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Abstract This paper presents a three-dimensional finite
element model of skeletal muscle and its validation incor-
porating inital tissue strains. A constitutive relation was
determined by using a convex free strain energy function
(SEF) where active and passive response contributions were
obtained fitting experimental data from the rat tibialis anterior
(TA) muscle. The passive and active finite strains response
was modelled within the framework of continuum mechanics
by a quasi-incompressible transversely isotropic material for-
mulation. Magnetic resonance images (MRI) were obtained
to reconstruct the external geometry of the TA. This geometry
includes initial strains also taken into account in the numer-
ical model. The numerical results show excellent agreement
with the experimental results when comparing reaction force-
extension curves both in passive and active tests. The pro-
posed constitutive model for the muscle is implemented in a
subroutine in the commercial finite element software pack-
age ABAQUS.
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1 Introduction

Skeletal muscle is a biological soft tissue whose main task
is body motion. Apart from thinking, every human activ-
ity requires a movement, or at least a muscle contraction
(MacIntosh et al. 2006). For this reason, muscles are as
diverse as the movements they perform.

In spite of shape and function differences, skeletal muscle
can be considered as a network of muscle fibres (contrac-
tile element) surrounded, at different levels, by connective
tissue (elastic element) that passively resists muscle stretch-
ing. It is well known that muscle fibres also contribute to
passive behaviour (series elastic element) (Hill 1938; Magid
and Law 1985). Connective tissue consists of collagen and
elastin fibres embedded in an amorphous ground substance
organized in three anatomical parts: the epimysium, perimy-
sium and endomysium (Borg and Caulfield 1980). All these
parts play an important role in the lateral transmission of the
force produced within muscle fibres (Arruda et al. 2007) and
also for blood and nervs supply.

Advances in numerical methods, medical imaging and
experimental testing of biological tissues now allow the
assessment of three-dimensional (3D) models for evaluating
strain and stress fields within living tissues. FE models that
include 3D geometric representations of muscles coupled
with mathematical descriptions of their complex material
behaviour have been widely developed by various research-
ers (Blemker and Delp 2005; Fernandez and Hunter 2005).
For obtaining these numerical models, some simplifications
of the physical problem have to be taken into account. Usu-
ally, mechanical properties for the input material parameters
are based on “in vitro” measurements (Martins et al. 1998),
stimations (Oomens et al. 2003) or adapted from cardiac mus-
cle (Fernandez et al. 2005). Sometimes external geometry
is obtained from idealized muscles (Johansson et al. 2000;
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Fig. 1 Picrosirius red staining
for TA collagen I (a)
Longitudinal section (b)
Transversal section

Yucesoy et al. 2002; Tsui et al. 2004; Böl and Reese 2008;
Chi et al. 2010) or based on real muscles with simplifica-
tions (Oomens et al. 2003; Blemker et al. 2005). Given this
situation, extra efforts are necessary in these cases to ensure
that the finite element model is reliable. The predicted solu-
tion should be correctly interpreted and validated before it is
considered to have any clinical value.

This work presents the development of a validated 3D FE
model of the rat TA muscle capable of simulating contrac-
tions in healthy conditions, including experimentally fitted
constitutive models for muscle and tendon tissue, an accu-
rate geometry and appropiate experimental procedures to be
validated. We have created in this way a 3D finite element
mesh of the TA based on MR images. To define constitutive
material laws, the formulations proposed in previous works
for passive behaviour (Calvo et al. 2010) and active behav-
iour (Ramírez et al. 2010) have been implemented into the
commercial FE software ABAQUS (Hibbit et al. 2006). Fur-
thermore, because MR images were obtained “in vivo”, the
model incorporates initial tissue strains. This fact is reflected
in the laboratory when tissue is released showing a significant
change in external geometry (Gardiner et al. 2001). Due to
the non-linear behaviour of this kind of tissue, an erroneous
inclusion of the initial strain state in computational models
can lead to serious errors (Peña et al. 2006).

We describe the validation of this model simulating a con-
trolled passive stretch of the whole muscle-tendon unit “in
vivo”. Moreover, the active contribution for muscle contrac-
tion was validated again from “in vivo” experimental tests,
in this case, of isometric contraction.

2 Model formulation

From a mechanical point of view, muscles can be consid-
ered as composite materials made of long cells (muscular
fibres) surrounded by connective tissue i. e., collagen and
elastin fibres embedded in an amorphous ground substance
(MacIntosh et al. 2006). The preferential direction defined
by the family of collagen fibres is supposed to be aligned in

the direction of muscle fibres for fusiform-shaped muscles
(Martins et al. 1998; Blemker and Delp 2005; Tang et al.
2009). As can be seen in Fig. 1, collagen type I, which trans-
mits the main part of passive muscle force (Arruda et al.
2007), surrounds muscle fibres, and lies in the same way,
longitudinally. For tendon tissue, the same reasoning for
its behaviour, related mainly to connective tissue, can be
assumed.

Skeletal muscle and tendon are supposed to be hyperelas-
tic and transversely isotropic under finite strains (Weiss et al.
1996; Martins et al. 1998; Oomens et al. 2003; d’Aulignac
et al. 2005; Calvo et al. 2010). Under this assumption,
the constitutive strain energy function for these materials
depends on the direction of the family of fibres (collagen
and muscular) at a point X that is defined by the unit vector
field m0. The stretch λ, defined as the ratio between the length
of the fibre in the deformed and reference configurations, can
be expressed as λ2 = m0 · Cm0 = I4 with C being the right
Cauchy-Green strain measure C = FTF, being F the defor-
mation gradient F = ∂x

∂X with x, X the coordinates of each
point in the current and initial configurations respectively.

Due to the well-known difficulties involved in dis-
placement-based finite elements in the analysis of nearly
incompressible materials (Holzapfel 2000), we postulated a
multiplicative decomposition of F = J 1/3F̄ and C = J 2/3C̄
into volume-changing (dilational) and volume-preserving
(distortional) parts, with J = detF. To characterize isother-
mal processes, we postulate the existence of a unique decou-
pled representation of the SEF � that could be expressed as:

� = �vol(J ) + �̄p( Ī1, Ī2, Ī4) + �̄a(σ0, λ̄, fr , t) (1)

where �vol = 1/D(J − 1)2, �̄p and �̄a are the strain
energy densities associated with the volumetric, passive and
active responses, respectively. These last two functions are
described below.

(a) Passive behaviour.
The SEF for the passive contribution of TA muscle was
proposed in a previous work (Calvo et al. 2010) based
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Table 1 Material model parameters for muscle and tendon passive behaviour

c1 c3 c4 c5 c6 c7 Ī40 Ī4ref

Musclemean curve 0.001 0.053915 0.782802 5.742780 −9.035709 −4.875961 1.254400 3.189796

Musclemean parameters 0.008837 0.009877 2.237879 3.063670 −4.759628 −2.763531 1.256385 2.472600

Tendonmean curve 0.01 0.054292 6.860021 57.738461 −66.243575 −57.078409 1.0 1.44

Tendonmean parameters 0.0810 0.045038 7.570983 58.007323 −66.682665 −57.328411 1.0 1.445060

Constant values in MPa (Calvo et al. 2010)

on “in vitro” uniaxial experimental tests and takes the
form:

�̄p = c1( Ī1 − 3) + �̄ f

�̄ f = 0 Ī4 < Ī40

�̄ f = c3

c4
(expc4( Ī4− Ī40 ) −c4( Ī4 − Ī40) − 1)

Ī4 > Ī40 and Ī4 < Ī4ref

�̄ f = c5

√
Ī4 + 1

2
c6 ln( Ī4) + c7 Ī4 > Ī4ref

(2)

where Ī1 represents the first modified invariant of the
modified right Cauchy-Green strain tensor, Ī4 > Ī40

characterizes the mechanical response on the collagen
fibre direction and Ī4ref characterizes the stretch at which
collagen fibres start to be straightened. c1 > 0, c3 > 0,
c5 > 0 and c6 < 0 are stress-like parameters, c4 > 0
is a dimensionless parameter and c7 is a strain energy
parameter. Table 1 shows values of these paremeters for
the muscle-tendon unit.

(b) Active behaviour.
The SEF, �̄a , in Eq. (1) allows us to incorporate the
active mechanical response of the tissue and takes the
form (Ramírez et al. 2010):

�̄a = σ0η(λ̄)γ ( fr , t) (3)

where σ0 is the maximum tensile stress generated by
the muscle, the function η(λ̄) represents the effective
overlap between the filaments in the contractile element
taking values between 0 and 1 and γ ( fr , t) is the activa-
tion function. As mentioned previously, the model was
validated by means of isometric tests, so �̄a does not
depend on stretch velocity.
Several expressions have been proposed by different
authors for η(λ̄) (Blemker et al. 2005; Böl and Reese
2008). In this work, a sigmoid function that presents a
good fit to experimental data is proposed:

η(λ̄) = e
−(λ̄−λopt )

2

2(1−β)2 (4)

Table 2 Material model parameters for muscle active behaviour
(Ramírez et al. 2010)

σ0 ( MPa) λopt β T ′ (s) P ′ (N) ti (s) r c

0.8 1 0.83616 0.04 0.11 0.01667 1.0535 1.1245

λopt is the optimum muscle stretch, λ̄ is the actual stretch
and β corresponds to the curvature of the sigmoid
function.
The activation function γ ( fr , t) proposed is:

γ ( fr , t) =
n∑

i=1

[(
1 − re( fr T ′)/c

) (
P ′ t − ti

T ′ e1−(
t−ti
T ′ )

)]

(5)

where T ′ is the apparent contraction time for all muscle
generated by a pulse of the excitation signal and P ′ is the
apparent amplitude force generated, ti is the time inter-
val between stimuli, that is 1/ fr , r determines the ratio
of twitch and tetanus stress, c is the rate of increase in
force with increasing frequency and n is the number of
stimulation pulses. Table 2 shows all these parameters,
obtained from “in vivo” experimental tests (Ramírez
et al. 2010).

With the SEF, the constitutive equation for compressible
hyperelastic materials can be defined from the Clausius-
Planck inequality as:

S = ∂�

∂C
= ∂�vol(J )

∂C
+ ∂�̄p(C̄)

∂C
+ ∂�̄a(C̄)

∂C
= Svol + S̄p + S̄a (6)

The associated decoupled elasticity tensor may be written
as:

C = Cvol + C̄p + C̄a = 2
∂Svol

∂C
+ 2

∂S̄p

∂C
+ 2

∂S̄a

∂C
(7)

The true Cauchy stress tensor σ and the elasticity tensor in
the spatial description C were obtained in a standard manner
for compressible hyperelastic materials, see eg. Weiss et al.
(1996) or Holzapfel (2000) as 1/J times the pushforward of
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Fig. 2 Evaluation of initial
strains by cutting distal
insertion: a reference
configuration, b during the
cutting, c stress-free
configuration

S̄ or c, respectively:

σ = J−1χ∗(S) C = J−1χ∗(C) (8)

This constitutive model was implemented in the commer-
cial FE code ABAQUS v.6.9 (Hibbit et al. 2006) through a
Fortran UMAT user subroutine.

2.1 Initial strain

Biological soft tissues are usually exposed to a complex dis-
tribution of “in vivo” initial strains. This state is a conse-
quence of the continuous growth, remodelling, damage and
viscoplastic strains that these living materials suffer through-
out their whole lives. Initial strains can be relieved by selec-
tive cutting of the living tissue and removal of its internal
constraints (see Fig. 2).

In order to describe the current deformation state, we fol-
lowed the methodology proposed by Gardiner and Weiss
(2003) to enforce initial strains in hyperelastic soft tissues.
Three different configurations were defined: (a) the stress-
free state (	sf ), (b) the reference state in which the material is
only under the initial strain (	0) and (c) the current deformed
state (	). It was assumed that the total deformation gradient
tensor corresponding to the current state F admits a multi-

plicative decomposition F = Fr F0, where, F0 represents the
deformation gradient corresponding to the initial strains and
Fr is the deformation gradient that results from applying the
external loads to this initial configuration 	0.

As F0 is difficult to determine from experiments, we
assume that F0 corresponds to an axial stretch λ0 along the
fibre direction m0 in the reference state 	0 (Gardiner and
Weiss 2003). In a coordinate system (∗) where the muscle
fibre direction m0 is aligned with the X1 axis, F0 can be
written as:

[
F∗

0

] =
⎡
⎢⎣

λ0 0 0
0 1√

λ0
0

0 0 1√
λ0

⎤
⎥⎦ (9)

and transformed to the global system:

F0 = RF∗
0 (10)

with R being the rotation tensor taken from this local system
and applied to the global one (Peña et al. 2006).

The total stresses corresponding to the current state σ r are
obtained in the standard form using the SEF �	sf through Fr .
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Fig. 3 Generation of “in vivo”
MR image of a female Wistar
adults rat

Fig. 4 MR images of the rat leg and segmentation

σ r = 2

Jr
χ∗r

[
∂�	sf (C)

∂C

]

= 2

Jr
F−1

r

[
∂�	sf (C)

∂C

∣∣∣∣
C=Cr

]
F−T

r (11)

with Jr = J0 J .

3 Finite element model of tibial anterior

We reconstructed the surface geometry of the tibialis ante-
rior muscle from MR images of a female Wistar adult rat
with a body mass of 215 ± 15 g. MR images were obtained
with a Bruker BioSpin of 7 T. Rats were anaesthetised with
an intraperitoneal injection of pentobarbital sodium solution
(30 mg/kg). The experiment was approved by the Autono-
ma University of Barcelona Ethics Committee for the use of
animals in experimentation.

Images were taken from the distal femoralis condilus to
metatarsian. The rat was placed in a supine position with the
right hind limb extended as can be observed in Fig. 3. Thirty
scans (512 × 512 pixels) along muscle length were obtained
with a resolution of 0.06 mm/pixel.

The axial images were used to achieve a detailed recon-
struction of the TA muscle anatomy (see Fig. 4). On each
image, we manually outlined the boundary of the muscle
of interest and a three-dimensional polygonal surface model

was generated from the set of two-dimensional outlines using
Mimics software (Materialise 2010).

We created solid hexahedral meshes of the muscle and
tendon from the surface model using the finite element mesh
generator ABAQUS (Hibbit et al. 2006). Figure 5a shows the
three-dimensional finite element model of the tibialis ante-
rior muscle. We also generated two representation of the fibre
geometry: in the first case, the fibres were defined in the
longitudinal direction (z axis) and in the second case, the
fibres followed the outline of fusiform muscle geometry (see
Fig. 5b).

It is important to note that the MR images correspond to
TA muscle obtained “in vivo”, that is, in the physiological
configuration. For this reason, the muscle tissue is subjected
to an initial strain state, F0 that must be taken into account
in the numerical model. Moreover, the fascia layer has not
been considered in the model because it was removed in all
the experimental tests to isolate the muscle tissue correctly.

4 Results

In this section, some key results are presented to validate
the numerical model. The results are grouped into three sec-
tions. First, the effect of initial strains is included in the mesh.
Second, uniaxial passive tensile tests of the whole muscle-
tendon unit are presented and compared with the numerical
simulation. Finally, the validation of the active behaviour
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Fig. 5 Finite element model of
the reference configuration (	0)

and fibre orientation of the rat
tibialis anterior muscle

Fig. 6 Initial strains. a After cutting off the distal tendon, the muscle shortens as can be observed in the superimposed images. b Finite element
simulation of this effect, stress-free state in the red mesh (	sf ) and reference state in the green mesh (	0)

is presented showing both experimental and numerical
techniques.

4.1 Initial strains model validation

A experimental value of λ0 = 1.2035 was obtained by mea-
suring the shortening (4.54±1.325 mm) of a point located in
the muscle distal end along the longitudinal direction of 9 TA
muscles (Ramírez et al. 2010). This effect can be observed
in the superimposed image of the real muscle in Fig. 6a.
When the tendon is cut, the muscle-tendon unit suffers a great
change in its geometry to achieve a stress-free configuration.

Initial strains were numerically implemented in terms of
a initial deformation gradient assuming a uniform distribu-
tion in the whole muscle. In this way, the shortening in the
fibre direction was used to determine the initial deformation
gradient (Eq. 9).

Figure 6b represents the external geometry variation of
the finite element mesh under these initial strain effects.
The constraint of the distal nodes is removed after applying
the deformation gradient F0 (Eq. 10) simulating the cut-off
tendon.

4.2 Passive behaviour validation

The finite element mesh of the TA muscle was subjected to
immobilisation for all degrees of freedom in the proximal
region nodes and to an imposed displacement of 10 mm in
the distal region (nodes at the end of the tendon). This config-
uration corresponds to the tensile test of the whole muscle-
tendon unit described by Calvo et al. (2010). Experimental
tensile tests were performed with the distal tendon cut-off, so
the numerical simulation starts in the stress-free configura-
tion (	sf ). The experimental set-up and the numerical simu-
lation are presented in Fig. 7. In this figure, the same external
configuration of the stretched muscle can be observed both
in the experimental test and the numerical model.

Figure 8 represents the mean load-displacement relation
(MTR-mean) obtained in the experimental test. In this fig-
ure, the results of four different numerical simulations are
shown. These simulations have been performed using differ-
ent constitutive parameters of the material model behaviour
and fibre orientation. The first simulation (Numerical 1) was
performed considering muscle and tendon material model
parameters as the mean of those of various experimental tests
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Fig. 7 Imposition of boundary
conditions: a experimental test,
b displacement solution
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Fig. 8 Experimental mean tensile test result versus numerical simu-
lations. MTR-mean: Mean relation obtained from experimental test.
Numerical 1: Muscle and Tendon material parameters obtained from
Table 1 (Musclemean parameters and Tendonmean parameters) fibres ori-
ented in the same longitudinal direction. Numerical 2: Muscle and
Tendon material parameters obtained from Table 1 (Musclemean curve
and Tendonmean curve) fibres oriented in the same longitudinal direc-
tion. Numerical 3: Same material parameters as Numerical 1, fibres ori-
ented following fusiform muscle geometry. Numerical 4: Same material
parameters as Numerical 2, fibres oriented following fusiform muscle
geometry

(Musclemean parameters and Tendonmean parameters in Table 1).
In this model, only one longitudinal direction is defined
for fibres along the muscle length. The second numerical
result (Numerical 2) considered material parameters esti-
mated from a curve being an average of the experimental
curves (Musclemean curve and Tendonmean curve in Table 1).
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Fig. 9 Experimental force-length relation for a pulse train frequency
of 60 Hz

The same orientation was considered for muscle and tendon
fibres. Simulations three and four (Numerical 3 and Numer-
ical 4) used the same material characteristics as the previous
simulations but the fibre orientation was different. In this
model, the fibres for both muscle and tendon were oriented
following the outline of fusiform muscle geometry.

4.3 Active behaviour validation

Figure 9 represents the mean and standard deviation of the
force length relationship for TA active force obtained from
“in vivo” experimental tests (n = 6) (Ramírez et al. 2010).
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Fig. 10 a Initial configuration of muscle and longitudinal displace-
ment field under isometric tenanic contraction. b Numerical muscle
reaction force and experimental active force

As can be observed, the muscle applied its maximum force
(6.85 N) at the optimal length (λ = 1).

In Fig. 10a, the undeformed geometry of the muscle is
presented together with the deformed shape under isomet-
ric contraction. In this configuration, the displacement field
along the longitudinal direction is plotted. Figure 10b repre-
sents the reaction force at the end of the mesh during simu-
lation time. In this figure, the force registered by the testing
machine to maintain a constant muscle length during con-
traction is also represented.

5 Conclusions

In this work, we have developed and validated a three-
dimensional finite element model of mammalian skeletal
muscle. This numerical model is capable of simulating tissue
behaviour in healthy conditions incorporating both passive
and active isometric contractions.

Most numerical models in the literature for skeletal muscle
simulation reconstruct the geometry of specific muscle from
cadavers (d’Aulignac et al. 2005; Böl and Reese 2008) or

use idealized muscle geometry (Tsui et al. 2004; Blemker
et al. 2005; Böl and Reese 2008; Tang et al. 2009). Conclu-
sions from these studies depend on accurate representation of
muscle architecture and geometry (Blemker and Delp 2005)
to enhance the accuracy of musculoskeletal system models
for medical applications. In this context, our model provides
a real reconstruction from MR images of the rat TA muscle.
This muscle has been previously modelled but under an ide-
alized projection of the mid-sagittal plane (Oomens et al.
2003).

In order to obtain mechanical properties of this tissue, it
is necessary to perform experimental studies. Such testing
is not practical in humans and can be achieved more easily
through the use of an animal model. “In vivo” methodologies
have been developed to test active behaviour of experimental
animals such as rabbits (Davis et al. 2003; Grover et al. 2007)
and for rats in different hind limb muscles (Hawkins and Bey
1997; Huijing et al. 1998; Monti et al. 2003). The results from
these tests are similar to those of the author’s previous works
(Calvo et al. 2010; Ramírez et al. 2010) but they were not
performed for related numerical simulation studies.

The passive model proposed in this work presents results
that are in good agreement with experimental passive behav-
iour of the muscle-tendon unit. The force displacement
curves from experimental tests and from numerical simu-
lations exhibit the same trend. From these curves, it can be
observed that when fibres are oriented following fusiform
muscle geometry, the hyperelastic model fits better the exper-
imental curve for large displacements. This has been previ-
ously pointed out by Tang et al. (2009) in their analysis of
stress fields inside an idealized frog gastrocenemius muscle,
in which they concluded that it is necessary to consider fibre
orientation when modelling these type of muscles.

The numerical model considers initial strains that, as far
as the authors know, have never been considered in this way
for muscle tissue. As previously mentioned, to enhance the
accuracy of models obtained by MRI, this consideration is
very important. The shortening of the muscle model due to
its initial strains has been validated with experimental obser-
vations. It is important to note that the principal limitation
of this model is the fact that a uniform deformation gradient
has been considered. Finite element simulations subjecting
the mesh nodes to imposed displacement, validated with a
carefully image analysis of the muscle in the different con-
figurations (initial and current), could improve this limitation.

The deformed model geometry under isometric contrac-
tion agrees well with the experimental observation of the rat
TA muscle. Force generated by the muscle “in vivo” is also
reproduced by the numerical model obtaining the same aver-
age value of active force. The limitations of the model are
the consideration of the same type of muscular fibres in the
whole muscle and that all fibres contract isometrically. The
latter implies that fixing muscle ends does not guarantee that
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fibres inside the muscle belly are under isometric conditions.
This is a consequence of a series of elastic component elon-
gations leading to shortening and re-lengthening of active
muscle components. The main difference is observed in the
load decreasing during tetanus in the experimental curve.
This effect, studied in detail by Ramírez et al. (2010) and
also observed by others (Hawkins and Bey 1997), was not
considered in this work.
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