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Abstract Recent advances in computational modeling of
vascular adaptations and the need for their extension to
patient-specific modeling have introduced new challenges
to the path toward abdominal aortic aneurysm modeling.
First, the fundamental assumption in adaptation models,
namely the existence of vascular homeostasis in normal ves-
sels, is not easy to implement in a vessel model built from
medical images. Second, subjecting the vessel wall model
to the normal pressure often makes the configuration deviate
from the original geometry obtained from medical images.
To address those technical challenges, in this work, we pro-
pose a two-step optimization approach; first, we estimate
constitutive parameters of a healthy human aorta intrinsic
to the material by using biaxial test data and a weighted non-
linear least-squares parameter estimation method; second,
we estimate the distributions of wall thickness and anisot-
ropy using a 2-D parameterization of the vessel wall sur-
face and a global approximation scheme integrated within
an optimization routine. A direct search method is imple-
mented to solve the optimization problem. The numerical
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optimization method results in a considerable improvement
in both satisfying homeostatic condition and minimizing the
deviation of geometry from the original shape based on in
vivo images. Finally, the utility of the proposed technique for
patient-specific modeling is demonstrated in a simulation of
an abdominal aortic aneurysm enlargement.
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1 Introduction

Abdominal aortic aneurysm (AAA) affects 2 million people
in the US alone, and ruptured AAA is one of the leading
causes of death. As the population of elderly people grows,
the social and economic burden that AAA imposes on the
health care system will increase. In order to reduce this
public health burden, there are crucial needs for advanced
technologies that can provide AAA patients with early detec-
tion, patient-specific risk assessment, and safe clinical inter-
ventions. Recent advances in medical image-based stress
analysis of AAAs and computational simulation of vascular
adaptation show a great potential for computational biome-
chanics to help develop such technologies.

Finite element (FE) analysis based on 3-D computer
tomography and nonlinear constitutive models of the vessel
enable researchers to estimate wall stress more accurately
(Dorfmann et al. 2010; Fillinger et al. 2002; Raghavan et al.
2000; Rissland et al. 2009; Speelman et al. 2007) and, hence,
lead to a better prediction of rupture risk than the maximum
diameter criterion. However, the rupture potential depends
not only on the stress but also on the strength (Vorp and
Vande Geest 2005). Estimation of the stress alone may not
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provide a reliable estimation of rupture potential. Further-
more, a classical FE analysis yields the stress distribution
only for a fixed AAA geometry and does not model the time
evolution of AAA.

On the other hand, computational modeling of vascu-
lar growth and remodeling (G&R), as an emerging area
in biomechanics, provides a computational tool to model
the time evolution of vascular diseases and to test mul-
tiple hypotheses generated from experimental and clini-
cal studies. For the past decade, several researchers have
developed computational models of vascular adaptation
during the progression of vascular diseases (Baek et al.
2006, 2007; Figueroa et al. 2009; Kroon and Holzapfel
2009; Watton and Hill 2009). Many of these models have
been built upon the theoretical framework of modeling tis-
sue G&R presented by Humphrey and Rajagopal (2002).
They introduced a constrained mixture approach focusing
on stress-mediated mass production and removal in evolv-
ing stressed configurations. They also offered key remarks
that are central to guiding the later development of the-
ories of soft tissue G&R. One of the key remarks is
that:

Normal growth and remodeling tends to be a stable
dynamical process, one that seeks to optimize structure
and function with respect to yet unidentified parame-
ters. In comparison to processes during development,
there appear to be genetic and perhaps epigenetic
constraints on this optimization process during matu-
rity.

Furthermore, they emphasized a pressing need to identify
both a set of optimization parameters and the associated
constraints. Most of the previous computational simulations
of vascular adaptation, however, have been developed using
idealized geometries for which the identification of homoge-
neous parameters does not pose a problem. Our recent work
suggested that implementing the image-based arterial G&R
models based on constrained mixture approach requires an
optimization technique to furnish the blood vessel with an
optimal structure in normal G&R (Zeinali-Davarani et al.
2010).

In the present study, we address two technical challenges
associated with patient-specific modeling of AAA evolution
and propose possible solutions. First, as stated earlier, the-
ory of G&R is based on a key assumption, the existence
of mechanical homeostasis (Humphrey 2008; Kassab 2008),
whereas it is difficult to prescribe the in vivo parameters such
that the assumption of a homeostatic state is satisfied at every
point in the vessel wall model. For an idealized model, where
the blood vessel is assumed to be an ideal thin hollow cylin-
der, the in vivo material properties are typically assumed to
be uniform over the domain. When a medical image-based
geometric model is used, however, it is not a trivial task to

prescribe the distribution of material and structural parame-
ters such as thickness and fiber orientations.

Second, another difficulty associated with using an image-
based model stems from the fact that the in vivo image is
obtained under the pressure and the stress-free configura-
tion is not available. Hence, it is difficult to maintain the
original patient-specific model in a computational simula-
tion under the in vivo pressure. Inverse elastostatic methods
have been pursued to estimate the stress-free state from a
pre-deformed in vivo geometry (Lu et al. 2008; Zhou et al.
2010). Others have used a Lagrangian–Eulerian formulation
or prescribed numerically estimated material parameters to
obtain the meaningful prestressed state (Gee et al. 2009,
2010; Zeinali-Davarani et al. 2010).

In this work, we develop an inverse optimization method
to estimate in vivo material parameters for a human aorta
using a two-step process. First, we estimate the constitutive
parameters intrinsic to the material by fitting the ex vivo biax-
ial mechanical test data of a healthy human aorta. Second, we
solve an optimization problem to estimate the distributions of
the wall thickness and anisotropy such that the homeostasis
is maintained, while the geometry deviates minimally from
the in vivo configuration. Eventually, in order to illustrate
the utility of the proposed method in computational G&R
simulations, the estimated material parameters as well as the
distributions of wall thickness and anisotropy are prescribed
and an AAA is simulated by introducing spatial elastin deg-
radation to the vessel wall model.

2 Method

2.1 Estimation of material constitutive parameters

As the first step, we estimate the constitutive parameters by
fitting biaxial mechanical test data of a healthy human aorta
(Vande Geest et al. 2004, 2006). Here, we briefly explain the
kinematics and constitutive relations.

Figure 1 shows a schematic drawing for the kinematics
of deformation related to a biaxial test of a healthy aorta.
The in vivo configuration of a healthy aorta is assumed
to be the prestressed reference configuration κR , whereas
κI represents the intermediate configuration of the square-
cut sample under the traction-free condition. The defor-
mation gradient FR corresponds to the mapping from κR

to κI . It is assumed that there is no active tone presented
during the biaxial test. The deformation gradient FI corre-
sponds to the mapping from κI to the deformed configuration
during the biaxial test, resulting in F = FI FR . Assuming
incompressibility in an ideal geometry,

FR = diag

{
F R

1 , F R
2 ,

1

F R
1 F R

2

}
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Fig. 1 Kinematics of the deformation associated with biaxial mechan-
ical test and the corresponding deformation gradients. λ1 and λ2 are
stretches in circumferential and axial directions during the biaxial test

FI = diag

{
λ1, λ2,

1

λ1λ2

}
, (1)

where F R
1 , F R

2 < 1.0 and λ1, λ2 > 1.0.
The arterial wall is assumed to be a mixture of constit-

uents ‘i’ such as elastin (i = e), multiple collagen fam-
ilies (i = 1, . . . , k, . . . , 4), and smooth muscle (i = m).
The strain energy of the mixture per unit reference area is
w = ∑

i w
i = we + ∑

k w
k + wm + wm

act , and the mem-
brane stress is given as (Baek et al. 2006; Humphrey 2002)

T = 2

J
F
∂w

∂C
FT , (2)

where J is a determinant of the 2-D deformation gradient F
and C = FT F. The stretches of the smooth muscle (SM) and
collagen fiber ‘k’ from their natural (stress-free) configura-
tion to the current configuration are given as

λk
n = Gc

hλ
k (3)

λm
n = Gm

h λ1, (4)

where Gm
h and Gc

h are homeostatic stretches of SM and col-
lagen. We define a new tensor

G̃e = diag

{
Ge

1,Ge
2,

1

Ge
1Ge

2

}
, (5)

which represents a mapping from the natural configuration
of elastin to the reference configuration such that,

Fe
n = FG̃e, Ce

n = Fe
n

T Fe
n =

[
G̃e

]T
CG̃e. (6)

Strain energies of the constituents i per unit reference area,
wi , are given as

we (
Ce

n(t)
) = Me c1

2

(
Ce

n[11] + Ce
n[22]

+ 1

Ce
n[11]Ce

n[22] − Ce
n[12]

2 − 3

)
(7)

wk
(
λk

n

)
= Mk c2

4c3

{
exp

[
c3

((
λk

n

)2 − 1

)2
]

− 1

}
(8)

wm (
λm

n

) = Mm c4

4c5

{
exp

[
c5

((
λm

n

)2 − 1
)2

]
− 1

}
(9)

wm
act = Mm S

ρ

{
λ1 + 1

3

(λM − λ1)
3

(λM − λo)
2

}
, (10)

where Mi is the mass per unit reference area for the constit-
uent i . Ce

n[11],Ce
n[22] and Ce

n[12] are components of Ce
n . λM

and λo are stretches at which the SM contraction is maximum
and at which active force generation ceases, S is the stress at
the maximum contraction of SM.

Components of FR are obtained by considering stress as a
function of deformation gradient, i.e. T = T̂(F), and assum-
ing that membrane stresses vanish at
F = FR such that

T̂
(

FR
)

= 0. (11)

Based on literature, we prescribe some of the parameters
as following (He and Roach 1994; Holzapfel et al. 2002;
Menashi et al. 1987; Zeinali-Davarani et al. 2010):

νe = 0.2, νm = 0.2,

νk = [0.1, 0.1, 0.4, 0.4](1 − νe − νm), (12)

αk = [0◦, 90◦, 45◦, 135◦],
where νi is the mass fraction of the constituent i for the
normal artery and αk is the orientation of the kth col-
lagen fiber family. Collagen fibers are significantly less
stiff under compression, and we assume a different value
of c(comp)

2 in compression. Parameters [c1, c2, c3, c4, c5,

Ge
1,Ge

2,Gc
h,Gm

h ] and c(comp)
2 are assumed to be unknown

and to be estimated by the parameter estimation.
Best-fit parameters are estimated using the weighted non-

linear least-squares method described by Zeinali-Davarani et
al. (2009). Figure 2 shows the biaxial test data of a healthy
human aorta (Vande Geest et al. 2004, 2006) as well as the fit-
ted values using the estimated parameters. The best-fit values
of the estimated parameters are given in Table 1.

Although the existence of mechanical homeostasis in vas-
culature is generally accepted, the theoretical formulation
that describes vascular adaptations in response to diverse
stimuli is not completely established yet. Nevertheless, we
utilize scalar measures of stress as the intramural stress of
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Fig. 2 Stress versus stretch plots in circumferential (top) and axial
(bottom) directions. Data (circles) and fitted values (dots) using the
estimated parameters. Each set of data (different colors) corresponds to
a different ratios of tensions applied in both directions during a biaxial
test

constituents (Baek et al. 2006; Figueroa et al. 2009; Zeinali-
Davarani et al. 2010)

σ k =
∥∥∥∥∥
(∑

k

νkσ k

)
nk

∥∥∥∥∥ , σm = ∥∥σmnm
∥∥ , (13)

where σ k and σm are the stresses of the kth collagen fiber
and SM, respectively, and nk and nm are unit vectors in the
directions of the kth collagen fiber and SM. Using the esti-
mated parameters, the homeostatic stress of collagen and SM
are then calculated as σ c

h = 143 kPa and σm
h = 81 kPa. The

prescribed parameters associated with SM tone are λM =
1.4, λ0 = 0.8 and S = 54 kPa (Zeinali-Davarani et al. 2010).

2.2 Inverse optimization problem statement

As the next step, we estimate the distributions of wall thick-
ness and material anisotropy using an inverse optimization
method where both the deviation of geometry from the
in vivo configuration and the deviation of stress from the
homeostatic value are minimized. Then, the objective func-
tion to minimize is

W =
∫
Ω

∥∥x
(
h, αk

) − Ximage
∥∥2

dA∫
Ω

∥∥Ximage − X̄
∥∥2

dA

+ξ
∑

i

νi
∫
Ω

(
σ i

(
h, αk

) − σ i
h

)2
dA∫

Ω

(
σ i

h

)2
dA

(14)

where i = m, 1, . . . , k and x is the FE solution for position
vector and Ximage is the position vector from medical image
and X̄ is the geometric center of the artery. σ i is a scalar mea-
sure of stress in the direction of the constituent i obtained
from the FE analysis (See Zeinali-Davarani et al. (2010) for
detailed explanation of the image-based FE model of the arte-
rial wall). σ i

h and νi are the homeostatic stress and mass frac-
tion assumed for the constituent i . (h, αk) are the unknown
wall thickness and anisotropy, i.e. orientation of the collagen
fiber k. The objective function is composed of two additive
terms and a weight parameter ξ ; first term is related to the
deviation of geometry (named “GD” hereafter) and the sec-
ond term is related to the deviation of stress (named “SD”
hereafter).

However, solving this optimization problem for the thick-
ness and anisotropy at all nodal points of the FE model is not
practical, even if possible. Thickness and anisotropy distri-
butions can be approximated with a smaller (I ) number of
variables with associated base functions, independent from
the FE mesh as

h(x, y, z) =
I∑

j=1

{
βh

j φ j (x, y, z)
}

(x, y, z) ∈ Ω
(15)

αk(x, y, z) =
I∑

j=1

{
βk

jψ j (x, y, z)
}

(x, y, z) ∈ Ω,

where
(
βh

j , β
k
j

)
are variables for thickness and anisotropy

associated with the approximation point j . φ j (x, y, z) and
ψ j (x, y, z) are basis/approximation functions defined on the
computational domain Ω . The objective function then can

Table 1 Estimated constitutive
parameters for each constituent
from the parameter estimation,
used for G&R simulations

Elastin: c1 = 50.6 Pa/kg, Ge
1 = 1.22, Ge

2 = 1.23

Collagen: c2 = 3195 Pa/kg, c(comp)
2 = 0.1c2, c3 = 25.0, Gc

h = 1.034

SM: c4 = 16.45 Pa/kg, c5 = 14.14, Gm
h = 1.165
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be rewritten with respect to the new design variables as

W =
∫
Ω

∥∥∥x
(
βh

j , β
k
j

)
− Ximage

∥∥∥2
dA∫

Ω

∥∥Ximage − X̄
∥∥2

dA

+ ξ
∑

i

νi
∫
Ω

(
σ i

(
βh

j , β
k
j

)
− σ i

h

)2
dA∫

Ω

(
σ i

h

)2
dA

. (16)

To facilitate the approximation in (15), the computational
domain (the mid-surface of the vessel wall) can be param-
eterized by two spatial variables (s, θ ) where s and θ rep-
resent, respectively, the longitudinal distance and azimuthal
position on the arterial wall (see Appendix for details of this
mapping). Then, Eq. (15) can be rewritten as

h(s, θ) =
I∑

j=1

{
βh

j φ j (s, θ)
}

(17)

αk(s, θ) =
I∑

j=1

{
βk

jψ j (s, θ)
}
.

Toward solving the optimization problem (Eq. 16), we

use initial values of
(
βh

j , β
k
j

)
that approximate a homoge-

nous field of thickness and anisotropy
(
h0, α

k
0

)
. That is, the

initial values are obtained by solving the following sets of
least-squares optimizations

Sh =
Ne∑

e=1

⎛
⎝ I∑

j=1

βh
j φ j (se, θe)− h0

⎞
⎠

2

(18)

Sk =
Ne∑

e=1

⎛
⎝ I∑

j=1

βk
jψ j (se, θe)− αk

0

⎞
⎠

2

, (19)

where Ne and I are the number of elements and approxima-
tion points, respectively.

2.3 Global approximation approach

For an approximation, a product of Legendre polynomials
and periodic functions, respectively, for longitudinal and azi-
muthal directions is used

h(s, θ) =
m=M−1,n=N−1∑

m,n=0

βh
mn Pm(s)Fn(θ) (20)

αk(s, θ) =
m=M−1,n=N−1∑

m,n=0

βk
mn Pm(s)Fn(θ), (21)

where M and N are, respectively, the total number of Legen-
dre polynomials and periodic functions (i.e. I = M × N ).
Pm(s) is a univariate Legendre polynomials of order m such

that P0(s) = 1, P1(s) = s and

Pm+1(s) = s

(
2m + 1

m + 1

)
Pm(s)−

(
m

m + 1

)
Pm−1(s).

(22)

Also, we consider F0(θ) = 1 and

F2n−1 = sin(nθ)
(23)

F2n = cos(nθ).

2.4 Optimization algorithm

We employ the Nelder–Mead Simplex method (Lagarias
et al. 1998; Nelder and Mead 1965) for the optimization. As
a direct search method, it does not require gradients of the
function, which is desirable in applications where the calcu-
lation of gradients of the function is computationally expen-
sive. Another feature of the Nelder–Mead Simplex method
is the fast reduction in the objective function after the first
few iterations (Wright 1996). A stopping criterion is chosen
based on both the relative size of the simplex and function
values at vertices of the simplex as (Torczon 1989):

1

�
max

1≤ j≤I

∥∥∥vk
j − vk

0

∥∥∥ < δ (24)

W
(
vk

I

)
− W

(
vk

0

)
< ε, (25)

where vk
j is the j th vertex of the simplex and a vector com-

prised of all optimization variables at kth iteration. vk
0 and

vk
I are the “best” and “worst” vertices of the simplex at kth

iteration and � = max
(
1,

∥∥vk
0

∥∥)
.

3 Results

A 3-D model of an aorta was reconstructed from MRI data of
a healthy subject, and a computational mesh for the arterial
wall was generated using triangular elements (Sheidaei et al.
2010). As a parametric study, we first investigate the effect of
variation of the weight parameter ξ . Figure 3 shows the GD
and SD corresponding to minimum values of the objective
function obtained with different values of ξ and using two
different combinations of Legendre polynomials and peri-
odic functions (M = 3, N = 3) and (M = 6, N = 5).

In both cases, small values of ξ puts more weight on GD to
minimize the objective function and increasing ξ shifts the
weight toward SD. The tradeoff choice according to both
cases appears to be ξ = 0.01 such that both parts can be
minimized at the same time (Fig. 3).
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Fig. 3 The effect of variation of the parameter ξ on both GD and SD using (M = 3, N = 3; top) and (M = 6, N = 5; bottom)

3.1 Finding the optimal distributions of thickness
and anisotropy

We choose 6 Legendre polynomials (M = 6) and 3 peri-
odic functions (N = 3) for the approximation assuming
ξ = 0.01. This constitutes 18 variables (I = 18) for thick-
ness and anisotropy, including a total of 36 variables into the
optimization process. Note that fibers oriented in circum-
ferential and axial directions are considered fixed and only
helical fibers orientations are assumed to be changing (α3 =
−α4). Least-squares estimation of variables associated with
a homogenous field of thickness and anisotropy (e.g. 0.8 mm
for thickness and 50.0◦ for anisotropy) yielded estimates such
as βh

00 = 0.8, βk
00 = 50.0 and 0 for all other parameters.

Figure 4 illustrates the convergence history of the objective
function as well as its compartments, GD and SD, until the
stopping criterion is met. A fast decrease in the objective
function during the first 100 iterations is noticeable, which is
accompanied by sharp decreases in GD and SD. The appear-
ance of the plateau regions is associated with the iterations
during which searching the space has not led to a new mini-
mum.

For the sake of comparison, we prescribe the distributions
of thickness using the same method employed by Zeinali-
Davarani et al. (2010) and compare the results with the cur-
rent method. Figure 5 contrasts the deviation from the in
vivo/image geometry (||x−Ximage||) using both methods. A
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Fig. 4 Changes in the objective function and its associated compart-
ments versus optimization iterations using 36 variables (18 variables
for approximating thickness and 18 variables for approximating fiber
orientation) considering ξ = 0.01

significant decrease in the maximum deviation (about 70%)
is achieved using the optimization approach.

The normalized deviation of stress from the homeostatic
value

((
σ k − σ k

h

) /
σ k

h

)
in the direction of helical fiber fam-

ilies (k = 3, 4) using both methods are shown in Figs. 6 and
7. For fiber families of both helical directions, the maximum
deviations of stress from the homeostatic value are signifi-
cantly decreased by 70% using the optimization method.
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Fig. 5 Deviation of the geometry from the in vivo geometry without
(a), and with (b), optimized distributions of thickness and anisotropy
(||x − Ximage||)

Fig. 6 Deviation of the stress
((
σ k − σ k

h

) /
σ k

h

)
from the target homeo-

static stress in a helical fiber (k = 3) without (a), and with (b), optimized
distributions of thickness and anisotropy

Figure 8 depicts the distributions of wall thickness and
anisotropy obtained by the optimization with ξ = 0.01,M =
6, and N = 3. The resulting spatial variation of anisotropy is
not large although thickness considerably varied especially
on the convex and concave regions with higher values on the
concave side and lower values on the convex side.

Fig. 7 Deviation of the stress
((
σ k − σ k

h

)/
σ k

h

)
from the target homeo-

static stress in a helical fiber (k = 4) without (a), and with (b), optimized
distributions of thickness and anisotropy

Fig. 8 Distributions of thickness (a), and anisotropy (b), obtained from
the optimization results using ξ = 0.01,M = 6, and N = 3

3.2 Simulation of AAA enlargement

When the optimal solution to the problem is achieved by the
inverse method, AAA simulations are initiated by applying
instantaneous elastin degradation with different spatial dis-
tribution functions (See Baek et al. (2006); Zeinali-Davarani
et al. (2010) for details of the G&R framework and its appli-
cation to image-based models). Figure 9 shows the spatial
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Fig. 9 Distributions of elastin content after applying elastin degrada-
tion with different spatial functions (a, b), and the corresponding distri-
butions of maximum principal stress after 1,700(c), and 2,600(d) days
of G&R

distributions of elastin degradation (a,b) and the resulting
distributions of the maximum principal stress after 1,700 (c)
and 2,600 (d) days of G&R. Due to the stress-driven G&R, the
portions of the wall subject to elastin degradation and higher
stress expand. The effect of variation of kinetic parameters
that control the stress-mediated G&R has been studied in
detail by Zeinali-Davarani et al. (2010).

4 Discussion

The existence of the vascular mechanical homeostasis and
the subsequent adaptation in response to mechanical stim-
uli have been fundamental assumptions in mathematical
models of vascular G&R (Baek et al. 2006, 2007; Figueroa et
al. 2009; Kroon and Holzapfel 2009; Watton and Hill 2009).
There has been a growing interest in using such models on
a patient-specific basis (Humphrey and Taylor 2008; Taylor
and Humphrey 2009). Toward that goal, image-based arte-
rial geometries have been incorporated into stress-mediated

vascular adaptation models (Sheidaei et al. 2010; Zeinali-
Davarani et al. 2010). Zeinali-Davarani et al. (2010) utilized
the G&R model itself as an optimization tool to drive the
mechanical state toward the target homeostatic value before
the main G&R simulations begun. This approach, however,
alters the in vivo configuration even though it provides a
desirable stress distribution. Rather, the present study pro-
vides an optimization technique to minimize both deviations
from the homeostatic stress and the in vivo configuration
simultaneously.

Numerous methods have been presented in order to com-
pensate for the lack of information about stress-free or load-
free configurations in patient-specific modeling. Raghavan
et al. (2006) used an optimization technique as an approx-
imate method to find the zero-pressure geometry assuming
consistency of displacement field patterns. Using an inverse
elastostatic method, Lu et al. (2007) were able to determine
load-free configuration of an AAA as well as accurate wall
tension in a cerebral aneurysm (Lu et al. 2008). Recently,
Zhou and Lu (2009) used the same inverse technique to
estimate the open configuration of vessels. In a different
approach, Gee et al. (2009, 2010) showed the utility of the
“modified updated Lagrangian” method in finding meaning-
ful stress analysis results for complex shapes of aneurysms.

However, all of those studies assumed homogenous dis-
tributions of the wall thickness and anisotropy, whereas var-
iation of these parameters can have a great impact on the
stress/strain distribution. Instead of finding the load-free con-
figuration, our approach focused on the in vivo configura-
tion and its associated material and geometric parameters
of arteries using an inverse optimization method such that
the homeostatic condition was restored, while the devia-
tion of geometry from the original in vivo configuration
was minimized. In a somewhat similar approach, Kroon and
Holzapfel (2008a) estimated the distribution of elastic prop-
erties of an inhomogeneous and anisotropic membrane using
an inverse optimization method and applied the technique to
find material properties of the cerebral aneurysm (Kroon and
Holzapfel 2008b). They used an element partition method
for the robust estimation of properties over the domain. That
is, they divided the domain into large sub-domains and per-
formed the optimization for each sub-domain with homo-
geneous properties. In the next levels of partitioning, they
refined each sub-domain while repeating the estimation pro-
cess with updated initial values. Alternatively, we used a
global approximation scheme in order to reduce the number
of unknown variables of optimization and to facilitate esti-
mation of the inhomogeneous properties in a global fashion.
Increasing the number of approximation variable theoreti-
cally improves the objective function even more, but at the
cost of more computation time. Deviation of stress from the
homeostatic value in both helical directions was dropped by
more than 70%, whereas there was no significant reduction in
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stress of axial and circumferential fibers (not shown), mainly
because of much lower mass fractions assumed in those direc-
tions (See Eq. 16). Results of the AAA simulations using
the optimal material parameters, wall thickness and anisot-
ropy were generally comparable with Zeinali-Davarani et al.
(2010), but more advantageous as the current method reduced
the deviation of geometry from the in vivo configuration
before the G&R process initiated.

Direct validation of the optimal distributions of the wall
thickness and fiber orientations requires more experimental
data using animal or human arteries. Nevertheless, the pro-
posed optimization technique provides a useful initialization
step, indispensable to patient-specific G&R simulations.

In closing, in this work, we used a scalar measure of
stress as a mechanical state governing the mechanosensitive
vascular adaptation (Baek et al. 2006). However, it is still
controversial what quantity is responsible for the mechan-
ical homeostatic state (stress, strain, material stiffness, or
their combination?). We suggest that the proposed inverse
method can be used to discriminate among different hypoth-
eses of homeostasis through comparison with experimental
data. Such studies may shed light upon the path to the patient-
specific modeling of AAA and its clinical interventions.
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Appendix

A Parameterizing the aortic wall surface with longitudinal
and azimuthal variables

A point on the vessel wall can be parameterized by two vari-
ables, one that characterizes its longitudinal position (s) and
the other which characterizes its orientation (θ ) with respect
to a reference direction. To do so, we need to approximate
the centerline of the vessel considering some of the points on
the centerline as nodal points (Fig. 10) and

X(s) =
∑

i

Φ i (s)Xi , (26)

where Xi and Φ i are the position vector and interpolation
function corresponding to the nodal point i on the center-
line. X is the position vector of any point on the centerline
as a function of s. A fourth order interpolation function is
assumed with the general form of

Φ(s) = c(s − a)2(s − b)2. (27)

The interpolation functions associated with nodal points j =
1, . . . , J can be defined as

JLs =

1−= JLs

4Ls =

2Ls =

1Ls =

cX

)( 0ss =X

n

a

a

v

3Ls =

2−= JLs

θ

Fig. 10 Geometry of an arbitrary model of the arterial wall with its cen-
terline; Approximation/nodal points with their associated length s = L j
( j = 1, . . . , J ). a is an arbitrary vector used in order to find the orien-
tation θ associated with a point (Xc) on the wall

Φ1(s) = (s − L3)
2(s + L3)

2

(L1 − L3)
2(L1 + L3)

2 L1 ≤ s < L3 (28)

Φ2(s) = (s − L1)
2(s − L4)

2

(L2 − L1)
2(L2 − L4)

2 L1 ≤ s < L4 (29)

Φk(s) = (s − Lk−2)
2(s − Lk+2)

2

(Lk − Lk−2)
2(Lk − Lk+2)

2 Lk−2 ≤ s < Lk+2

(30)

Φ J−1(s) = (s − L J−3)
2(s − L J )

2

(L J−1 − L J−3)
2(L J−1 − L J )

2 L J−3 ≤ s < L J

(31)

Φ J (s) = (s − L J−2)
2(s + L J−2)

2

(L J − L J−2)
2(L J + L J−2)

2 L J−2 ≤ s < L J

(32)

where k = 3, . . . , J − 2 and L j is the value of s at the nodal
point j (Fig. 10). These interpolation functions, however,
do not satisfy the condition

∑J
j=1Φ

j (s) = 1. In order to
provide this condition, we need to normalize interpolation
functions as

Φ̂ i (s) = Φ i (s)∑J
j=1Φ

j (s)
. (33)
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Now, using the interpolation in (26), we can find the parame-
ter s associated with any point on the artery, e.g. center point
of a triangular element on the surface (Xc). That is, for a
given point on the aortic wall, the variable s is calculated
by minimizing the distance from the point on the wall to the
centerline (||X(s) − Xc||). The function to be minimized is
given as

d(s) =
(∑

i

Φ̂ i (s)xi − xc

)2

+
(∑

i

Φ̂ i (s)yi − yc

)2

+
(∑

i

Φ̂ i (s)zi − zc

)2

. (34)

Minimizing d(s) with respect to s results in

∂d(s)

∂s
= 2

(∑
i

Φ̂ i (s)xi − xc

) ∑
i

Φ̂ i
,s xi

+2

(∑
i

Φ̂ i (s)yi − yc

)∑
i

Φ̂ i
,s yi

+2

(∑
i

Φ̂ i (s)zi − zc

)∑
i

Φ̂ i
,s zi = 0. (35)

Numerical solution of the nonlinear Eq. (35) is obtained
using Newton–Raphson method which also requires the sec-
ond derivative of the function. The iterative scheme for the
Newton–Raphson is formulated as

sn+1 = sn −
∂d(s)
∂s |s=sn

∂2d(s)
∂s2 |s=sn

. (36)

This is repeated for any other point of interest on the wall in
order to find the corresponding value of s. If s0 is the solu-
tion associated with a center point of an element (Fig. 10),
the vector v connecting the point on the centerline at s = s0

(X(s = s0)) and the center point of the element is given as

v = Xc −
∑

i

Φ̂ i (s0)Xi . (37)

The normalized vector n tangent to the centerline at s = s0

is then given by

n =
∂X(s)
∂s |s=s0∥∥∥ ∂X(s)
∂s |s=s0

∥∥∥ where
∂X(s)
∂s

=
∑

i

Φ̂ i
,sXi . (38)

The vector n is also a normal vector to the plane of cross-
section at s = s0. Projection of an arbitrary vector a on the
plane of cross-section (Fig. 10) can be assumed as the refer-
ence direction

ap = a − (a · n)n. (39)

The angle θ between ap and v characterizes the orienta-
tion associated with the current point on the wall (i.e. Xc).
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Fig. 11 Geometry of the vessel wall parameterized with longitudinal
and azimuthal (s and θ) variables. Dots represent center points of all
elements on the wall

Figure 11 illustrates the 3-D geometry of the model of aorta
mapped in 2-D plane of longitudinal (s) and azimuthal (θ )
variables.
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