
Biomech Model Mechanobiol (2011) 10:973–984
DOI 10.1007/s10237-011-0288-0

ORIGINAL PAPER

Modeling interlamellar interactions in angle-ply biologic
laminates for annulus fibrosus tissue engineering

Nandan L. Nerurkar · Robert L. Mauck ·
Dawn M. Elliott

Received: 20 September 2010 / Accepted: 10 January 2011 / Published online: 3 February 2011
© Springer-Verlag 2011

Abstract Mechanical function of the annulus fibrosus of the
intervertebral disc is dictated by the composition and micro-
structure of its highly ordered extracellular matrix. Recent
work on engineered angle-ply laminates formed from mesen-
chymal stem cell (MSC)-seeded nanofibrous scaffolds indi-
cates that the organization of collagen fibers into planes of
alternating alignment may play an important role in annu-
lus fibrosus tissue function. Specifically, these engineered
tissues can resist tensile deformation through shearing of
the interlamellar matrix as layers of collagen differentially
reorient under load. In the present work, a hyperelastic con-
stitutive model was developed to describe the role of interla-
mellar shearing in reinforcing the tensile response of biologic
laminates, and was applied to experimental results from
engineered annulus constructs formed from MSC-seeded
nanofibrous scaffolds. By applying the constitutive model to
uniaxial tensile stress–strain data for bilayers with three dif-
ferent fiber orientations, material parameters were generated
that characterize the contributions of extrafibrillar matrix,
fibers, and interlamellar shearing interactions. By 10 weeks
of in vitro culture, interlamellar shearing accounted for nearly
50% of the total stress associated with uniaxial extension
in the anatomic range of ply angle. The model successfully
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captured changes in function with extracellular matrix depo-
sition through variations in the magnitude of model param-
eters with culture duration. This work illustrates the value
of engineered tissues as tools to further our understanding
of structure–function relations in native tissues and as a test-
bed for the development of constitutive models to describe
them.
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1 Introduction

The intervertebral disc permits a wide range of spinal
motions while maintaining stability and resisting large
multidirectional loads. The disc is able to fulfill this demand-
ing mechanical function through the interaction of its two
primary substructures, the central gelatinous nucleus pul-
posus, and the surrounding annulus fibrosus. The annu-
lus fibrosus is a multilamellar fibrocartilage, with highly
aligned collagen fibers residing within discrete lamellae and
the direction of collagen alignment alternating above and
below the transverse axis of the spine by 30–45◦ (Marchand
and Ahmed 1990). Understanding the relation between this
highly ordered structure and mechanical function is an area
of active experimental and theoretical investigation (Guerin
and Elliott 2006, 2007; O’Connell et al. 2009; Smith and Faz-
zalari 2009; Sun and Leong 2004; Wagner and Lotz 2004).
While such endeavors have focused on the study of either
healthy or degenerate annulus fibrosus tissue, engineered
tissue analogs also represent a useful tool for understand-
ing how form and function are coupled in these systems
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974 N. L. Nerurkar et al.

(Nerurkar et al. 2011). This stems from recent advances in
tissue engineering that have enabled the formation of engi-
neered constructs in vitro that mimic the composition, mul-
tiscale organization, and mechanical function of the annulus
fibrosus and other load-bearing soft tissues (Mauck et al.
2009; Nerurkar et al. 2009, 2010).

We have recently employed electrospun nanofibrous
scaffolds coupled with mesenchymal stem cells (MSCs)
to engineer nanofibrous biologic laminates that replicated
the angle-ply organization of the annulus fibrosus and,
after 10 weeks of in vitro culture, developed uniaxial ten-
sile properties commensurate with the native annulus fibro-
sus (Nerurkar et al. 2009). Native tensile properties were
only achieved when fibers in adjacent lamellae were aligned
along opposing orientations (+/−30◦); parallel alignment of
fibers (+/+30◦) resulted in significantly lower tensile mod-
uli. These results indicated that shearing interactions across
the lamellae may act to strengthen the macroscopic tensile
response of biologic laminates (Fig. 1a). This mechanism of
reinforcement, whereby opposing fiber reorientations shear
the interlamellar matrix, was confirmed using an acellular
nanofiber-hydrogel system (Nerurkar et al. 2009).

Constitutive models are an important tool for studying the
evolving mechanical function of growing engineered tissues
(Nerurkar et al. 2007, 2008) and for the comparison of these
tissues with native ones, where it is critical to account for non-
linearity, anisotropy, and finite elastic deformations (Fung
1982). Previously, we modeled cell-seeded electrospun scaf-
folds consisting of a single layer of unidirectionally aligned
fibers with a hyperelastic model, accounting for anisotropy

using the methodology described by Spencer (Spencer 1972).
In this approach, a fiber-reinforced composite is modeled by
the additive decomposition of the strain energy function into
the sum of an isotropic matrix with a fiber phase. This method
has been widely used for the study of many fiber-reinforced
tissues and of the annulus fibrosus in particular (Guerin and
Elliott 2007; Guo et al. 2006; O’Connell et al. 2009; Wag-
ner and Lotz 2004; Wagner et al. 2006). Unfortunately, this
approach cannot account for interactions between the two
fiber populations, a phenomenon shown to be important for
the function of engineered biologic laminates (Nerurkar et
al. 2009). While additional strain energy terms have been
added to the ‘fiber plus matrix’ model to account for vari-
ous interactions between fibers and matrix, prior continuum
models of the annulus fibrosus have simplified the multila-
mellar architecture by assuming both fiber populations coex-
ist at each point in the material. Under such conditions, it is
not possible to account any interlamellar effects, including
shearing of the interlamellar matrix as fibers reorient under
tensile load. Therefore, the objective of the present work was
to extend the existing theoretical framework to account for
interlamellar shearing interactions in order to understand the
role of this phenomenon in the evolving function of nano-
fibrous biologic laminates with extracellular matrix deposi-
tion in vitro. This was accomplished through a two-tiered
approach, beginning first with experimental investigations
into the behavior of nanofibrous laminates with varying ply
angles and second by applying a constitutive model to these
experimental data that explicitly accounts for interlamellar
interactions.

Fig. 1 Proposed mechanism of interlamellar reinforcement of the
tensile response of two opposing fiber populations, shown schemati-
cally (a). Nanofibrous biologic laminates were constructed in three ply
angles; e1 and e2 indicate the Cartesian coordinate system where axes
are parallel to the orthonormal base vectors e1 and e2, respectively (b).
The change in ply angle with deformation was chosen as a kinematic
input for the strain energy function to describe interlamellar shearing

interactions (c). L1, 2 Lamella 1, 2; IL Interlamellar matrix; ao, bo unde-
formed fiber directions; a, b deformed fiber directions. F deformation
gradient tensor; 2ϕo undeformed angle between fiber populations; 2ϕ
deformed angle between fiber populations; Wm , W f , and Wint are the
strain energy density functions associated with matrix, fibers, and inter-
lamellar interactions, respectively
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2 Materials and methods

2.1 Engineering MSC-seeded nanofibrous biologic
laminates

Oriented nanofibrous mats were electrospun as described
previously (Baker and Mauck 2007; Nerurkar et al. 2009).
Rectangular samples (5 × 30 mm2) approximately 250 μm
in thickness were cut from the electrospun mat with the long
axis rotated either by 30◦ or 90◦ with respect to the pre-
vailing fiber direction (Nerurkar et al. 2007). Scaffolds were
stored in a dessicator until use, at which point they were ster-
ilized, rehydrated, and incubated in fibronectin (20 μg/ml)
overnight prior to seeding (Nerurkar et al. 2007).

MSCs were isolated from the tibial and femoral bone mar-
row of juvenile bovine knee joints and expanded to passage
2 (Mauck et al. 2007). Cells were then seeded on scaffolds
with either 30◦ or 90◦ fiber orientations as described pre-
viously (Baker et al. 2009). Briefly, cells in basal media
(DMEM with 10% FBS and 1% PSF) were seeded onto
scaffolds at a concentration of 500,000 cells per side. Cell-
seeded scaffolds were maintained in 4 mL of basal media
overnight and then switched to chemically defined, serum-
free growth media supplemented with 10 ng/mL TGF-β3
(Mauck et al. 2006). After 2 weeks of pre-culture as sin-
gle lamellar strips, bilayers were formed by layering two
strips between two pieces of porous polypropylene and wrap-
ping with a foil sleeve (Nerurkar et al. 2009). Three bilayer
orientations were constructed: transverse (+/+90◦), parallel
(+/+30◦), and opposing (+/−30◦ Fig. 1b). These orientations
were selected to accentuate certain specific contributions to
mechanical functions for material property determination, as
outlined below. After 2 weeks of culture as bilayers, the sur-
rounding foil sleeve and polypropylene pieces were removed.
Bilayers were cultured for up to 10 weeks with media changes
twice weekly.

2.2 Measuring functional growth of nanofibrous biologic
laminates

At 2, 4, and 10 weeks, bilayers from transverse, parallel, and
opposing orientations were subjected to uniaxial tensile test-
ing along the sample long axis (n = 5, Fig. 1b) or histo-
logic analyses (n = 2). Mechanical testing was carried out
by first measuring cross-sectional area using a noncontact
laser system (Peltz et al. 2009), after which samples were
speckle-coated with black enamel paint and loaded into cus-
tom serrated grips for tensile testing. Grips were fitted into
an Instron 5542 testing system and, after preload (0.1 N for
300 s) and preconditioning (15 cycles to 0.1% at 0.05% per
second), were ramped to failure at 0.1% strain per second
(Guerin and Elliott 2006). During the ramp, images of the
sample midsubstance were captured using a camera with

magnifying lens (one image per 5 s). Images were post-pro-
cessed with Vic-2D image correlation software to compute
2-D Lagrangian strains (E). Modulus was computed as the
slope of the linear region of the stress–strain curves by linear
regression. Histologic samples were embedded in OCT freez-
ing medium, cryo-sectioned, and stained with Alcian Blue
and Picrosirius Red to visualize glycosaminoglycan (GAG)
and collagen, respectively.

2.3 Formulating a hyperelastic term for interlamellar
interactions

Work in the present study builds on a prior model that was
used to characterize the mechanics of single lamellar con-
structs (Nerurkar et al. 2008). Because the single lamellar
model, which consisted of a Neo-Hookean matrix reinforced
by exponential fibers, has been discussed in depth previously,
the present work will focus only on its expansion to the study
of biologic laminates with two opposing fiber populations.
Additional details are available in the Appendix.

2.3.1 A hyperelastic model for interlamellar shearing
of biologic laminates

The decomposition of W , the total composite strain energy
function, into fiber and matrix strain energy functions can
be interpreted as a base isotropic response, the extrafibril-
lar matrix (Wm , Appendix, Eq. A2), with an added energetic
cost associated with stretching the material along the direc-
tion prescribed by a unit vector representing a fiber direction
(W f , Appendix, Eq. A3). Similarly, the role of interlamel-
lar shearing interactions is incorporated here as an additional
energetic cost that is associated with changing the relative
angle between two fiber populations (Wint, Fig. 1b, c). There-
fore, the total composite strain energy function, W , is given
by:

W = Wm + W f + Wint. (1)

The expression of each component of the strain energy
function in terms of strain invariants ensures objectivity of
the material definition, and therefore, the following invari-
ants of the Right Cauchy Green tensor (C = FTF where F
is the deformation gradient tensor) are introduced (Ogden
1997; Spencer 1972):

I1 = trC, (2)

I3 = det C, (3)

I4 = ao · Cao, (4)

I6 = bo · Cbo, (5)

I8 = ao · Cbo, (6)
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where ao and bo are unit vectors along the directions of fiber
alignment in the undeformed state (Fig. 1c):

aO = cos (ϕO) e1 + sin (ϕO) e2, (7)

bO = cos (ϕO) e1 − sin (ϕO) e2 (8)

Here, ei are the orthonormal bases of a Cartesian coordinate
system and ϕo is the ply angle. Throughout, uniaxial exten-
sion is applied along the e1 direction, bisecting the angle 2ϕo

formed between the two fiber populations.
To define the energetic cost associated with interlamel-

lar shearing, it was necessary to first identify a kinematic
event that describes this phenomenon (Fig. 1a) (Nerurkar et
al. 2009). Because interlamellar shearing was assumed to
result from fibers reorienting in opposing directions under
load, the change in angle between the two fiber populations
was selected as the kinematic variable (Fig. 1c). To express
this mathematically, Wint was chosen to follow the form:

Wint = Wint(a · b − ao · bo), (9)

where a and b are unit vectors defining the fiber orienta-
tions in the deformed configuration. In other words, the strain
energy of interlamellar shearing is a function of the change
in angle between two fiber populations as the fibers reori-
ent under load. As shown in the Appendix, Eq. (9) can be
rewritten in terms of strain invariants as:

Wint = Wint

(
I8

(I4 I6)1/2 − ao · bo

)
. (10)

Because experimental results suggested that interlamel-
lar shearing is nonlinear, playing a larger role with increas-
ing strain magnitudes (Nerurkar et al. 2009), an exponential
form of Wint was adopted, analogous to W f such that two
parameters (κ, δ) could be used to define its role:

Wint = κ

2δ

⎛
⎝e

δ

(
I8

(I4 I6)
1/2 −ao·bo

)2

− 1

⎞
⎠ , (11)

where κ defines the magnitude of the interlamellar interac-
tion and δ defines the degree of stress–strain nonlinearity.
Note that when F = I, Wint = 0, indicating that this par-
ticular form of strain energy function is consistent with a
stress-free reference configuration. Further, for all deforma-
tions F, W (F) ≥ 0.

2.3.2 Defining the constitutive law of nanofibrous biologic
laminates

To arrive at the constitutive law, Eqs. (A2), (A3), and (11)
were substituted into Eq. (1) to provide the full strain energy

function of the composite:

W = μ

2β
(I −β

3 − 1) + μ

2
(I1 − 3) + γ

2ξ

∑
i=4,6

(eξ(I ∗
i −1)2 − 1)

+ κ

2δ

⎛
⎝e

δ

(
I8

(I4 I6)
1/2 −ao·bo

)2

− 1

⎞
⎠ . (12)

The first Piola–Kirchoff stress tensor was then computed by
substituting Eq. (12) into:

t = 2F
∂W

∂C
= 2F

(
∂W

∂ Ik

∂ Ik

∂C

)
. (13)

The resulting constitutive relation for the nanofibrous bio-
logic laminate is thus:

t = tm + t f + tint, (14)

where each component stress is given by:

tm = μ(F − I −β
3 F−T ), (15)

t f = γ
(
(I4 − 1)eξ(I4−1)2

Fao ⊗ ao

+(I6 − 1)eξ(I6−1)2
Fbo ⊗ bo

)
, (16)

tint = κ

(
I8

(I4 I6)
1/2 − aobo

)
e
δ

(
I8

(I4 I6)
1/2 −aobo

)2

. . .

. . .

(
1

(I4 I6)
1/2 Fao ⊗ bo + Fbo ⊗ ao

− I8

I 1/2
6 I 3/2

4

Fao ⊗ ao − I8

I 1/2
4 I 3/2

6

Fbo ⊗ bo

)
. (17)

In summary, the model contains six material parameters,
with two parameters associated with each the extrafibrillar
matrix (μ and ν), fibers (γ and ξ ), and interlamellar shearing
(κ and δ).

2.4 Implementing the hyperelastic model to quantify
the role of interlamellar shearing

The full stress–strain Eqs. (14–17) were applied to experi-
mentally measured stress–strain curves for transverse (+/+
90◦), parallel (+/+30◦), and opposing (+/−30◦) bilayers in
order to generate values for the six material constants. This
was done by performing least-squares curve fits to the exper-
imental data using a custom MATLAB code (Nerurkar et al.
2008). Because the model consists of six constants, fitting a
single curve would generate multiple solutions, removing the
physical meaning associated with these parameters. There-
fore, the model was sequentially fit to data sets in order to
determine the constants two at a time, using average values
of the first pair in the determination of the next pair and so on.
This was possible because each orientation of bilayer relies
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on a different combination of mechanisms to resist deforma-
tion. For instance, when fibers within each layer are parallel,
as is the case for transverse and parallel bilayers, a = b,
and therefore Wint = 0. Because fibers are assumed to bear
only tensile loads, uniaxial loading of transverse bilayers pro-
duces a matrix-only response, as I ∗

4 = I ∗
6 = 1 and W f = 0

(Appendix).
Fitting of the constitutive equation to the stress–strain data

from transverse bilayers was first performed and yielded val-
ues of matrix parameters μ and ν. The average values of
each constant were computed, and their values were used in
fitting Eqs. (14–17) to parallel bilayer data in order to pro-
vide values of the fiber parameters γ and ξ . Finally, with
four of the six parameters determined, Eqs. (14–17) were
fit to opposing bilayer data, making use of the average val-
ues of matrix and fiber constants to determine interlamellar
shear interaction parameters κ and δ. This tiered curve fitting
approach was chosen so that properties could be determined
for the simplest case—transverse bilayers representing only
the matrix—and then progressively add more properties with
each fit (Fig. 1b). This permitted the determination of explicit
values for each of the six parameters in unique combinations
that best fit the dataset. The fitting approach was repeated
for each time point, so that the changes in material parame-
ters could be examined as cells deposited extracellular matrix
with increasing culture duration.

The relative contributions of matrix, fibers, and interla-
mellar shearing interactions to the overall mechanics of bio-
logic laminates after 10 weeks of culture were determined
for uniaxial extension by computing the stresses tm , t f , and
tint , respectively. Contributions were computed for uniax-
ial extension with the average material parameters obtained
from fitting experimental data for Poisson’s ratio v12 = 1,

and ϕ = 30◦.

2.5 Simulating the mechanics of cell-seeded nanofibrous
biologic laminates

To probe the behavior of the interlamellar shearing compo-
nent of the model, simulations were performed for uniaxial
extension of a fiber-reinforced laminate. Because the matrix
and fiber terms have been used extensively in previous stud-
ies—which included sensitivity analyses—the simulations
carried out here were focused on the behavior of the inter-
lamellar shearing term, which has not appeared previously
(Eberline et al. 2001; Guerin and Elliott 2007; Wagner and
Lotz 2004). Except where noted, simulations were carried
out for the case of an angle-ply laminate with ϕ = +/− 30◦
fiber orientations with respect to the loading axis and a Pois-
son’s ratio ν = 1.0 (determined experimentally). The effects
of strain (E11), ply angle (ϕ), and Poisson’s ratio (ν) on strain
energy and stress were examined. An additional simulation
was carried out using the material parameters obtained from

each time point to examine how interlamellar shearing rein-
forces the tensile response of biologic laminates for a range
of deformation magnitudes and ply angles in the specific
context of cell-mediated matrix deposition.

2.6 Statistics

Significance (p ≤ 0.05) was evaluated by two-way ANOVA
with a Tukey’s post hoc test for the variables of culture dura-
tion and bilayer orientation (transverse, parallel, and oppos-
ing). For comparison of model parameters across time points,
one-way ANOVAs with Tukey’s post hoc were used. Good-
ness of model fits are reported in R2 and Bland–Altman limits
of agreement (bias ± standard dev), presented in MPa (Bland
and Altman 1986).

3 Results

3.1 Experimental results

Consistent with previous findings, biologic laminates seeded
with MSCs accumulated abundant GAG and collagen
(Fig. 2a, b). Staining of both GAG and collagen was observed
throughout each lamella as well as along the boundary
between layers. This biologic interface was shown previ-
ously to be the operative structure in interlamellar shearing
of nanofibrous biologic laminates (Nerurkar et al. 2009). No
differences in staining were observed between transverse,
parallel, and opposing bilayers, indicating similar quantities
and localization of GAG and collagen between these three
orientations.

Tensile testing of biologic laminates revealed significant
increases in tensile modulus with culture duration for trans-
verse, parallel, and opposing bilayers (Fig. 2c). At 10 weeks,
opposing bilayers were significantly stiffer than parallel
bilayers, confirming the findings of our previous study (and
motivation for the present one) that interlamellar shearing
reinforces angle-ply biologic laminates.

3.2 Model results

Equations (14–17) were successfully fit to experimental data
for transverse bilayers at each time point to obtain the Neo-
Hookean material parameters μ and ν (Table 1; Fig. 3a, b).
A significant increase in the matrix modulus-like param-
eter μ was observed with culture duration, indicating an
increase in the isotropic response with extracellular matrix
deposition (Fig. 3a). Large sample-to-sample variations in
ν precluded any significant changes with culture duration
(Fig. 3b), although this parameter trended upwards with cul-
ture duration. Significant changes in both fiber parameters
were observed with culture duration (Fig. 3c, d). The fiber
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modulus-like term γ steadily declined (Fig. 3c), in contrast
to a pronounced increase in the fiber nonlinearity parameter
ξ (Fig. 3d). Additionally, while no significant changes were
observed in the interlamellar shearing modulus-like term κ

(Fig. 3e), the associated nonlinearity term δ increased by
fourfolds during the 10-week culture period (Fig. 3f).

At 10 weeks, the contribution of matrix, fiber, and inter-
lamellar interactions varied with strain for opposing bilayers
(Fig. 4). While at small strains the behavior was dominated
by matrix, with increasing strain the contribution of fibers
and interlamellar interactions increased. At 0.1 strain, stress
was accounted for primarily by interlamellar shearing (49%),

with additional stress contribution from the matrix (36%) and
fibers (14%) (Fig. 4).

3.3 Model simulations

Simulations were performed to interrogate the behavior of
the interlamellar interaction term. To understand first how
ply angle changes with uniaxial extension, the change in fiber
orientation, denoted by dot products of the unit vectors asso-
ciated with each population, was computed for a number of
ply angles as the laminate is extended along the x1 direction,
which bisects the angle between the two fiber populations.

Fig. 2 Alcian Blue (a) and Picrosirius Red (b) staining of opposing
bilayers after 10 weeks of culture demonstrates abundant deposition of
GAG and collagen, respectively, within the lamellae and at the lamellar
boundaries. No differences in staining were observed between trans-

verse, parallel, and opposing bilayers. L1, 2 Lamella 1, 2; IL interlamel-
lar matrix. Linear region modulus (c) increased with time for transverse,
parallel, and opposing bilayers. p ≤ 0.05 indicated by overbars (vs. 2,
4 weeks), + (vs. transverse) and # (vs. parallel). Scale 250μm

Table 1 R2 and
Bland–Altmann (BA) limits of
agreement for fits to transverse,
parallel, and opposing bilayers
at 2, 4 and 10 weeks of culture

R2 BA ( MPa)

2 4 10 2 4 10

Transverse 0.93 ± 0.05 0.93 ± 0.06 0.94 ± 0.03 0.002 ± 0.007 0.003 ± 0.013 0.002 ± 0.025

Parallel 0.99 ± 0.0 0.99 ± 0.0 0.98 ± 0.0 0.0011 ± 0.004 0.002 ± 0.007 0.015 ± 0.039

Opposing 0.98 ± 0.03 0.99 ± 0.005 0.98 ± 0.008 0.002 ± 0.009 0.004 ± 0.011 0.01 ± 0.033
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Fig. 3 Model fits to data from
transverse, parallel, and
opposing bilayers generated
matrix (a, b), fiber
(c, d), and interlamellar
interaction (e, f) parameter
values at each time point,
respectively. Over-bars indicate
p < 0.05

Fig. 4 Percent of total stress attributed to matrix (M, blue dashed line),
fibers (F, black dotted line), and interlamellar interactions (I, red solid
line) as a function of applied uniaxial strain E11. Values were computed
for opposing bilayers after 10 weeks of in vitro culture

The change in ply angle with uniaxial extension depended
on the undeformed ply angle (Fig. 5a). For instance, when
the two fiber populations are parallel to one another, or when
both fiber populations are parallel (0◦) or perpendicular (90◦)
to the direction of loading, there is no change in ply angle,
as there is no rotation of one fiber population relative to the
other. The degree of fiber reorientation, and therefore the
change in ply angle, is also dependent on the Poisson’s ratio
of the material (Fig. 5b). An increase in lateral contraction

under uniaxial load generated increased fiber rotation and
therefore greater changes in ply angle.

The strain energy due to interlamellar shearing as defined
by Eq. (11) was computed for a range of ply angles (Fig. 6a).
Values were normalized to the pre-multiplier κ for sim-
plicity. The strain energy is a constant zero for the case
where the fiber populations are parallel to one another at
0◦ and 90◦. Magnitude and slope of the strain energy den-
sity increased with ply angle up to 45◦, beyond which strain
energy decreased with increasing ply angle. Notably, strain
energy curves were not symmetric about the 45◦ ply angle;
complimentary angles do not produce identical curves.

Stress due to the interlamellar shearing term was com-
puted according to Eq. (17) (Fig. 6b); the stress was nor-
malized to κ. Shape of the stress–strain curve was strongly
influenced by the nonlinearity parameter δ. Because under
uniaxial extension, fibers oriented 30◦ from the loading axis
rotate progressively less with increasing strain, a competing
effect was observed between this kinematic measure and the
nonlinearity of the constitutive relation in which it appears.
Specifically, at δ = 1, the stress–strain curve demonstrated
decreasing slope with increasing strain, similar to the curve
in Fig. 5b. However, as δ is increased, the stress–strain curve
passes through a linear phase before becoming increasingly
nonlinear with an increasing slope. In this way, modulation
of δ dictates not only the degree of nonlinearity of the curve,
but its general shape as well.
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980 N. L. Nerurkar et al.

Fig. 5 The angle change between two fiber populations was chosen as
the kinematic measure to represent interlamellar shearing. This mea-
sure, represented by the difference between the dot products of the
deformed and undeformed fiber directions, varies with ply angle (a)
and in-plane Poisson’s ratio (b). E11 Lagrangian strain along the direc-
tion of applied strain. Each simulation assumes uniaxial extension along
the x1 direction, bisecting the angle between the two fiber populations.
Poisson’s ratio is 1.0 in (a); ply angle is 30◦ in (b)

Finally, using the average parameter values obtained from
fitting the experimental results, the stress–strain curves asso-
ciated with the interlamellar shearing term were computed
for a range of ply angles at each 2, 4, and 10 weeks. In each,
the stress and modulus (Fig. 7a–c) were strain dependent.
Importantly, the effect of interlamellar shearing was max-
imized in the range of ply angles near 45◦ (Fig. 7d). The
overall magnitude of interlamellar shearing-induced tensile
stress was highest at 10 weeks (Fig. 7c, d), indicating that
with increased matrix deposition the effects of interlamellar
shearing on tensile behavior were magnified.

4 Discussion

In the present work, a hyperelastic model was formulated and
applied to experimental data obtained from the mechanics of
engineered nanofibrous biologic laminates. As in previous

Fig. 6 For the interlamellar shearing interactions, strain energy is com-
puted as a function of applied uniaxial tensile strain for a range of fiber
ply angles (a). The first Piola–Kirchoff stress associated with interla-
mellar shearing interactions, tint (b) is shown for three values of non-
linearity parameter δ; ply angle = 30◦. The y-axes are normalized to the
modulus-like scalar κ

work, MSC-seeded biologic laminates accumulated consid-
erable GAG and collagen (Fig. 2a, b), two of the primary
ECM components of the annulus fibrosus. Concomitantly,
the tensile modulus of these laminates increased with culture
duration for each of the three orientations examined (Fig. 2c).
The model successfully characterized the role of interla-
mellar shearing and how this reinforcement mechanism is
progressively enhanced with extracellular matrix deposition
(Figs. 3, 7). The model fit the stress–strain curves of opposing
bilayers and produced nonzero values for the interlamellar
shearing parameters κ and δ (Fig. 3; Table 1), suggesting that
the particular form of the interaction term was able to charac-
terize this reinforcement. Moreover, the model resolved func-
tional growth of opposing bilayers through the time-varying
material parameters that independently describe changes in
matrix, fibers, and interlamellar shearing reinforcement with
extracellular matrix deposition (Fig. 3). Interestingly, var-
iability in the value of certain parameters, such as ν and
ξ , increased with culture duration (Fig. 3b, d). This may
reflect the experimental variability that accompanies extra-
cellular matrix deposition during in vitro growth of bilayers
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Fig. 7 Simulation of interlamellar shearing-induced tensile stresses at 2 (a), 4 (b), and 10 (c) weeks. Cross-sections from each contour are shown
for E11 = 0.1 (d)

(Nerurkar et al. 2009). Effectively, these material parameters
serve as functional metrics of growth, demonstrating quan-
titatively the physical mechanisms that underlie enhanced
tissue function.

Parameters describing the extrafibrillar matrix were
obtained from transverse bilayers and demonstrated a cul-
ture-dependent increase in isotropic behavior. The magnitude
of matrix parameters and how they changed with culture is
consistent with our prior work with single lamellar constructs
(Nerurkar et al. 2008), indicating that the tensile properties of
the disorganized interlamellar ECM are similar to the extra-
fibrillar matrix within lamellae. In previous work using aga-
rose hydrogel-nanofiber composites, we showed that even
relatively soft (∼kPa) interlamellar material can strongly
reinforce angle-ply biologic laminates in tension through
the interlamellar shearing mechanism (Nerurkar et al. 2009).
While aligned electrospun PCL scaffolds are structurally and
mechanically anisotropic, they are less so than many native
fiber-reinforced soft tissues, with anisotropy ratios (fiber :
transverse direction modulus) of approximately 10:1 for scaf-
folds (Nerurkar et al. 2007) compared to upward of 1,000:1
in the annulus fibrosus (Holzapfel et al. 2005). This explains
the relatively large contribution of matrix to the total stress
of constructs with a 30◦ ply angle (36%) when compared to
similar approximations in native annulus fibrosus (5–20%)
(Elliott and Setton 2001; O’Connell et al. 2009). Nonethe-
less, degradation of the PCL scaffold over a sufficiently large
time scale may result in anisotropy ratios that more closely
resemble native tissues.

Fiber parameters were obtained from parallel bilayers
where extension oblique to the unidirectionally aligned fibers
is resisted by a combination of matrix and fibers. While

the fiber nonlinearity parameter ξ increased by nearly five-
folds by 10 weeks of culture, the pre-multiplier γ decreased
(Fig. 3c, d). Together these observations suggest a poten-
tial reduction in stiffness at small strains that is offset by a
pronounced stiffening at larger strains. These fiber param-
eters describe the combined effect of PCL nanofibers and
cell-generated collagen, and so these changes may indicate a
progressive shift in load-bearing from the linear elastic PCL
to nonlinearly elastic collagen fibers. Predictions of the con-
tribution of fiber stretch to total stress under uniaxial tension
(∼10–15% for ϕ = +/−30◦, Fig. 4) are similar to estimates
generated previously for the native annulus fibrosus (20%)
(Elliott and Setton 2001).

The interlamellar interaction pre-multiplier κ was
unchanged throughout culture while the nonlinearity param-
eter δ increased significantly. In fact, by 10 weeks nearly 50%
of the total stress was contributed by interlamellar interac-
tions (Fig. 4), underscoring the importance of this mechanism
of reinforcement for biologic laminates. Such findings dem-
onstrate the utility of constitutive modeling for engineered
tissues, whereby it is possible to discern not only how ECM
deposition alters the bulk response of a tissue, but also how
the fundamental mechanisms by which loads are resisted are
altered in these evolving structures.

Simulations of stress due to interlamellar shearing indi-
cated that the extent of tensile reinforcement increases with
extracellular matrix deposition during culture and depends on
the angle-ply alignment of the bilayers, as well as the magni-
tude of applied strain (Fig. 7). The contribution of interlamel-
lar shearing is maximized in the range of +/−40◦ to +/−45◦;
this is similar to the anatomic range of ply angles found within
the native annulus fibrosus, +/−30–45◦ (Cassidy et al. 1989;
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Marchand and Ahmed 1990). Given this coincidence, it is
possible that interlamellar shearing plays an important role
in the ability of the native tissue to withstand tensile loads
in vivo. These findings may elucidate the ways in which the
annulus fibrosus is structurally optimized to withstand the
loading environment of the spine.

While it is possible to make inferences about the func-
tion of annulus fibrosus from the analysis of engineered bio-
logic laminates, the proposed model can be applied directly
to the annulus fibrosus as well. It has previously been dem-
onstrated that a simple ‘fiber plus matrix’ model is not capa-
ble of capturing the uniaxial tensile properties of the native
annulus fibrosus (Guerin and Elliott 2007; O’Connell et al.
2009). Other strain energies have been introduced to describe
the contribution of interconnections between parallel fibers
and interactions between the fibers and matrix (Guerin and
Elliott 2005, 2007; Guo et al. 2006; Wagner and Lotz 2004;
Wagner et al. 2006). However, these works were not intended
to account for the organization of collagen fiber populations
into discrete, alternating planes. We demonstrated here and
previously (Nerurkar et al. 2009) that this organization pro-
vides an important functional reinforcement mechanism for
resisting tensile stresses in engineered biologic laminates.
However, the present study does not discount the potential
importance of fiber–matrix interactions in the more complex
native annulus fibrosus, and a rigorous material definition
may require the incorporation of both terms. If such a model
can be successfully implemented to characterize annulus fi-
brosus function, it will serve as an important tool in the com-
parison of engineered and native tissue function and in the
quantification of changes in annulus function with degener-
ation.

While the present work advances the application of con-
stitutive models for the study of engineered and native fiber
reinforced tissues, there are certain limitations that will be
addressed in future work. The present model successfully
fit datasets in a tiered fitting approach and generated sin-
gle, repeatable values for each material parameter. How-
ever, the model has not been tested in a predictive capacity;
model-based predictions for the mechanical behavior of a
bilayer with ply angles untested in the present study could be
compared to experimentally measured stress–strain curves to
validate the model. This illustrates the value of engineered
tissues as a test-bed for constitutive model development, as
there is considerable flexibility in the construct design and
the associated type of data that can be generated for analy-
sis when compared to native tissue. The tiered curve fitting
approach used here and in many investigations of native tis-
sue mechanics (Guerin and Elliott 2005, 2007; Klisch and
Lotz 1999; O’Connell et al. 2009; Wagner and Lotz 2004) is
a powerful tool for the study of such tissues, as a single type
of test can be used to generate sufficient data to derive the
values of multiple material parameters. However, there are

also limitations to this approach that bear consideration. For
instance, it is typically assumed that in each of the different
orientations tested, the physical tissue components interact
in similar ways; matrix in a transverse test behaves the same
as it does in a test where fibers are also in tension. While
this appears a reasonable assumption, it is difficult to prove
directly. Second, properties to describe the bilayer come from
several different samples. A more rigorous material defini-
tion would require obtaining all six model parameters from a
single test on a single sample. This is unlikely for a uniaxial
tensile test, but may be possible for tests that generate more
information about the sample, such as biaxial tensile testing
or combined loading modalities (e.g. tension-shear) (Driscoll
et al. in press; O’Connell et al. 2007). The interlamellar shear-
ing model proposed here will be applied to biaxial tests of
annulus fibrous and engineered biologic laminates in future
work.

In the present study, a new hyperelastic model was pro-
posed for biologic laminates to account for and evaluate
the role of interlamellar shearing in reinforcing the tensile
response of these tissues. This approach is distinct from prior
models of the annulus, where it is typically assumed that
fibers are not in discrete alternating planes, an assumption
that does not account for interactions between these layers.
The model successfully characterized the evolving mechan-
ical function of engineered nanofibrous biologic laminates
and provides new insight into the reinforcing role of inter-
lamellar shearing and how it depends on ply angle, strain,
and culture duration. This work illustrates the value of tissue
engineering not only as a means to eventually replace dam-
aged tissues, but as a tool to instruct the understanding of
structure–function relations in native tissues, and as a test-
bed for the development of constitutive models to describe
them.
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Appendix A

A.1 Continuum modeling of fiber-reinforced soft tissues

Following the theory of strongly anisotropic solids outlined
by Spencer (Spencer 1972), the total strain energy of a mate-
rial can be decomposed into an isotropic response due to the
extra-fibrillar matrix and an anisotropic response resulting
from the fibers. The fibers are modeled as energetic penalties
along directions specified by unit vectors describing the fiber
orientations. Therefore, the composite strain energy function
(W ) is additively decomposed into:

W = Wm + W f (A1)
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where Wm and W f are strain energy density functions repre-
senting the matrix and fiber phases, respectively. The matrix
was assumed to be of a compressible, Neo-Hookean form:

Wm = μ

2β

(
I −β
3 − 1

)
+ μ

2
(I1 − 3) (A2)

where μ and υ = β
1+2 β

are the two scalar material parameters
that characterize the matrix mechanics.

The fiber strain energy used here is modified from our pre-
vious work to account for two fiber populations, but returns
to its prior form for ao = bo. Accounting for these features
and the need to capture the stress–strain nonlinearity typical
of collagenous tissues under tension, an exponential form of
fiber strain energy function that is widely used for the study
of annulus fibrosus was chosen (Eberline et al. 2001; Guerin
and Elliott 2007; O’Connell et al. 2009; Wagner et al. 2006):

W f =
∑

i=4,6

γi

2ξi

(
eξi(I ∗

i −1)
2 − 1

)
(A3)

I ∗
4/6 = I4/6 if I4/6 ≥ 1

1 if I4/6 < 1
(A4)

where γi and ξi are material parameters. By assuming that
the two fiber populations differ only in orientation, Eq. (A3)
simplifies with γi = γ and ξi = ξ ; these parameters are
associated with fiber modulus and nonlinearity, respectively
(Eberline et al. 2001; Fung 1982; Guerin and Elliott 2007;
Holzapfel 2000; O’Connell et al. 2009). The distinction
between I ∗

4/6 and I4/6 is made in order to restrict the contri-
bution of fibers to purely tensile stresses, a practice common
in the modeling of collagenous soft tissues (Ateshian 2007).

A.2 Hyperelastic model for interlamellar shearing of
biologic laminates

The interlamellar shearing term is based on the kinematic
variable of change in angle between two vectors as a mate-
rial deforms. Accordingly, objectivity of such a strain energy
function can be demonstrated by defining a second material
frame A∗ related to the original frame A by a rotation Q,
such that the fiber orientations are defined in A∗ by

a∗ = Qa
b∗ = Qb

(A5)

Frame indifference is then demonstrated by substitution of
a∗ and b∗ into (8):

Wint = Wint(a∗ · b∗ − a∗
o · b∗

o) = Wint(Qa · Qb − Qao · Qbo)

Wint = (a · (QT Q)b − ao · (QT Q)bo)

Wint = (a · b − ao · bo)

(A6)

making use of the orthogonality of the tensor Q, which
requires that QTQ = QQT = I, the identity tensor.

The kinematic measure given in Eq. (9) can be rewritten
in terms of strain invariants (Spencer 1972):

a · b − ao · bo =
(

Fao

|Fao|
)

·
(

Fbo

|Fbo|
)

− ao · bo (A7.1)
(

Fao

|Fao|
)

·
(

Fbo

|Fbo|
)

=
(

ao · FT Fbo

(ao · FT Fao)1/2(bo · FT Fbo)1/2

)
(A7.2)

(
ao · FT Fbo

(ao · FT Fao)1/2(bo · FT Fbo)1/2

)

=
(

ao · Cbo

(ao · Cao)1/2(bo · Cbo)1/2

)
(A7.3)

(
ao · Cbo

(ao · Cao)1/2(bo · Cbo)1/2

)
= I8

(I4 I6)1/2 (A7.4)

This final expression in terms of I4, I6, and I8 is the deforma-
tional input for the interaction strain energy Wint in Eq. (10).
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