well as the intercostal arteries.

Figure 2 depicts the methodology used to generate a com-
puter model of the thoracic aorta: starting with the phase
of the cardiac-gated CT data corresponding to diastole, a
3D segmentation is performed using a level-set method
(Yushkevich et al. 2006; Xiong et al. 2010). A triangular sur-
face mesh is then generated, followed by the trimming of the
inlet and outlet branches to generate flat surfaces suitable for
boundary condition specification in the flow domain. Lastly,
the flow domain is discretized into aP1-Lagrange tetrahedral
finite element mesh. In the case of the Arbitrary Lagrangian–
Eulerian FSI model, a solid mesh consisting of linear tetrahe-
dra is generated by extruding the triangular surface mesh of
the flow domain. The solid mesh is divided into regions asso-
ciated with different material parameters for the viscoelastic
external tissue boundary condition representing the effect of
the different tissues and organs on the thoracic aorta.

Once we have defined the (time-dependent) domain of
interest using the cardiac-gated CT data, we must obtain addi-
tional information concerning blood flow and pressure to
define boundary conditions for the FSI problems.

Boundary condition data for the blood flow domain. Unlike
other medical imaging modalities such as Doppler ultra-

sound and phase-contrast magnetic resonance imaging (PC-
MRI) that enable non-invasive measurement of blood flow
(Taylor and Figueroa 2009), CT data do not provide veloc-
ity information. We must therefore resort to using blood
flow data that in general is not recorded simultaneously with
the CT data. Conventionally, a flow or pressure waveform
obtained in a separate measurement has been utilized to
define a Dirichlet inflow boundary condition for the flow
domain. More recently, lumped-parameter models represent-
ing the interactions of the heart with the aorta have been
proposed in a multiscale (or multidimensional) approach to
boundary condition specification (Sainte-Marie et al. 2006;
Kerckhoffs et al. 2007; Kim et al. 2009). In this work, we
have assumed a flow waveform measured at the level of
the aortic root and mapped to a flat velocity profile on the
inlet face of the model. Here, special care must be taken in
ensuring that the flow waveform is synchronized with the
phases of the cardiac-gated CT data to avoid spurious modes
induced by inconsistent boundary conditions in the FSI sim-
ulations.

Accurate recording of blood pressure data is generally a
difficult task. Usually, non-invasive discrete measurements of
brachial systolic and diastolic blood pressures are taken using
an automatic pressure cuff. Transfer functions can be utilized
to extrapolate these peripheral measurements to central aortic
pressure values (Chen et al. 1997). Continuous measurement
of blood pressure is a more complex procedure: radial artery
tonometry can be used to perform continuous non-invasive
arterial pressure measurements with limited accuracy (Weiss
et al. 1996), whereas pressure transducers are used to accu-
rately measure continuous pressure invasively.

The outflow faces of the cardiovascular model are usually
chosen to specify a boundary condition on the total or nor-
mal traction of the blood flow domain. We have utilized a
3-element Windkessel lumped-parameter model coupled to
the outlet faces of the blood flow domain via a weak traction
boundary condition. This lumped-parameter model defines a
proximal resistance Rp, a capacitance C , and a distal resis-
tance Rd to represent the characteristics of the distal vascu-
lature not included in the 3D computational domain. More
details on the specification of the boundary conditions param-
eters for the blood flow domain are given in Sect. 3.2.1.

Boundary condition data for the vessel wall domain. Unlike
the flat faces of the blood flow domain that represent arti-
ficial boundaries, the boundary along the outer part of the
vessel walls represents a natural boundary for the FSI
domain. In this paper, we use a generalized Robin bound-
ary condition to represent the viscoelastic behavior of the
tissues surrounding the thoracic aorta. This boundary con-
dition introduces a relation between the stress, the dis-
placement and the velocity. For the Arbitrary Lagrang-
ian–Eulerian FSI model, we account for the large motion
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TrimmingSegmentation Mesh with Regions

Image Data 3D Level Sets(a) (b)

(c) (d) (e)

Fig. 2 Mesh construction from cardiovascular image data. a Volume
rendering of image containing one phase of the cardiac-gated CT data.
b 3D level set is grown to detect the lumen boundaries. c Segmenta-
tion shows the reconstruction of the domain of interest in the ascending
aorta. d Trimming of the segmentation produces flat inlet and outlet

faces better suitable for boundary condition specification in the blood
flow domain. e Vessel wall mesh showing the regions considered for
assigning different material parameter values for the viscoelastic bound-
ary condition

experienced by the root of the thoracic aorta by using a
Robin boundary condition where a displacement field y

b
is weakly enforced for the nodes in the proximal bound-
ary of the vessel wall domain. The displacement y

b
can

be estimated from the ten phases of the cardiac-gated CT
data. Lastly, boundary conditions are required for the vessel
wall boundaries on the outflow branches of the model. Tradi-
tionally, homogeneous Dirichlet conditions are employed in
these boundaries, but this approach presents a major draw-
back in that it may generate non-physiological reflections
and high-frequency vibrations in the vessel wall. In this
work, we propose to also use a Robin boundary condition
on these boundaries to model the rest of the arterial tree
in a more natural way. Details on the formulation of the
boundary conditions for the vessel wall domain are given
in Sect. 3.2.2.

3 Models

3.1 General modeling considerations

In this section, we sketch the derivation of the fundamen-
tal law of dynamics—and the associated principle of vir-
tual work—in a total Lagrangian framework, with the pri-
mary objective of introducing the required notation. The main
domain definitions are indicated in Fig. 1.

3.1.1 Kinematics

Let �(t) be a time-dependent domain in R
3 with t ∈ [0, T ]

the interval of a cardiac cycle (T � 1s in humans). We
assume, for all time t , that �(t) = � f (t) ∪ �s(t) and
� f (t) ∩ �s(t) = ∅, where � f (t) is occupied by an
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External tissue support and fluid–structure simulation in blood flows 5

incompressible viscous fluid (i.e., the blood) and �s(t) by
a viscoelastic solid (i.e., the vessel wall). The fluid–structure
interface is denoted by �(t) = � f (t)∩�s(t), and the thick-
ness of the vessel wall domain is denoted by h, which can be
a function of space. By a slight abuse of notation, we may
denote the vessel wall domain as �s(t) = �(t) × h.

Let �0 = �
f
0 ∪ �s

0 be a reference configuration for the
system. We denote the deformation of the solid medium by

φ
s

: �s
0 × [0, T ] −→ �s(t),(
ξ, t

)
�−→ x = φ

s
(ξ , t)

The displacement of the domain is given by y
s
(ξ , t)

def=
φ

s
(ξ , t)−ξ . Within the solid domain, the velocity of a mate-

rial point ξ, ∂tφs
(ξ , t) = ∂t y

s
(ξ , t), is denoted by us . We

then introduce the deformation gradient

F
s
(ξ , t)

def= ∇
ξ
φ

s
(ξ , t),

such that any local variation of the volume of the domain is

given by Js(ξ , t)
def= det F

s
(ξ , t). Let us finally introduce the

linearized Green–Lagrange tensor

ε(y
s
)

def= 1

2

(
∇

ξ
y

s
+ ∇

ξ
yT

s

)
,

in other words, the symmetrized gradient, which also gives
the strain rate tensor when applied to a velocity field. In fact,
we will mainly use the strain rate for the fluid velocity field
denoted by u f and defined by differentiating with respect to
the Eulerian frame, namely

ε(u) = 1

2

(
∇

x
u + ∇

x
uT

)
.

3.1.2 Fundamental law of dynamics

Any continuum mechanics system—fluid or solid—satisfies
the fundamental law of dynamics

ργ − divx σ = ρ f , in �(t) (1)

where σ denotes the Cauchy stress tensor, f is a volume-
distributed force per unit mass, ρ the mass per unit volume,
and γ = du

dt where d
dt corresponds to the total derivative with

respect to time. From a variational standpoint, the fundamen-
tal law of dynamics gives then—using the symmetry of the
Cauchy stress tensor—the so-called principle of virtual work

∀v ∈ V,

∫

�(t)

ργ · v d� +
∫

�(t)

σ : ε(v)d�

=
∫

�(t)

ρ f · v d� +
∫

�N (t)

t .v d S, (2)

where t denotes a surface-distributed traction load on the
boundary of the domain �N (t) ⊂ ∂�(t) where natural

conditions apply, and V is the space of admissible virtual dis-
placements taking into account the essential boundary condi-
tions. If we choose to express this formulation in the reference
configuration, we classically introduce the first Piola–Kirch-
hoff stress tensor

�
def= Jσ · F−T .

Then, the principle of virtual work becomes

∀v ∈ V,

∫

�0N

ρ0γ · v d� +
∫

�0N

� : ∇
ξ
v d�

=
∫

�0N

ρ0 f · v d� +
∫

∂�0N

t0.v d S, (3)

where

t0 = J‖F−T · n0‖t,

which gives a strong formulation comparable to (1), namely

ρ0γ − divξ� = ρ0 f0, in �0. (4)

We recall that we can also express the variational formulation
(4) using symmetric stress and strain tensors “symmetriz-
ing” the deformation gradient in the reference configuration.
In that case, we classically introduce the second Piola–
Kirchhoff stress tensor

�
def= J F−1 · σ · F−T ,

and the Green–Lagrange strain tensor e

e = 1

2

(
∇

ξ
y

s
+ ∇

ξ
yT

s
+ ∇

ξ
y

s
· ∇

ξ
yT

s

)
,

which satisfies

dye · v = 1

2

(
(dy F · v)T · F + FT · dy F · v

)
.

Hence, the variational formulation is

∀v ∈ V,

∫

�0N

ρ0γ · v d� +
∫

�0N

� : dye · v d�

=
∫

�0N

ρ0 f · v d� +
∫

∂�0N

t0 · v d S, (5)

and we will see the advantages of such formulations when
defining the constitutive law characterizing the materials.

When assuming small displacements, �(t) and �0 are
considered identical. Hence, all formulations can be written
using the Cauchy stress tensor σ and the linearized strain
tensor ε in the reference configuration �0.
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6 P. Moireau et al.

3.1.3 Constitutive laws and fluid–structure interaction

The previous section introduced the required classical nota-
tions for solid or fluid mechanical systems. We now have to
particularize the behavior in each domain. We will systema-
tize the use of indices f or s to denote quantities attached to
the fluid or solid subsystems, respectively. For instance, the
Cauchy stress tensors are respectively denoted by σ

f
in the

fluid and by σ
s

in the solid.

First considering the fluid, we assume the behavior to be
incompressible and Newtonian, therefore

σ
f
(u f , p f )

def= −p f 1 + 2μ f ε(u f ),

where p f denotes the pressure and μ f the dynamic viscos-
ity. Note that fluid formulations are generally written in the
deformed configuration, namely in a Eulerian framework.

Concerning the solid formulation—generally written in
the reference configuration—we assume we have an isotropic
elastic behavior that we may treat as a hyperelastic material
with added viscous stresses simply modeled as proportional
to the strain rate, namely

�
def= ∂Ws

∂e
+ ηs ė, (6)

with Ws the hyperelastic potential—see Sect. 3.3.1. Upon
linearization with respect to displacement and velocity—
namely within the small displacement assumption—this law
reduces to

σ
s
(y

s
) = �

0
+ λsTr(ε(y

s
))1 + 2μsε(y

s
) + ηsεs

(us), (7)

with �
0

the prestress and λs and μs the Lamé constants.
Nearly incompressible formulations are obtained by consid-
ering a large bulk coefficient in the hyperelastic potential or
a large λs in (7).

The fluid and solid formulations are then coupled through
the transmission conditions

u f = us, σ
f
· n f + σ

s
· ns = 0, on �, (8)

where n f and ns respectively denote the outward unit normal

vectors on ∂� f and ∂�s .

3.2 Cardiovascular modeling

3.2.1 Blood flow domain boundary conditions

We introduce some notation for the blood flow domain � f (t)
(see Fig. 1), for which the boundary decomposes into

∂� f (t) = �
f

in(t) ∪ �(t) ∪ �
f

out(t);
where �

f
in(t) represents an inflow face of the model—the

aortic root in our case—on which a velocity field u f = uin
f
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Fig. 3 Volumetric flow waveform used to prescribe a flat velocity pro-
file at the inlet face �

f
in(t)

is prescribed. By contrast, �
f

out(t) is an outflow face of the
model where a traction field tout is weakly prescribed. In our

case, �
f

out(t) is divided into four parts:

�
f

out(t) =
⋃

1≤i≤4

�
f,(i)

out (t)

with the brachiocephalic artery (i=1), left common carotid
artery (2), left subclavian artery (3), and distal part of the
thoracic aorta (4).

Inflow condition at the aortic root face. In this work, we
considered an idealized volumetric waveform (see Fig. 3)
mapped to a flat velocity profile uin

f on the aortic root face

�
f

in(t). This waveform generates a typical cardiac output (5
liters/minute) and heart rate (67 beats per minute) for an
adult man. The waveform shape is representative of aortic
root flow, with a systolic phase spanning over one-third of
the cardiac cycle and with no flow during diastole, following
the closure of the aortic valve.

Models for the downstream vasculature. In this paper, we
used a “coupled-multidomain” approach whereby the solu-
tion at the outflow boundaries of the “upstream” FSI domain
is coupled to a reduced-order model (i.e., one-dimensional
or zero-dimensional) of the “downstream” domain (Vignon-
Clementel et al. 2006). This reduced-order model may be an
impedance function relating modes of flow and pressure in
the distal arterial tree, a nonlinear finite element solution of
the one-dimensional equations of blood flow, or a lumped-
parameter model of the distal circulation. In this approach, a
traction tout related to the pressure field in the “downstream”
domain is prescribed weakly as a boundary condition for
the “upstream” FSI domain. Here, we used a Windkessel
model that represents a convenient alternative for outflow
boundary condition specification due to its ability to accom-
modate transient phenomena in the “upstream” FSI domain
(Vignon-Clementel et al. 2010). More precisely, we consid-
ered a 3-element Windkessel model coupled at each outlet
�

f,(i)
out (t) as sketched in Fig. 1. In this model, the ratio of the
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External tissue support and fluid–structure simulation in blood flows 7

proximal resistance Rp to the distal resistance Rd regulates
the amount of backflow, whereas the capacitance C is related
to the pressure pulse (i.e. difference between diastolic and
systolic pressure) at the outlet. The associated Windkessel
pressure satisfies the differential equation

⎧
⎪⎪⎨
⎪⎪⎩

C Ṗw
i + 1

Rd
Pw

i −
∫

�
f,(i)

out (t)
u f · n(i)

out d S = 0,

Rp

∫

�
(i)
out(t)

u f · n(i)
out d S = 1

|� f,(i)
out (t)|

∫

�
f,(i)

out (t)
p f d S − Pw

i

Then, considering the Neumann outflow boundary condi-
tion for the fluid, we get on each �

f,(i)
out (t), tout = −p f n(i)

out.
Hence, we have the following expression for the virtual work
of the outflow conditions

Pwind(v) = −
∑

1≤i≤4

∫

�
f,(i)

out (t)

p f n(i)
out · v d S.

Note that depending on the method used to solve the Navier–
Stokes equations, it can be convenient—and physically jus-
tified indeed—to replace p f by (σ

f
· n) · n in the above

differential equation.

Backflow situations. A comment should be made regarding
situations where complex or reverse flow structures develop
at the outflow boundaries of the blood flow domain. Here, the
weak traction condition coupled to a reduced-order model
of the distal vasculature usually results in diverging simula-
tions. A common but rather rudimentary workaround to this
problem has consisted of artificially extending the outflow
branches using long straight segments to regularize the flow.
Recently, new formulations have been developed to resolve
this issue numerically. Formaggia et al. (2007) implemented
a total pressure boundary condition by constructing a spe-
cial formulation of the Navier–Stokes equations. Kim et al.
(2009) have proposed an augmented Lagrangian formula-
tion for constraining the shape of velocity profiles at inlet
and outlet boundaries, rendering stable solutions regardless
of the complexity of the blood flow.

Parametrization and calibration. The parameters of the
Windkessel model for each outlet �

f,(i)
out (t) can be tuned to

match any given flow distribution and systolic and diastolic
pressure data. This process may be cumbersome (Les et al.
2010), due to the lack of sufficient data to uniquely define
all the parameters of the Windkessel model. This task may
be automated using data assimilation or optimization proce-
dures (Moireau et al. 2008; Spilker and Taylor 2010). This
also relates to the already-discussed importance of adequate
time registration of geometric (i.e., image data) and bound-
ary condition (i.e., blood flow and blood pressure) in order
to avoid the appearance of non-physiologic, spurious motion
modes in the FSI simulation.

3.2.2 Vessel wall domain boundary conditions

Once the blood flow boundary conditions are specified, we
must determine the vessel wall boundary conditions with the
same care. Here, we refer to boundary conditions in the wid-
est sense: all the modeling elements applied to the bounds of
the vessel wall domain, namely the exterior walls, the aortic
root, and the distal section of the descending aorta. On these
boundaries, we will use an extended Robin condition as illus-
trated in Fig. 1 to represent a simplified but robust model of
the mechanical relations between the system of interest and
the external tissues and organs, with natural physiological
interpretations.

External tissue support. The influence of external tissues
and organs tethering and constraining the movement of blood
vessels is of critical importance when simulating fluid–
structure interactions in the arterial system. In particular,
the descending thoracic aorta is longitudinally tethered by
the spine, whereas the ascending aorta is less constrained
by external tissues and structures. Obviously, it is cur-
rently infeasible to model the detailed multicontact relations
between the aortic system and the other tissues. Therefore,
we have chosen to handle the external tissue support on the
outer arterial wall by enforcing the following Robin bound-
ary conditions:

σ
s
· ns = −ks y

s
− csus − p0ns, on �s . (9)

In general, the parameters ks , and cs depend on space, and
possibly on time. They respectively model an elastic and
a viscoelastic response of the external tissue. We point out
that even if we do not use time-dependent parameters in this
paper, they could be employed to model the effect of the
change of mechanical properties in some tissues over time—
for instance in the lungs during breathing. In addition, p0

represents the intrathoracic pressure that can also be consid-
ered as varying in space and time, in particular due to breath-
ing effects. Since the image data considered in this paper
was acquired under breath-hold conditions, we will neglect
time-varying effects.

From a variational standpoint, this Robin boundary condi-
tion is easy to implement since it corresponds to the straight-
forward virtual work

∀v ∈ V, Psupport(v)

= −
∫

�s

(ks y
s
· v + csus · v + p0ns · v) d S.

Heart motion modeling. Except for certain aortic pathologies,
the large displacements of the ascending aorta are heavily
influenced by the heart motion. Here, modeling the entire
heart system would necessitate a modeling effort as complex
as for the problem at hand, i.e. fluid–structure interactions
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8 P. Moireau et al.

in the thoracic aorta. Therefore, we represent the heart influ-
ence by a similar Robin boundary condition, but here with a
forcing term

σ
s
· ns = −ks(y

s
− y

b
), on �s

in, (10)

where y
b

is a prescribed displacement that can be extracted
from the image data. Indeed, the approximately rigid body
motion that the heart induces on the aortic root can be
detected by observing the region near the sinuses of Valsalva.
In order to extract this rigid motion, we track the sinotubu-
lar junction and obtain the translation of its barycenter and
the rotation of its normal axis. We then obtain the rotation
around the normal axis by tracking the sinuses of Valsalva
themselves. This rigid motion can then be applied to the sin-
otubular boundary section of our domain using any well-cho-
sen time interpolation, such as linear or Fourier interpolation
between two consecutive image frames.

Here, we emphasize that we do not apply the extracted
displacement y

b
directly as a Dirichlet condition because the

heart motion is more complex than a simple rigid motion
and in particular we want to allow the aorta to dilate radi-
ally in the vicinity of the inlet section. Furthermore, a strong
enforcement of a displacement field from a relatively noisy
image data would also be inadequate. Practically speaking, it
means that the coefficient ks should not be chosen too large.

We should also point out that the vessel wall inlet bound-
ary condition must be compatible with the blood flow domain
inlet boundary condition. In this respect, we recall that the
inflow waveform constructed from physiological consider-
ations (see Fig. 3) and according to the ejection fraction of
the specific patient considered is always a relative flow and
that is therefore added to the fluid domain velocity at the
inlet.

Finally, we can also include a viscoelastic contribution in
the heart motion model such that

σ
s
· ns = −ks(y

s
− y

b
) − cs(us − ub), on �s

in,

where ub is the derivative in time of y
b
. However, if ub is

not directly measured, numerical differentiation of the noisy
signal y

b
may render a poor estimate of the velocity field ub.

Distal vessel mechanical modeling. The Robin boundary
condition (9) is also utilized on the solid outlets �

s,(i)
out , 1 ≤

i ≤ 4, where imposing classical homogeneous Dirichlet
conditions presents a major drawback: non-physiological
reflections and high frequency vibrations may occur as a
consequence of attaching the system at the outlets. Here,
the vessel wall is tethered by the external tissue support and
we can therefore relax the Dirichlet condition.

Parametrization and calibration. A difficulty of the simpli-
fied representation of the external tissue (9) is the determi-
nation of the phenomenological parameters ks and cs . These
parameters can be tuned to ensure that the simulation matches

the image data typically by subdividing the boundary con-
cerned into physiologically based regions within which these
parameters can be assumed to be e.g. constant or linearly
varying. Note that in essence by calibrating just these few
parameters representing the boundary support, we regular-
ize the corresponding displacements, as opposed to directly
extracting displacements from the noisy image sequence.
Furthermore, this task can be automated via a data assimila-
tion procedure inspired from Moireau et al. (2009), Moireau
and Chapelle (2010) and already applied in fluid–structure
interaction problems (Bertoglio et al. 2009) that will be pre-
sented in a forthcoming work. Of course, the predictivity of
our model must then be assessed according to the reproduc-
ibility of the approach for various patients in several hemo-
dynamic states, see the results section for two cases, to be
confirmed for more subjects in future studies.

3.2.3 Initial configuration

We have used the diastolic phase of the cardiac-gated CT data
to generate the initial blood flow domain mesh. For the ALE
FSI model, we generated the vessel wall domain by extru-
sion of the boundary �. The blood flow domain is initialized
by calculating the steady solution of a rigid wall Navier–
Stokes flow with a prescribed input flow corresponding to
the average cardiac output—namely the stroke volume mul-
tiplied by the heart rate. On the structure side, however, one
major difficulty lies in that the configuration coming from
the segmentation corresponds to a loaded state with a typical
arterial pressure of 80 mmHg. The problem is thus to obtain
the load-free �0 configuration corresponding to the loaded
configuration �(t0). The strategy to define this load-free con-
figuration depends on the kinematic assumption made for the
structure: small or large displacements.

Large displacements. In order to compute the mapping from
the (unknown) reference load-free configuration onto the ini-
tial loaded configuration, we use the residual P f

�(t0)
obtained

from the rigid wall fluid solution on the interface. We then
solve the following inverse problem:

Find φs and �0 = φs
−1(�s(t0)) such that

∀v ∈ V,

∫

�0

� : dye · v d� = P f
�(t0)

(v). (11)

In practice, we solve this inverse problem using a simple
fixed point algorithm. Given a tentative reference configura-
tion �

(k)
0 , we compute the displacements associated with the

residual and update the configuration into �
(k+1)
0 by using

the discrepancy between the computed deformed configu-
ration φ

(k)
s (�

(k)
0 ) and �(t0), using an adequate relaxation

parameter. This approach is therefore very similar to the first
method presented in Gee et al. (2010).
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Small displacements. In this case, the computational domain
does not change in time and the problem is linear with respect
to the loading. Therefore, the residual P f

�(t0)
can be seen

in (11) as the result of a prestress on the structure. We thus
solve the linear problem with this prestress contribution � ps

added to �
0

in (7).

3.3 Models formulation

3.3.1 First model: ALE formulation

We adopt an Arbitrary Lagrangian–Eulerian (ALE) formu-
lation in the fluid by introducing another mapping,

φA : �
f
0 × [0, T ] −→ � f (t),

such that φA|�0 = φ
s
|�0 , which in general does not follow

the material trajectories inside the domain. We then intro-
duce the corresponding deformation gradient F

f
(ξ , t) =

∇
ξ
φA(ξ , t), and determinant J f (ξ , t) = det F

f
(ξ , t). The

fluid domain velocity is denoted by w(ξ, t) = ∂tφA(ξ , t).
Note that we then have w|�0 = us |�0 , hence we have thus
defined an extension map such that

w = Ext(us |�0), in �
f
0 .

The strong form of the coupled fluid–structure problem
reads:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w = Ext(us |�0), in �
f
0 ,

ρ f
J f

∂ J f u f
∂t

∣∣∣
ξ

+ ρ f (u f − w) · ∇
x

u f

−2μdivx (ε(u f )) + ∇x p f = ρ f f
f
, in � f (t),

divx u f = 0, in � f (t),

(12)⎧⎪⎨
⎪⎩

ρs
∂us
∂t − divξ (�) = 0, in �s

0,

σ
s
· ns = −ks(y

s
− y

b
), on �s

in,

σ
s
· ns = −ks y

s
− csus, on �s,

(13)

{
u f = us, on �(t),
� · ns = J f σ f

(u f , p f ) · (F f )−T · ns, on �0,

(14)

where ∂
∂t

∣∣
ξ

represents the ALE time derivative (see Fernán-

dez and Gerbeau 2009 and references therein) and f
f

is a
force per unit mass—for example the gravity that may not be
negligible in the blood flow domain for long vertical arter-
ies. For this coupled problem, we then include the boundary
conditions prescribed on the fluid and structure problems as
described in Sect. 3.2.

The weak formulation of this model can be written using
three test function spaces V f ,Vs,Q:

∀t ∈ [0, T ], ∀vs ∈ Vs, ∀v f ∈ V f , ∀q ∈ Q,

∫

� f (t)

((
ρ f

J f

∂ J f u f

∂t

∣∣∣∣
ξ

+ ρ f (u f − w) · ∇
x

u f

)
· v f

−p f divv f + 2με(u f ) : ε(v f ) + qdivu f

)
d�

+
∫

�s
0

(
ρs

∂us

∂t
· vs + � : dye · vs

)
d�

=
∫

� f (t)

ρ f f
f
· v f d� + Pwind(v f ) + Psupport(vs). (15)

We point out that in this formulation, the test functions in V f

and Vs are assumed to be compatible on the interface �.
Concerning the choice of constitutive law in the solid vis-

coelastic behavior, we use the hyperelastic potential given
by the Ciarlet–Geymonat volumic energy (Ciarlet 1988; Le
Tallec 1994)

Ws = κ1(J1 − 3) + κ2(J2 − 3) + κ(J − 1) − κ ln J,

where J1, J2, and J denote the reduced invariants of the
Cauchy–Green strain tensor C = F

s
T · F

s
. The last part

of this potential is designed to penalize the incompressibil-
ity constraint when using large values for the bulk coeffi-
cient κ . We could use more sophisticated constitutive laws
developed for arterial walls—for example with exponential
terms and anisotropic strain energy functions, see e.g. Fung
(1993), Humphrey (2003), Holzapfel (2006) and references
therein—but we found the above choice to give satisfactory
results in the range of deformations considered with respect
to the initial loaded configuration, namely typically less than
10%. Note that changing the constitutive law would have
an effect on the inferred stress-free configuration, which is
unavailable in the data.

The spatial discretization of this formulation is performed
usingP1-Lagrange finite elements, well adapted to automatic
mesh generation obtained from the segmented images. Con-
cerning the fluid discretization, we use a Chorin–Temam pro-
jection scheme to handle the incompressibility constraint.
The subiterations with the solid are only performed when
solving the second step of this algorithm, namely the pres-
sure computation (i.e. the velocity projection). This effective
scheme was proposed in Fernández et al. (2006, 2007) and
proven to be stable in energy norm under conditions that
are typically satisfied in practice. We use a mid-point New-
mark scheme for the solid, which is also stable for nonlinear
visco-hyperelastic formulations with adequate choice of dis-
cretization for Piola–Kirchhoff tensors, see a comprehensive
study in Hauret and Le Tallec (2006).
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10 P. Moireau et al.

3.3.2 Second model: coupled momentum method

The coupled momentum method is based on a stabilized
finite element formulation (Taylor et al. 1998; Whiting and
Jansen 2001) of the equations for an incompressible New-
tonian fluid discretized on a fixed computational grid. The
method formulates the degrees of freedom (i.e., displace-
ments y

s
) for the vascular wall as a function of the fluid

velocities u f at the fluid–solid interface using an “enhanced”
linear membrane formulation. We assume that wall displace-
ments are small so that the current configuration can be
approximated by the reference configuration, and we define

� = �s ∪ � f def= �t = �0 .
Considering the wall to be a thin membrane of given thick-

ness h, we define the vessel wall problem in the domain
�s = � × h and we use the linear elastic model presented
in Figueroa et al. (2006). This leads to a membrane stress
tensor σ

m
in which the twice-normal component is assumed

to vanish. The boundaries of �s include �s
in and �s

out with
a velocity prescribed on the former and a traction t s pre-
scribed on the latter. The external tissue viscoelastic support
conditions proposed in this article correspond to a distributed
force

f
support

= −ks y
s
− csus

applied on the membrane surface—where ks and cs vanish
outside a given area �s ⊂ �.

The fluid–structure problem defined only on the fluid
Eulerian configuration then reads
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ f
∂u f
∂t + ρ f u f · ∇

x
u f

−2μdiv(ε(u f )) + ∇ p f = ρ f f
f
, in � f ,

divu f = 0, in � f ,

u f = us, on �,

(16)

{
ρs

∂us
∂t − div σ

m
= 1

h f
support

, in � × h,

σ
m

· ns = σ
f
(u f , p) · ns, on �.

(17)

This strong form after a proper choice of trial and weight-
ing functional spaces can produce the following global vari-
ational equation for the coupled momentum method

∀t ∈ [0, T ], ∀v ∈ V, ∀q ∈ Q,∫

� f

((
ρ f

∂u f

∂t
+ ρ f u f · ∇ u f

)
· v

−p f divv + 2με(u f ) : ε(v) + qdivu f

)
d�

+
∫

�

h

(
ρs

∂us
∂t

· v + σ
m

: ∇ v

)
d S + stabilization terms

=
∫

� f

ρ f f
f

· v d� + Pwind(v) + Psupport(v), (18)

where Psupport contains the following surface- and line-
distributed terms

Psupport(v) =
∫

�

f
support

· v d S +
∫

�
f

out

t s · v d L .

4 Results

4.1 First subject: 37-year-old man with large thoracic aorta
motion

4.1.1 Data processing

The data for this model problem was obtained from a thoracic
CT angiographic scan of a 37-year-old subject. This subject
presented significant thoracic aortic wall motion, a common
circumstance for a relatively healthy and young individual.
The FSI model of choice for this subject is the ALE for-
mulation due to the large displacements experienced in the
domain of interest. The extracted geometry includes the vas-
cular lumen of the ascending and descending thoracic aorta
as well as the major neck vessels, see Fig. 4.

From the segmentation, we generated a finite element
mesh for the fluid domain of approximately 23.000 nodes
and 110.000 tetrahedra. A vessel wall mesh of approximately
18.000 nodes and 24.000 tetrahedra was generated by extru-
sion of the lumen boundary �, using two layers of elements
across the vessel wall thickness. The thickness was set to
1 mm near the outflow boundaries of the smaller arteries
�

(i)
out, 1 ≤ i ≤ 3 and to 2 mm on the aorta itself, having a

gradual variation of thickness near the junctions. The external
surface of the mesh is shown in Fig. 5. On the boundary of the
solid mesh, we defined 6 regions used to prescribe the visco-
elastic support boundary conditions with different parameter
values (listed in Table 3). In particular, we identified a region
adjacent to the spine by locating the intercostal artery attach-
ments, as shown in Figs. 1 and 5. On any given cross-section
of the descending aorta, we can therefore distinguish three
different segments given by the region in contact with the
spine, the spine vicinity and the region opposite to the spine.

In Fig. 6, we show the effect of the rigid body motion
weakly prescribed on the inlet ring �s

in as explained in
Sect. 3.2.2, and we compare this displaced ring with the
segmented aortic root processed from the ten phases of
the cardiac-gated CT data. We can see that the inlet ring
remains very close to the artery contour at all times of the
cycle, despite the large displacements undergone by the aor-
tic root—typically of the order of the vessel radius. This
comparison validates the computation of the rigid motion of
the inlet ring.
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Fig. 4 First subject: CT volume rendering, segmentation, and associated computational mesh

some inter-
costal 

arteries
attachement

1mm

2mm

2mm

spine 
vicinity

spine 
region

aortic
 root

Fig. 5 Initial solid mesh extruded from fluid mesh with defined
regions. Loaded configuration and reference configuration for ALE sim-
ulation

4.1.2 Simulation results

We start by solving the “loaded to reference configuration”
inverse problem discussed in Sect. 3.2.3 in order to obtain a
reference stress-free configuration. The corresponding mesh
is shown in Fig. 5 and compared to the initial (loaded) con-
figuration.

Using the inlet flow displayed in Fig. 3 and the material
parameters given in Tables 1, 2 and 3, we computed several
cardiac cycles of pulsatile blood flow and vessel wall motion
with and without external tissue support. All the Windkessel

parameters (see Table 1) were calibrated in order to obtain
physiologically relevant flow and pressure distributions and
a periodic response, see Fig. 8. We point out that, in order to
compensate for the absence of viscoelastic support, the inter-
nal viscosity parameter in the vessel wall (η) was increased
by a factor of 10 to obtain a stable behavior.

In order to assess the simulated motion, Fig. 8 shows 4
cross-sections of the calculated ALE model contours super-
imposed with the image data at peak systole and diastole.
Figure 7 summarizes the error indicators obtained by com-
puting distances between the model contours and the seg-
mented walls in the above-described 6 separate regions, and
using two different norms, namely the L∞ and L2 norms.

4.2 Second subject: 59-year-old man with small thoracic
aorta motion

4.2.1 Data processing

In contrast to the first clinical case, this case corresponds to
a 59-year-old patient presenting a relatively small thoracic
aortic wall motion, as is typical of older patients with stiffer
arteries. This subject presented a slight aneurysmal dilation
of the aortic root with maximal measurements of the sinus
of Valsalva of 46 mm. Otherwise, the remainder of the tho-
racic aorta is normal in caliber. The FSI model of choice
for this subject is the coupled momentum method due to
the smaller displacements undergone in the domain of inter-
est. As in the first subject, we used a thoracic cardiac-gated
CT angiographic scan, and the extracted geometry includes
the vascular lumen of the ascending and descending thoracic
aorta as well as the major neck vessels, see Fig. 9.

From the segmentation, we generated a finite element
mesh for the fluid domain of approximately 160.000 nodes
and 800.000 tetrahedra. The thickness of the vessel wall was
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t=0.09 frame 1 t=0.18 frame 2 t=0.27 frame 3 t=0.36 frame 4 t=0.45 frame 5

t=0.54 frame 6 t=0.63 frame 7 t=0.72 frame 8 t=0.81 frame 9 t=0.90 frame 10

Fig. 6 Rigid body motion prescribed on inlet ring of the computational mesh compared with the segmented wall along the cardiac cycle

Table 1 Windkessel RCR parameters (units: cgs)

�
f,(i)

out 1 2 3 4

Rp 0.05 × 104 0.19 × 104 0.075 × 104 0.015 × 104

Rd 0.85 × 104 3.22 × 104 1.25 × 104 0.25 × 104

C 0.95 × 104 0.25 × 104 0.64 × 104 3.17 × 104

Table 2 First subject: constitu-
tive parameters (units: cgs) hκ1 6.71 × 105

hκ2 6.71 × 105

hκ 1.333 × 108

hEequivalent 0.8 106

νequivalent 0.49

η 0.01 2 (κ1 + κ2)

ρs 1.2

ρ f 1

ν 0.06

Table 3 First subject: external tissue support parameters (units: cgs)

Region �s
in Spine Spine vic. Op. to Spine �

s,4
out

ks 107 107 104 103 2 × 106

cs 0 104 104 104 104

set to 2 mm uniformly. On the vessel wall boundary, we
defined 3 regions used to prescribe the viscoelastic support
boundary conditions with different parameter values (listed
in Table 4). Again, we identified a region adjacent to the spine
by locating the ostia of the intercostal arteries.

4.2.2 Simulation results

Using the inflow waveform given in Fig. 3 and the Windkessel
outflow boundary conditions parameters given in Table 1, we

computed several cardiac cycles of pulsatile blood flow and
vessel wall motion. Here, we used the end-diastolic pressure
as a reference to calculate a prestress for the linear membrane
model of the coupled momentum method. The structural stiff-
ness and Poisson ratio for this subject are listed in Table 5.
Note that the calibration leads to a much higher stiffness mod-
ulus for this case as expected from the above description. Fur-
thermore, incompressibility is exactly enforced here, namely
ν = 0.5.

Figure 11 displays 3 cross-sections of the calculated
coupled momentum method contours in the presence and
absence of the external tissue support boundary condition
superimposed with the image data. Figure 10 displays the dis-
tances between the model wall boundary and the segmented
wall boundary.

5 Discussion

The comparisons between the numerical simulations and
the image data in Figs. 8 and 11 display a very significant
improvement when using external tissue support, for almost
all sections considered and regardless of the method used for
FSI. This is further confirmed by the quantitative assessment
of the distances between the models and the image data pre-
sented in Figs. 7 and 10 in the two norms considered. Of
course, the distance is particularly reduced—and dramati-
cally so, indeed—for the spine region, whereas the smallest
improvement occurs on the opposite side to the spine. We
observe that the error is more effectively reduced in the first
case (healthy younger subject) in the upper branch vessels
bifurcation region. A possible explanation for the enhanced
effectiveness of the ALE model in the first case lies in the
fact that the nonlinear solid model used for the wall provides
some bending stiffness—absent from the membrane model
used in the coupled momentum method– and can therefore
account for smoother deformations. In the second case, we
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Root Arch Small Arteries Spine Spine vicinity Opposite
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Fig. 7 First subject: L2 and L∞ (left and right resp.) norms of distances from the segmented wall boundary to the nodes of the model wall
boundary using tissue support (bottom) and without tissue support (top). Distances versus time plots in cgs units (for comparison, vessel radius is
approximately 2cm)

also observe that some rapid oscillations visible in the dis-
tances computed without tissue support are canceled when
the external tissue support is considered – see in particu-
lar the distances in the spine region. This may be attributed
to the presence of viscous dissipation in the support condi-
tion, whereas the membrane model used for the arterial wall
itself is not dissipative. In addition, as expected, the errors in
the second case are not significantly improved near the inlet,
since there the fixed-grid model does not take into account the
heart motion that is weakly prescribed in the first case, which
also further validates the effectiveness of our heart motion
forcing procedure. We emphasize, however, that imposing
such large displacements necessitates an ALE formulation,
which implies a substantial increase in the computational
complexity.

Note further that all distances vary along the cardiac cycle
and that in fact a maximum value of the distance is reached
during systole even for the simulations with external tissue
support. This could be expected, of course, as this is the stage
corresponding to maximum amplitude in the actual vessel
wall displacements, but should also be analyzed in light of the

linear expression used in the support condition (9). Indeed,
this law roughly produces displacements proportional to
the excitation, which is correlated to the amplitude of the
actual displacements. Alternatively, we could consider other
expressions for the support law, for instance derived from
hyperelastic energies featuring exponential terms inspired
by classical models of living tissue, see e.g. Fung (1993) and
references therein. Such choices would more strongly penal-
ize large displacements and would therefore reduce the larger
errors observed in systole.

Nevertheless, the previous comparisons and error assess-
ments clearly demonstrate the effectiveness and versatility of
our approach to model external tissue boundary conditions
corresponding to:

– both fixed and moving (with prescribed displacement)
support;

– both natural and artificial boundaries, where by artifi-
cial we refer to boundaries corresponding to (inevitable)
truncations of the geometry—namely the inlet and outlet
here.
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Fig. 8 First subject: 2D contour comparison using external tissue support (green contour) and no external tissue support (red contour) at peak
systole and diastole. The solid blue contour line represents the lumen boundary

Fig. 9 Second subject: CT volume rendering, segmentation, and associated computational mesh

Of course, the external tissue model presented here is
simplified, both by construction as for all support condi-
tions that account for the contribution of an infinite external
medium and by the fact that the number of regions considered

for the support parameters is necessarily limited. In these
regions, we have used piecewise-constant parameter val-
ues for calibration purposes. Note that, in order to facili-
tate parameter calibration, automatic estimation procedures
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Table 4 Second subject: external tissue support parameters (units: cgs)

Region Spine Spine vic. Op. to Spine

ks 107 104 103

cs 104 104 104

Table 5 Second subject: consti-
tutive parameters (units: cgs)

hE 2.8 × 106

ν 0.50

can be considered as in Moireau et al. (2008), Moireau et al.
(2009), Moireau and Chapelle (2010), Bertoglio et al. (2009).
The estimation of these parameters is particularly interesting
to obtain personalized models when inter-individual variabil-
ity is present. For this procedure to be comprehensive, all
other major uncertainties should then be estimated in addi-
tion to external tissue support parameters, in particular thick-
ness and stiffness variabilities for the walls and Windkessel
parameters for the outflow boundary conditions.

Note that, as regards the prescribed motion of the ascend-
ing aorta due to the action of the heart, we could also relax
the rigid body kinematics by only enforcing conditions on the
integrated displacements moments of order zero and one (i.e.,
global translations and global rotations, respectively), which
would allow more freedom for the deformations of the inlet
ring. Furthermore, an actual three-dimensional heart model
could be considered for a more detailed kinematical prescrip-

tion of the mechanics of the ascending thoracic aorta. In par-
ticular, the model presented and validated in Sainte-Marie
et al. (2006), or a simplified—possibly reduced-order—ver-
sion of this model with a sufficient number of modes (or
degrees of freedom) to at least prescribe the required six
rigid body components.

Finally, it is very clear that the constitutive laws used to
model the arterial wall in our simulations are much simplified
and that these laws should be substantially refined in order to
capture some specific biomechanical phenomena. For exam-
ple, the differential distribution of stresses across the vessel
wall (Fung 1993; Alastrué et al. 2010) and the vasoactive
component of smooth muscles included in the media layer
(Humphrey 2003) could be considered. In this paper, our
primary objective was to validate the external support model
at a global level, and in this respect, we believe that our results
substantiate the relevance of this modeling component per se,
also in the perspective of considering different—more physi-
ological—material laws. Of course, it should be kept in mind
that calibrating such sophisticated material laws represents
a significant challenge, especially with a view to patient-
specific modeling.

6 Concluding remarks

In spite of the tremendous progress achieved in the recent
years in the simulation of fluid–structure interaction in large

Fig. 10 Second subject: L2 and
L∞ (left and right resp.) norms
of distances from the segmented
wall boundary to the nodes of
the model wall boundary using
tissue support (bottom) and
without tissue support (top).
Distances versus time plots in
cgs units (for comparison, vessel
radius is approximately 2cm)
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Fig. 11 Second subject: 2D contour comparison using external tissue support (green contour) and no external tissue support (red contour) at peak
systole and diastole. The solid blue contour line represents the lumen boundary

arteries, the modeling of the external tissue support has been
rarely considered in the literature. The purpose of this paper
was to propose a simple model that addresses this complex
issue. To demonstrate its versatility, it has been implemented
in two different fluid–structure interaction models. Although
simple, the proposed approach has several benefits. From
a biomechanical standpoint, it accommodates an improved
description of the effect of surrounding tissues and organs
of the thoracic cavity on the aorta. From a numerical stand-
point, it improves the stability of complex FSI simulations.
To roughly summarize its effect with respect to more conven-
tional approaches, one could say that it constrains the motion
in regions that are usually left free (i.e., the artery wall) and
it relaxes some constraints in regions that are usually fixed
(i.e., the inlet and the outlets). Moreover, the slight dissi-
pation present in the model filters out the high frequencies,
which is specially desirable when the structure model does
not incorporate viscous effects.

This method has been illustrated with real patient
anatomies and the wall displacements have been quantita-

tively assessed by detailed comparisons with corresponding
dynamical sequences of medical images. In our simula-
tion framework, multiple model parameters such as inflow,
peripheral resistances and capacitances, and vessel wall con-
stitutive parameters have been calibrated with care. How-
ever, this by no means represents a claim to genuine patient-
specific modeling, which would necessitate a more system-
atic approach to accurately estimate the various parameter
values, including spatially varying quantities (Bertoglio et al.
2009). This task was well beyond the scope of the present
paper, but we intend to demonstrate the use of data assimila-
tion procedures to estimate such parameters—among which
those relating to the external tissue support—in future works.

Potential applications of these types of support conditions
in biomechanical modeling clearly extend much beyond the
specific modeling topic considered in this paper. They have
already been successfully validated, in particular, as bound-
ary conditions in complete heart beat simulations (Chabin-
iok et al. 2009). Further natural applications include the
modeling of the attachments of coronary arteries within the
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myocardium—a moving support in this case—and the mod-
eling of the effect of intracranial structures and cerebrospinal
fluid on the cerebral arteries.
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