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Abstract Current diagnosis of bone loss and osteoporosis
is based on the measurement of the bone mineral density
(BMD) or the apparent mass density. Unfortunately, in most
clinical ultrasound densitometers: 1) measurements are often
performed in a single anatomical direction, 2) only the first
wave arriving to the ultrasound probe is characterized, and
3) the analysis of bone status is based on empirical relation-
ships between measurable quantities such as speed of sound
(SOS) and broadband ultrasound attenuation (BUA) and the
density of the porous medium. However, the existence of a
second wave in cancellous bone has been reported, which is
an unequivocal signature of poroelastic media, as predicted
by Biot’s poroelastic wave propagation theory. In this paper,
the governing equations for wave motion in the linear the-
ory of anisotropic poroelastic materials are developed and
extended to include the dependence of the constitutive rela-
tions upon fabric—a quantitative stereological measure of
the degree of structural anisotropy in the pore architecture of
a porous medium. This fabric-dependent anisotropic poro-
elastic approach is a theoretical framework to describe the
microarchitectural-dependent relationship between measur-
able wave properties and the elastic constants of trabecu-
lar bone, and thus represents an alternative for bone quality
assessment beyond BMD alone.
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1 Introduction

The current gold standard to diagnose bone loss and osteo-
porosis consists of determining the amount of bone mineral
density—BMD—measured with a Dual Energy X-ray
Absorptiometry (DEXA) system (Steiger 1995a,b; Formica
1998). The BMD is highly correlated to bone mass when
measured in the spine, wrist and femoral neck (Steiger
1995a,b; Link et al. 2002). However, a significant number
of women diagnosed with osteoporosis based on BMD mea-
surement do not suffer fractures, whereas many women with
normal BMD do (Bolotin 2007; Kleerekoper and Nelson
2005; Kaptoge et al. 2005; Bone et al. 2005; Gandolini and
Salvioni 2004; Nielsen 2000). These studies have demon-
strated that BMD measurements lack both sensitivity and
selectivity to effectively identify patients with decreased
bone strength and at risk of fracture, indicating that other
factors besides bone mass play an important role in osteopo-
rosis.

Ultrasound wave propagation is an attractive alternative
to diagnose osteoporosis (Siffert and Kaufman 2006; Hans
et al. 1996; Grimm and Williams 1997a) because it is non-
ionizing, inexpensive and non-invasive. More importantly,
ultrasound waves are elastic vibrations that can provide direct
information on the mechanical properties of the medium in
which they propagate. Clinical ultrasound in bone is based
on a wave transmission technique to measure the speed of
sound (SOS) and broadband ultrasound attenuation (BUA)
in the heel bone (calcaneum). Unfortunately, a major lim-
itation associated with current clinical ultrasound systems
(Grigorian et al. 2002)—often called ultrasound densitome-
ters—consists of determining bone mass density as DEXA
does, without taking advantage of the fact that ultrasound is
sensitive to microarchitecture and tissue composition (Njeh
et al. 2001; Nicholson et al. 1998; Sakata et al. 2004).
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In most clinical ultrasound densitometer systems, only
the first wave arriving to the ultrasound probe is identified.
If only one wave is measured, the analysis is limited to an
“equivalent medium approach” in which the solid trabecu-
lar structure cannot be distinguished from the fluid within the
pores. However, the existence of a second wave in cancellous
bone has been reported (Hosokawa and Otani 1997, 1998;
Cardoso et al. 2001, 2003), which is an unequivocal signa-
ture of poroelastic media. These two waves propagate with
different velocities and have been shown to correspond to the
fast and slow waves predicted by Biot (1941, 1955, 1956a,b,
1962a,b) poroelastic wave propagation theory. Therefore, a
poroelastic wave propagation theory is conceptually more
appropriate than an equivalent media approach to character-
ize the properties of the porous medium.

The application of poroelasticity to bone tissue (Cowin
1999) and geological materials (Biot 1941, 1955, 1956a,b,
1962a,b; Plona and Johnson 1983; Sharma 2005, 2008) has
been described in the past, and a number of models based on
the isotropic Biot theory of wave propagation in porous media
have been used (Williams 1992; Hosokawa and Otani 1997,
1998; Cardoso et al. 2008) to explain acoustic wave propaga-
tion measurements on cancellous bone. However, isotropic
poroelastic models cannot explain the variability of measured
wave velocities (Cardoso et al. 2003) when bone becomes
anisotropic as a consequence of age and osteoporosis. Bone
porosity alone is an inappropriate parameter of cancellous
bone acoustic properties when the medium is anisotropic.
This is because a scalar—such as porosity or any densi-
tometry measurement—does not have the capacity to fully
describe the cancellous bone architecture: a tensorial quan-
tity such as the fabric tensor is required.

Unfortunately, most clinical ultrasound densitometers
depend on empirical relationships between SOS/BUA and
bone density that have failed to improve the assessment of
bone loss as provided by DEXA measurements. Furthermore,
measurements of SOS and BUA are performed in a single
direction at the calcaneum. Such measurement cannot fully
describe the properties of anisotropic bone, for which mul-
tidirectional ultrasound measurements are required. In con-
trast, the fabric-dependent anisotropic poroelastic approach
proposed in this study has the advantage of providing a
theoretical framework to describe the relationship between
measurable wave properties (SOS, BUA, etc) and the elastic
constants of the trabecular bone structure. Since this poro-
elastic wave propagation theory depends on anisotropy and
tissue composition in addition to bone mass density, it rep-
resents an alternative for bone quality assessment beyond
BMD.

In this paper, the governing equations for wave motion
in the linear theory of anisotropic poroelastic materials are
developed and extended to include the dependence of the con-
stitutive relations upon fabric (Cowin 1985, 2004). Fabric is

a quantitative stereological measure of the degree of struc-
tural anisotropy in the pore architecture of a porous medium
(Hilliard 1967; Whitehouse 1974a; Whitehouse and Dyson
1974b; Oda 1976; Oda et al. 1980, 1985; Cowin and Satake
1978; Satake 1982; Kanatani 1983, 1984a,b, 1985; Harrigan
and Mann 1984; Odgaard 1997a, 2001; Odgaard et al. 1997b;
Matsuura et al. 2008). With the exception of the addition of
the fabric variable, a tensor, the formulation of wave motions
in the context of poroelastic theory is consistent with classic
and contemporary literature in the field (Biot 1941, 1955,
1956a,b, 1962a,b; Plona and Johnson 1983; Sharma 2005,
2008). Unchanged by the addition of anisotropy is the fact
that the total elastic volumetric response in poroelasticity is
due to a combination of the elastic volumetric response of
the matrix material of the porous solid, the volumetric elas-
tic response of the pore fluid, and the pore volume changes
in the porous medium. The poroelastic constitutive equa-
tions are described in the following section and, in the sec-
tion after that, Biot (1956a,b, 1962a,b) formulation of wave
propagation in fluid saturated porous materials is reviewed.
The fabric tensor is introduced in Sect. 4, and the appropri-
ate modification approaches of Biot (1956a,b, 1962a,b) to
include fabric as a tensorial variable in the constitutive rela-
tions are described. The propagation of plane waves in an
anisotropic, fabric dependent, saturated porous medium is
derived in Sect. 5, and the specialization of these results to
the propagation in a principal direction of fabric is presented
in Sect. 6. The final section, Sect. 7, contains our discussion
and concluding remarks.

2 The poroelastic constitutive equations

There are three sets of poroelastic constitutive equations,
the stress–strain–pore pressure, the fluid content–stress–pore
pressure and Darcy’s law. The purpose of this section is to
record the form of these constitutive equations. In the fol-
lowing three subsections, these equations are described in
the order indicated.

2.1 Stress–strain–pore pressure relations

In his 1956 papers on wave propagation Biot (1956a,b) let
u be the displacement vector of the solid matrix phase and
U be the displacement vector of the fluid phase. These were
the two basic kinematic quantities employed in those works.
In Biot (1962b) the displacement vector of the fluid phase
U was replaced by the displacement vector w of the fluid
relative to the solid, thus

w = U − u. (1)

The present development follows Biot (1962a,b) and the two
basic kinematic fields are considered to be the displacement
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vectors u and w. The relative velocity of the fluid and solid
components is, from (1),

ẇ = U̇ − u̇. (2)

The variation in fluid content ζ is defined as

ζ = −∇ · w. (3)

The variation in fluid content ζ is the variation of the fluid
volume per initial unit volume of the porous material due to
diffusive fluid mass transport; it is defined as the difference
between the volumetric strain of the pore space and the vol-
umetric strain of the fluid volume in the pore space and is
dimensionless. The remainder of the material in this section
follows Cowin and Mehrabadi (2007), although the notation
is slightly changed.

The relations between the strain of the porous solid and
the displacement of the porous solid are written in the forms:

E = (1/2) ((∇ ⊗ u)T + ∇ ⊗ u) or
(4)

Ei j = (1/2) (ui, j + u j,i ).

The stress–strain–pore pressure constitutive relation for a sat-
urated porous medium is that the strain Ei j in the saturated
porous medium is linearly related, not only to the stress Ti j

but also to the fluid pressure p in the fluid-filled pores, thus
one can write the strain–stress–pore pressure relation

Ei j = Sd
i jkm Tkm + pSd

i jkm Akm, (5)

or the stress–pore pressure–strain relation

Ti j = Cd
i jkm Ekm − Ai j p, (6)

where Sd
i jkm represents the drained anisotropic compliance

elastic constants of the saturated porous medium and Cd
i jkm is

its reciprocal, the drained anisotropic elasticity tensor. They
are called the drained elastic constants because they are mea-
sured in situations in which the fluid pressure p in the fluid-
filled pores is negligible or zero. This is achieved by draining
all the pores before the test or doing the test so slowly that the
pores will drain from a negligible fluid pressure. In a porous
medium, the pores are assumed to be connected; there are
no unconnected pores that prevent the flow of fluid through
them. The three-dimensional symmetric second rank tensor
Ai j , introduced by (5), is called the Biot effective stress coef-
ficient tensor. The Biot effective stress coefficient tensor Ai j

is related to the difference between effective drained elastic
constants Sd

i jkm and the solid matrix material elastic compli-
ance tensor Sm

i jkm by the formula

Ai j = δi j − Cd
i jkm Sm

kmqq . (7)

The same for the isotropic case is represented by

α = 1 − K d/K m . (8)

The Biot effective stress coefficient tensor A is so named
because it is employed in the definition of the effective stress
T ef f

i j :

T ef f
i j = Ti j + Ai j p. (9)

This definition of effective stress reduces the stress–
strain–pressure relation (5) to the same form as Hooke’s law,
thus

Ei j = Sd
i jkm T ef f

km . (10)

The advantage of the representation (10) is that the fluid-satu-
rated porous material may be thought of as an ordinary elastic
material with a compliance matrix Sd

i jkm , but one subjected

to the “effective stress” T ef f
i j rather than an (ordinary) stress

Ti j . The drained elastic compliance tensor Sd
i jkm may be eval-

uated from knowledge of the pore structure of the medium
and the matrix elastic compliance tensor Sm

i jkm , or vice versa,
using composite or effective medium theory. This constitu-
tive equation is a modification of Hooke’s law to include the
effect of the pore pressure. When p = 0 the stress-strain-pore
pressure relations (5) and (6) or (10) coincide with aniso-
tropic Hooke’s law.

The relationship between a compliance tensor Si jkm

(either Sm
i jkm or Sd

i jkm) and the effective bulk modulus is
simple and important in these developments. In order to
develop this relationship, we begin by noting that Sppqq ,
where Si jkm is the isotropic elastic compliance tensor, is
equal to 3(1 − 2ν)E−1, which, in turn, is the reciprocal of
the isotropic bulk modulus K,

Sppqq = 3(1 − 2ν)

E
≡ 1

K
. (11)

Hill (1952) showed that K Ref f = (Sppqq)−1, where Si jkm is
now the anisotropic elastic compliance tensor, is the Reuss
lower bound on the effective (isotropic) bulk modulus of the
anisotropic elastic material Si jkm and that the Voigt effective
bulk modulus of an anisotropic elastic material, KV ef f =
(C ppqq)/9, is the upper bound, K Ref f ≤ Kef f ≤ KV ef f .
In the case of isotropy, the two bounds coincide with the
isotropic bulk modulus, K, thus:

1

K Ref f
= 1

Kef f
= 1

KV ef f
= Sppqq = 3(1 − 2ν)

E
≡ 1

K
(12)

where E is the isotropic Young’s modulus and ν is the
Poisson’s ratio. The Reuss effective bulk modulus of an
anisotropic elastic material K Ref f occurs naturally in aniso-
tropic poroelastic theory as shown, but not noted, by Thomp-
son and Willis (1991). Thus, using a general form of (7) for
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the orthotropic elastic compliance tensor Si
i jkm, i = mord,

the following two definitions are introduced:

1

K i
Ref f

= Si
ppqq = 1

Ei
1

+ 1

Ei
2

+ 1

Ei
3

− 2νi
23

Ei
2

− 2νi
31

Ei
3

−2νi
12

Ei
1

, i = m or d. (13)

2.2 Fluid content–stress–pore pressure relations

The fluid content–stress–pore pressure constitutive relation
involves all the basic field variables for poroelasticity, the
total stress Ti j , the pore pressure p, the strain in the solid
matrix Ei j , and the variation in (dimensionless) fluid content
ζ . The variation in fluid content ζ depends not only upon the
strain Ei j in the solid matrix but also upon the strain induced
by the pore pressure p, thus

ζ = Ai j Ei j + �p, (14)

where

� = Sm
ppi j Ai j + φ

(
1

K f
− 1

K m
Ref f

)
, (15)

and where φ is the porosity, K f is the bulk modulus of the
fluid and K m

Ref f is defined by (13). The first term of Eq. (14)
is the volumetric strain of the pore space and the second
term is the volumetric strain of the fluid volume. This can be
shown along the lines of reasoning used by Biot and Willis
for isotropic media. The isotropic equivalent of (14) is

ζ = αtr (ε) + Mp, (16)

In the case of isotropy, this expression for � reduces to

� = 1

K m

(
1 − K d

K m

)
+ φ

(
1

K f
− 1

K m

)
. (17)

The variation in fluid content ζ is also linearly related to both
the stress Ti j , and the pore pressure p,

ζ = Ai j Sd
i jkm Tkm + Cd

ef f p (18)

where

Cd
ef f = 1

K d
Ref f

− 1

K m
Ref f

+ φ

(
1

K f
− 1

K m
Ref f

)
. (19)

The relation between Cd
ef f and � is

Cd
ef f = � − Sm

ppi j Ai j +
(

1

K d
Ref f

− 1

K m
Ref f

)
. (20)

The inverse of (18) is

p = M(ζ − Ai j Ei j ), M = 1

Cd
ef f − Ai j Sd

i jkm Akm
, (21)

and the representation of stress Ti j as a function of the strain
Ei j and the variation in fluid content ζ , rather than as a func-
tion of the strain and the pore pressure p, is

Ti j = (Cd
i jkm + M Akm Ai j )Ekm − M Ai jζ. (22)

Biot (1962a,b) employed a slightly different notation for
the two previous expressions, namely

p = Mkm Ekm + Mζ, (23)

and

Ti j = Ai jkm Ekm − Mi jζ, (24)

where Biot’s parameters M, Mi j and Ai jkm are related to
Cd

ef f , Ai j and Cd
i jkm above by

Mi j = M Ai j , Ai jkm = Cd
i jkm + M Ai j Akm . (25)

Please note that our definition of Mi j differs from that
of Biot (1962b), being of the opposite sign. It is interesting
to note that Biot’s elasticity tensor Ai jkm differs from the
drained elasticity tensor Cd

i jkm by the term M Ai j Akm , which
is the open product of the Biot effective stress coefficient
tensor A with itself.

2.3 Darcy’s law

The constitutive equations of poroelasticity developed thus
far are the strain–stress–pore pressure relations (6) and the
fluid content–stress–pore pressure relation (14). We follow
Biot (1962a,b) here and employ the equivalent relations,
replacing the pore pressure by the variation in fluid content,
(23) and (24). The other constitutive relation of poroelastic-
ity is Darcy’s law, relating the fluid mass flow rate, ρ f v, to
the gradient (∇ p) of the pore pressure p (Darcy 1856),

ρ f vi = −Hi j
∂p

∂x j
, Hi j = Hji . (26)

This relation is true if the fluid in the porespace is New-
tonian; however, Darcy’s law (26) applies with reasonable
accuracy to many types of non-Newtonian conditions as well.

The coefficient tensor Hi j in Darcy’s law may be repre-
sented by Hi j = ρ f o Ki j/μ where Ki j is the intrinsic Darcy’s
law permeability tensor, ρ f o is a reference value of the fluid
density and μ is the fluid viscosity. The intrinsic permeabil-
ity tensor Ki j has units of length squared and is a function
of the porous structure only, not the fluid in the pores; thus,
Darcy’s law (26) takes the form

qi = φ

(
ρ f

ρ fo

)
vi = − Ki j

μ

∂p

∂x j
, Ki j = K ji , (27)

where the mass flux qi has the dimensions of velocity.
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3 Biot’s formulation of the two-constituent momentum
conservation

Biot (1956a,b, 1962a,b) employs a Lagrangian formulation
of the momentum conservation equations for the solid and the
fluid phases to provide a method of representing the inertial
interaction between the two phases. The Lagrangian formu-
lation relates the kinetic energy T and the viscous dissipation
D to the basic kinematic fields v and w by (Biot 1962b, equa-
tion 8.23)

Ti j, j = d

dt

(
∂T

∂ u̇i

)
,− ∂p

∂xi
= d

dt

(
∂T

∂ẇi

)
+ ∂ D

∂ẇi
(28)

where the kinetic energy and the viscous dissipation are
assumed to be of the following forms (Biot 1962b, equations
8.16, 4.16):

T = 1

2
ρu̇k u̇k + ρ f ẇk u̇k + 1

2
ρ f ẇk Jkmẇm,

ρ = (1 − φ)ρs + φρ f , (29)

D = 1

2
ρ f μẇk Rkmẇm, Rkm = Rmk, Rkm = K −1

km . (30)

In the two equations above T, D, Ki j , u̇, ẇ, ρ f , φ, and μ

have been defined earlier, the bulk density ρ and the flow-
resistivity tensor Rkmare defined in the equations above, and
ρs and Jkmwill now be defined. ρs represents the density of
the solid matrix material and Jkm is the micro-macro velocity
average tensor; it functions like a density distribution func-
tion that relates the relative micro-solid-fluid velocity to its
bulk volume average ẇ.

The field equations of motion are obtained by substituting
(29) and (30) into (28) and then employing the constitutive
Eqs. (23) and (24) and the relationship (3), ζ = −∇ · w,
between the variation in fluid content ζ and the divergence
of the displacement vector w of the fluid relative to the solid,
thus (Biot 1962b; Sharma 2005)

Ai jkm
∂2uk

∂xm∂x j
+ Mi j

∂2wk

∂xk∂x j
= ρüi + ρ f ẅi , (31)

Mkm
∂2uk

∂xm∂xi
+ M

∂2wk

∂xk∂xi
= ρ f (üi + Ji j ẅ j + μRi j ẇ j ).

(32)

Equations (31) and (32) are two coupled wave equations
for the solid displacement field u and the displacement field
w of the fluid relative to the solid.

4 The fabric tensor

The fabric tensor employed is a quantitative stereologi-
cal measure of the degree of structural anisotropy in the
pore architecture of a porous medium. It is shown that the

undrained elastic constants may be expressed as functions of
the fabric tensor, the drained elastic constants, the porosity,
the bulk moduli of the fluid and the matrix material.

The experimental procedure for the surface area orienta-
tion measurement of cancellous bone is described by White-
house (1974a), Whitehouse and Dyson (1974b), Harrigan
and Mann (1984) and Turner and Cowin (1987), Turner et al.
(1990). The work of these authors, and Odgaard (1997a),
Odgaard (2001), Odgaard et al. (1997b), Van Rietbergen et al.
(1996), Van Rietbergen et al. (1998), Yang et al. (1999),
Matsuura et al. (2008) and others, has shown that the fab-
ric tensor is a good measure of the structural anisotropy in
cancellous bone tissue (Cowin 1997). The methodology of
making measurements is easily adapted to an automated com-
putational system as shown by Harrigan and Mann (1984)
and Turner et al. (1990).

F denotes the fabric tensor, which is dimensionless. It is
symmetric, F = FT , and, as with any second rank tensor,
the invariants I, I I and III are related to the traces of F, F2

and F3 by the formulas recorded, for example, in Ericksen
(1960):

I = trF, I I = 1

2
{(trF)2 − trF2},

(33)
I I I = 1

6
{trF − 3trF2 + 2trF3}.

The fact that a matrix satisfies its own characteristic equa-
tion, the Cayley–Hamilton theorem, is then written in the
form:

F3 − I F2 + I I F − I I I 1 = 0. (34)

The significance of this result is that any power of F of the
order three or higher may be eliminated by repetitive use of
this result. From the first and second equations of (33), one
can see that trF2 = I 2 − 2I I . Using the Cayley–Hamilton
theorem, it is easy to show that

trF3 = I 3 − 3I · I I + 3I I I and
(35)

trF4 = I 4 − 3I 2 · I I + 2I I 2 + 4I · I I I ;

these results will be used in the following paragraphs. Finally,
we normalize the fabric tensor by setting I = trF = 1. Thus,
in the applications of the formulas trF2 = I 2−2I I and (35),
I is replaced by 1.

The relationship between the fourth rank tensor of elas-
tic constants of a porous, anisotropic, linear elastic material
and stereological parameters characterizing the anisotropy of
the microstructure of the material was presented by Cowin
(1985). If it is assumed that the fourth-rank elastic compli-
ance tensor is a function only of the fabric tensor and some
scalar parameters, then, using tensor algebra, it can be shown,
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Cowin (1985), that the relationship between the fourth-rank
elastic compliance tensor and the fabric tensor is

Si jkm = a1δi jδkm + a2(Fi jδkm + δi j Fkm)

+a3(δi j Fkq Fqm + δkm Fiq Fq j )

+b1 Fi j Fkm + b2(Fi j Fkq Fqm + Fkm Fiq Fq j )

+b3 Fis Fs j Fkq Fqm + c1(δkiδmj + δmiδk j )

+c2(Fkiδmj + Fkjδmi + Fimδk j + Fmjδki )

+c3(Fir Frkδmj + Fkr Fr jδmi + Fir Frmδk j

+Fmr Fr jδik) (36)

where a1, a2, a3, b1, b2, b3, c1, c2 and c3 are functions of φ

and the two invariants of F, II and III given by (33), and where
φ is the porosity or solid volume fraction of the material. The
least elastic material symmetry for which the representation
holds is orthotropy. It therefore holds for transverse isotropy
and isotropy as well as orthotropy. The symmetry of the mate-
rial is orthotropic if the three eigenvalues of F are distinct,
transverse isotropy if only two are distinct and isotropy if all
three eigenvalues are equal.

As noted earlier, the result (36) is based on the assumption
that the matrix material is isotropic and that the anisotropy of
the solid porous material is determined by the fabric tensor.
In the case of cancellous bone, the validity of that assump-
tion has been experimentally verified by the work of Odgaard
et al. (1997b). These authors concluded that the elastic and
fabric main directions coincide in cancellous bone; cancel-
lous bone is an elastic, highly porous material. Odgaard
et al. (1997b) make the following remark: “Cowin’s fabric
mechanics relations (Cowin 1985, 1986) (Eq. 36) implic-
itly assume mechanical and fabric main directions must be
aligned. This may seem an intuitively acceptable assumption,
but experiment support has not previously been given.” The
fact that the mechanical and fabric main directions coincide
in (36) is a direct algebraic consequence of the constitutive
assumption that the stress is an isotropic function of the strain
tensor and the normalized fabric tensor only. An explicit
meaning of this assumption is that only architectural fea-
tures measured by the normalized fabric tensor measure, and
not by any other features determine the mechanical anisot-
ropy of the material. This same assumption is explicit in the
related computation work of Van Rietbergen et al. (1996),
and thus in Odgaard et al. (1997b). The experimental result
of Odgaard et al. (1997b) is thus a possible justification for
the assumption of isotropy for the matrix material. This does
not mean that the matrix material is isotropic, it only means
that there is little or no error in assuming that it is isotropic
in the relationship (36).

The dependence of the drained compliance tensor upon
fabric is, from (36),

Sd
i jkm = asd

1 δi jδkm + asd
2 (Fi jδkm + δi j Fkm)

+asd
3 (δi j Fkq Fqm + δkm Fiq Fq j )

+bsd
1 Fi j Fkm + bsd

2 (Fi j Fkq Fqm + Fkm Fiq Fq j )

+bsd
3 Fis Fs j Fkq Fqm + csd

1 (δkiδmj + δmiδk j )

+csd
2 (Fkiδmj + Fkjδmi + Fimδk j + Fmjδki )

+csd
3 (Fir Frkδmj + Fkr Fr jδmi + Fir Frmδk j

+Fmr Fr jδik). (37)

The three Young’s moduli and the three shear moduli are
expressed in terms of the porosity φ and the principal values
of the fabric Fi , i = 1, 2, 3 (see appendix).

1

Ei
= 1

Es

[
ksd

1 + 2ksd
6 +

(
ksd

2 + 2ksd
7

)
I I

+2
(

ksd
3 + 2ksd

8

)
Fi +

(
2ksd

4 + ksd
5 + 4ksd

9

)
F2

i

]
(38)

and

1

Gi j
= 1

Gs

[
ksd

6 +ksd
7 I I +ksd

8

(
Fi +Fj

)+ksd
9

(
F2

i +F2
j

)]
(39)

where the coefficients ksd
1 through ksd

9 were originally
expressed (Turner et al. 1990) in terms of the apparent or bulk
density, which is equal to (1−φ) times the solid bone matrix
density, and here redefined in the appendix. The expressions
above specify the fabric and porosity dependence of six of
the nine distinct elastic constants of orthotropic symmetry;
the missing three are those that involve Poisson’s ratios,
ν12
E1

= ν21
E2

, ν13
E1

= ν31
E3

and ν32
E3

= ν23
E2

, which are then deter-
mined from:

vi j = −Ei

[
ksd

1 + ksd
2 I I + ksd

3

(
Fi + Fj

)
+ksd

4

(
F2

i + F2
j

)
+ ksd

5 Fi Fj

]
. (40)

The form of the functional dependence of the drained elas-
ticity tensor upon fabric is the same as compliance given by
(37), but with different scalar valued functions of φ, I I and
III, thus

Cd
i jkm = acd

1 δi jδkm + acd
2 (Fi jδkm + δi j Fkm)

+ acd
3 (δi j Fkq Fqm + δkm Fiq Fq j )

+ bcd
1 Fi j Fkm + bcd

2 (Fi j Fkq Fqm + Fkm Fiq Fq j )

+ bcd
3 Fis Fs j Fkq Fqm + ccd

1 (δkiδmj + δmiδk j )

+ ccd
2 (Fkiδmj + Fkjδmi + Fimδk j + Fmjδki )

+ ccd
3 (Fir Frkδmj + Fkr Fr jδmi + Fir Frmδk j

+ Fmr Fr jδik). (41)
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Recall that the Biot effective stress coefficient tensor Ai j

is related to the difference between effective drained elastic
constants Cd

i jkm and the solid matrix material elastic compli-

ance tensor Sm
i jkm by the formula (7), where Cd

i jkm is expressed
in terms of the fabric tensor by (41) above and Sm

i jkm is not a
function of the fabric tensor because it represents the elastic
constants of the matrix material. Recall that the result (37)
was based on the assumption that the matrix material is iso-
tropic and that the anisotropy of the solid porous material
is determined by the fabric tensor; thus, we express Sm

i jkm in
terms of the bulk modulus and the shear modulus, K m and
G, respectively:

Sm
i jkm = 1

2G

(
δikδ jm − 1

3
δi jδkm

)
+ 1

9K m
δi jδkm . (42)

The form of Sm
i jkm that appears in (7) is Sm

kmqq and it is given
by (42) as

Sm
kmqq = 1

3K m
δkm . (43)

Substituting (42) and (37) into (7) and simplifying, one
finds that the Biot effective stress coefficient tensor Ai j is
related to the fabric tensor F by

Ai j = δi j − 1

3K m
{acd

o δi j + acd
I Fi j + acd

I I Fiq Fq j } (44)

where

acd
o = 3acd

1 + acd
2 + acd

3 (1 − 2I I ) + 2ccd
1 ,

acd
I = 3acd

2 + bcd
1 + bcd

2 (1 − 2I I ) + 4ccd
2 (45)

acd
I I = 3acd

3 + bcd
2 + bcd

3 (1 − 2I I ) + 4ccd
3 .

The open product of Ai j with itself, an expression that
occurs in the formula relating Ai jkm and Cd

i jkm , is from (43)

Ai j Akm =
{(

1 − acd
o

3K m

)2

δi jδkm

−
(

1 − acd
o

3K m

)
acd

I

3K m
(δi j Fkm + Fi jδkm)

−
(

1 − acd
o

3K m

)
acd

I I

3K m
(δi j Fkq Fqm + Fiq Fq jδkm)

+
(

acd
I

3K m

)2

Fi j Fkm + acd
I acd

I I

(3K m)2 (Fi j Fkq Fqm

4pt] + Fiq Fq j Fkm) +
(

acd
I I

3K m

)2

Fiq Fq j Fkq Fqm .

(46)

Complete contraction of (46) yields trA2, a quantity that
appears in all the equations of (24) for Biot’s parameters

M, Mi j and Ai jkm ,

trA2 = 3

(
1 − acd

o

3K m

)2

− 2

(
1 − acd

o

3K m

)
ad

I I

−
⎧⎨
⎩2

acd
I I

3K m
− 2

acd
o acd

I I

(3K m)2 +
(

acd
I

3K m

)2
⎫⎬
⎭ (1 − 2I I )

+ acd
I acd

I I

(3K m)2 (1 − 3I I + 3I I I )

+
(

acd
I I

3K m

)2

(1 − 3I I + 2I I 2 + 4I I I ). (47)

Biot’s parameters Mi j and Ai jkm are related to Cd
ef f , Ai j

and Cd
i jkm above by Eq. (24). Formulas relating Mi j and

Ai jkm directly to the fabric tensor F will now be obtained
by using the formula (40) above expressing Cd

i jkm in terms
of the fabric tensor and the expression (44) relating Ai j to
fabric, thus

Mi j = Mδi j − M

3K m
{acd

o δi j + acd
I Fi j + acd

I I Fiq Fq j }, (48)

and

Ai jkm =
(

acd
1 + M

(3K m − ad
o )2

(3K m)2

)
δi jδkm

+
(

acd
2 − M(3K m − ad

o )ad
I

(3K m)2

)
(Fi jδkm + δi j Fkm)

+
(

acd
3 − M

(3K m − acd
o )acd

I I

(3K m)2

)
(δi j Fkq Fqm

+δkm Fiq Fq j ) +
(

bcd
1 + M

(acd
I )2

(3K m)2

)
Fi j Fkm

+
(

bcd
2 + M

acd
I acd

I I

(3K m)2

)
(Fi j Fkq Fqm + Fkm Fiq Fq j )

+
(

bcd
3 + M

(acd
I I )

2

(3K m)2

)
Fis Fs j Fkq Fqm

+ccd
1 (δkiδmj + δmiδk j )

+ccd
2 (Fkiδmj + Fkjδmi + Fimδk j + Fmjδki )

+ccd
3 (Fir Frkδmj + Fkr Fr jδmi + Fir Frmδk j

+Fmr Fr jδik). (49)
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5 Wave propagation in anisotropic porous media

The propagation of a plane wave is represented kinematically
by a direction of propagation, denoted by n, a unit normal
to the wave front, and a orb, which are the directions of
displacement for the wave fronts associated with u and w,
respectively. These two plane waves are represented by

u(x, t) = aeiω( n·x
v

−t) = aei((k+iα)n·x−ωt)

= ae−αn·xei(kn·x−ωt)

w(x, t) = beiω( n·x
v

−t) = bei((k+iα)n·x−ωt)

= be−αn·xei(kn·x−ωt), (50)

where v is the wave phase velocity in the direction n, x is
the position vector, ω is the frequency, and t is time. The
relationship between the phase velocity v and frequency ω

of attenuating waves is a complex quantity, here represented
by kRe + iαI m ,

v = ω

kRe + iαI m
. (51)

The imaginary part α is related to the wave attenuation
as a function of traveled distance (e−αn·x) and the real part
k describes the wave vector and points in the direction n.
A transverse wave is characterized by a · n = 0, a longi-
tudinal wave by a · n = 1. Substituting the representations
(50) for the plane waves into the field Eqs. (31) and (32)
one obtains equations that are in Biot (1962a,b) and Sharma
(2005, 2008) and many other places,

(Qik − ρv2δik)ak + (Cik − ρ f v
2δik)bk = 0, (52)

(Qik − ρv2δik)ak + (Cik − ρ f v
2δik)bk = 0, (53)

where the following notation has been introduced:

Qik = Ai jkmnmn j , Cik = Mi j n j nk, (54)

Q is the acoustical tensor from elastic wave propagation
and C represents the interaction of the velocity fields’ u and
w. Rewritten in matrix notation Eqs. (53) and (54) take the
form

(Q − ρv21) · a + (C − ρ f v
21) · b = 0, (55)

(C − ρ f v
21) · a+

(
Mn ⊗ n − ρ f v

2
{

J+ iμ

ω
R
})

· b=0.

(56)

Equations (55) and (56) represent an eigenvalues problem,
the squares of the wave speeds v2 representing the eigen-
values and the vectors a and b representing the eigenvectors.
Rewriting Eqs. (55) and (56) as a 6 by 6 matrix formed from

the four 3 by 3 matrices that appear in (55) and (56) and also
representing the two 3D vectors a and b as one 6D vector,
the following representation is obtained:

⎡
⎣ Q−ρv21 C−ρ f v

21

CT −ρ f v
21 Mn ⊗ n−ρ f v

2
{

J+ iμ
ω

R
}
⎤
⎦
[

a

b

]
= 0.

(57)

The equation above (57) is a generalization of the Chris-
toffel equation (Mason 1958; Auld 1973) in anisotropic elas-
tic wave propagation to the poroelastic case, the poroelastic
Christoffel equation is a possible name for this result. Since
the right-hand side of this linear system of equations is a zero
6D vector, it follows from Cramer’s rule that, in order to avoid
the trivial solution, it is necessary to set the determinant of
the 6 by 6 matrix equal to zero, thus

∣∣∣∣∣∣
Q−ρv21 C−ρ f v

21

CT −ρ f v
21 Mn ⊗ n−ρ f v

2
{

J+ iμ
ω

R
}
∣∣∣∣∣∣=0. (58)

5.1 Fabric dependence of tensors Q, C, J and R

Formulas relating the acoustic tensor Q, the flow resistivity
tensor R and the tensor C, representing the interaction of the
velocity fields u and w, to the fabric tensor F are obtained in
this subsection.

The dependence of the elastic acoustic tensor Q upon the
fabric tensor F is obtained by substituting (49) into the first
of (54); the result is presented in the following paragraph in
three different, but equivalent, notations.

Qik = (ccd
1 + ccd

2 Fmj nmn j + ccd
3 Fmr Fr j nmn j )δki

+q1ni nk + ccd
2 Fki + q2(Fi j n j nk + Fkmnmni )

+ccd
3 (Fir Frk + Fkr Fr j n j ni + Fir Frmnmnk)

+q3(Fkq Fqmnmni + Fiq Fq j n j nk)

+q4 Fi j n j Fkmnm + q5(Fi j n j Fkq Fqmnm

+Fkmnm Fiq Fq j n j ) + q6 Fis Fs j n j Fkq Fqmnm,

(59a)

Q = (ccd
1 + ccd

2 tr{F · n ⊗ n} + ccd
3 tr{F2 · n ⊗ n})1

+q1n ⊗ n + ccd
2 F + q2(F · n ⊗ n + n ⊗ n · F)

+ccd
3 F2 + q3(F2 · n ⊗ n + n ⊗ n · F2)

+q4F · n ⊗ F · n

+q5(F · n ⊗ F2 · n + F2 · n ⊗ F · n)

+q6F2 · n ⊗ F2 · n, (59b)
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and in the principal coordinate system of the fabric tensor,

Q = (ccd
1 + ccd

2 (F1n2
1 + F2n2

2 + F3n2
3)

+ccd
3 (F2

1 n2
1 + F2

2 n2
2 + F2

3 n2
3))

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

+q1

⎡
⎢⎢⎣

n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

⎤
⎥⎥⎦ + ccd

2

⎡
⎢⎢⎢⎣

F1 0 0

0 F2 0

0 0 F3

⎤
⎥⎥⎥⎦

+q2

⎡
⎢⎢⎢⎣

2F1n2
1 (F1 + F2)n1n2 (F1 + F3)n1n3

(F1 + F2)n1n2 2F2n2
2 (F2 + F3)n2n3

(F1 + F3)n1n3 (F2 + F3)n2n3 2F3n2
3

⎤
⎥⎥⎥⎦

+ccd
3

⎡
⎢⎢⎢⎣

F2
1 0 0

0 F2
2 0

0 0 F2
3

⎤
⎥⎥⎥⎦

+q3

⎡
⎢⎢⎢⎣

2F2
1 n2

1 (F2
1 + F2

2 )n1n2 (F2
1 + F2

3 )n1n3

(F2
1 + F2

2 )n1n2 2F2
2 n2

2 (F2
2 + F2

3 )n2n3

(F2
1 + F2

3 )n1n3 (F2
2 + F2

3 )n2n3 2F2
3 n2

3

⎤
⎥⎥⎥⎦

+q4

⎡
⎢⎢⎢⎣

F2
1 n2

1 F1 F2n1n2 F1 F3n1n3

F1 F2n1n2 F2
2 n2

2 F2 F3n2n3

F1 F3n1n3 F2 F3n2n3 F2
3 n2

3

⎤
⎥⎥⎥⎦

+q5

⎡
⎢⎢⎢⎣

2F3
1 n2

1 (F1 F2
2 +F2 F2

1 )n1n2 (F1 F2
3 +F3 F2

1 )n1n3

(F1 F2
2 +F2 F2

1 )n1n2 2F3
2 n2

2 (F3 F2
2 +F2 F2

3 )n2n3

(F1 F2
3 +F3 F2

1 )n1n3 (F3 F2
2 +F2 F2

3 )n2n3 2F3
3 n2

3

⎤
⎥⎥⎥⎦

+q6

⎡
⎢⎢⎢⎣

F4
1 n2

1 F2
1 F2

2 n1n2 F2
1 F2

3 n1n3

F2
1 F2

2 n1n2 F4
2 n2

2 F2
2 F2

3 n2n3

F2
1 F2

3 n1n3 F2
2 F2

3 n2n3 F4
3 n2

3

⎤
⎥⎥⎥⎦ , (59c)

where

q1 = ccd
1 + acd

1 + M
(3K m − ad

o )2

(3K m)2 ,

q2 = ccd
2 + acd

2 − M(3K m − ad
o )ad

I

(3K m)2 ,

q3 = ccd
3 + acd

3 − M
(3K m − ad

o )ad
I I

(3K m)2 , (60)

q4 = bcd
1 + M

(ad
I )2

(3K m)2 ,

q5 = bcd
2 + M

ad
I ad

I I

(3K m)2 ,

q6 = bcd
3 + M

(ad
I I )

2

(3K m)2 .

The six quantities defined in (60) are scalar-valued functions
of φ, I I and I I I .

The formula for the tensor C is obtained by substituting
(25) into (54) and then employing (44), thus

Cik = Mni nk − M

3K m

{
acd

o ni +acd
I Fi j n j +acd

I I Fiq Fq j n j

}
nk .

(61)

The micro-macro velocity average tensor J is related to the
fabric by

Ji j = j1δi j + j2 Fi j + j3 Fiq Fq j , (62)

where j1, j2, and j3 are functions of φ, I I and I I I . Sim-
ilarly, The flow-resistivity tensor R, is related to the fabric
by

Ri j = r1δi j + r2 Fi j + r3 Fiq Fq j , (63)

where r1, r2, and r3 are functions of φ, I I and III, and R is
equivalent to the inverse of the second-rank intrinsic perme-
ability tensor K.

5.2 Tortuosity, fabric, frequency dependence

The relationship between the second-rank intrinsic perme-
ability tensor K, introduced in Darcy’s Law, Eq. (11), and the
fabric tensor F is obtained by assuming that K is an isotro-
pic function of F. The relationship between two second-rank
symmetric tensors in which one is an isotropic function of
the other then produces the relationship

Ki j = k1δi j + k2 Fi j + k3 Fiq Fq j . (64)

This permeability tensor can be rewritten using the intrinsic
permeability κ0 as

Ki j = κ0
(
K1δi j + K2 Fi j + K3 Fiq Fq j

)
. (65a)

where Ki j is the intrinsic permeability which is represen-
tative of the geometry of the porous medium only, not the
fluid, and K1, K2, and K3 are functions of φ, I I and III. The
hydraulic permeability Ki j/μ differs from the intrinsic per-
meability where μ is the pore fluid viscosity. We introduce
the symbol κ0 to represent the value of the intrinsic perme-
ability tensor when it is averaged over all possible directions
at a point,

κ0 = π2

2

(
2K1 + K2trF + K3tr [F · FT ]

)
(65b)
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and rewrite (64) as

Ki j = κ0

(
K A

1 δi j + K A
2 Fi j + K A

3 Fiq Fq j

)
, (65c)

where

K A
i = Ki

κ0
, i = 1, 2, 3. (65d)

The fabric tensor describes the configuration and orienta-
tion of the flow paths and the average intrinsic permeability
κ0 is proportional to the squared average diameter of the
pores, d, through which the fluid moves:

κ0 ∝ d2. (66)

The tensor K takes into account dissipation phenom-
ena due to viscous losses as shown in (53); however, this
expression (65a) for permeability is adequate only for low
frequencies of fluid motion and needs to be corrected to
take into account the change in fluid flow regime occur-
ring between low and high frequencies of wave propaga-
tion. This correction was originally introduced by Johnson
et al. (1987) describing a dynamic permeability in a porous
medium system characterized by orthogonally intersected
tubes.

Ki j (ω) = κ0

[
1 − 2

J1 (dχ)

dχ J0 (dχ)

]
× (

K1δi j + K2 Fi j + K3 Fiq Fq j
)
. (67)

The dynamic permeability tensor K is then described
as a function of the average intrinsic permeability κ0, the
fabric tensor and Bessel functions that characterize the
dynamics of the oscillatory fluid flow inside a cylindri-
cal channel. In this equation, J1 and J0 are, respectively,
the first order and zeroth order Bessel functions of the
first kind; d corresponds to the average characteristic pore
dimension; and the inverse of the viscous skin depth χ

is defined as a function of the angular frequency ω, the
fluid mass density ρ f and the dynamic viscosity of the
fluid μ:

χ =
(

iωρ f

μ

)1/2

. (68)

The motion of the viscous fluid relative to the solid is
characterized by the velocity gradient profile perpendicular
to the pore wall, as a consequence of the viscous proper-
ties of the fluid. If the characteristic thickness of the vis-
cous layer (viscous skin depth) is greater than the pore
diameter d, the resulting velocity profile will be parabolic
throughout the pore lumen and the fluid flow will be Poiseu-
ille flow. However, as the frequency increases, the viscous
skin depth becomes smaller than the pore radius, and the
profile of the fluid flow is no longer parabolic. A conse-
quence of this change in the fluid flow regime into the pore
is the existence of a critical frequency fcrit = μ/πρ f d2,

distinguishing the frequency regions where the slow wave
may theoretically propagate. In the low-frequency regime
(below ωcrit = 2π fcrit), the viscous coupling phenome-
non dominates over the inertial one, locking together fluid
and solid displacements, and thus hampering the genesis
of the slow wave. However, at high frequencies, the vis-
cous coupling phenomenon becomes much less important
than the inertial one, and the relative movement between
fluid and solid is no longer impeded. Above this critical fre-
quency, both fast and slow waves may be expected to prop-
agate.

The inverse of the second-rank intrinsic permeability ten-
sor K, the flow-resistivity tensor R, is related to the fabric in
the situation representing the frequency dependence by (63)
where

ri (ω, φ, I I, I I I ) = r A
i (φ, I I, I I I )

κ0

[
1 − 2 J1(dχ)

dχ J0(dχ)

] , (69)

Ri j (ω) = 1

κ0

[
1 − 2 J1(dχ)

dχ J0(dχ)

] (r1δi j + r2 Fi j + r3 Fiq Fq j ),

(70)

where the r A
i , i = 1, 2, 3, are functions of φ, I I and III.

Following Johnson et al. (1987) and Perrot et al. (2008) the
tortuosity tensor A(ω) is introduced

ρ f A(ω) · ∂v
∂t

= −∇ p,

(
ρ f Ai j (ω)

∂v j

∂t
= − ∂p

∂xi

)
, (71)

and using Darcy’s law (26) it follows that,

A(ω) = iμφ

ωρo
K−1(ω) = iμφ

ωρo
R(ω), (72)

if we assume that v = constant · e−iωt . From (62) and (70)
it follows that

Ai j (ω) = iμφ

ωρo
(r1δi j + r2 Fi j + r3 Fiq Fq j ), (73)

establishing a connection between the tortuosity tensor and
the fabric tensor in the case of harmonic wave propagation,
where the ri are given by (69). We have not explored this rela-
tionship yet, but we anticipate that this relationship will yield
relationships between the tortuosity tensor and the curvature
and torsion of the fluid channels in the porous material.

6 Propagation of waves along the principal axes of
symmetry in orthotropic porous media

6.1 Phase velocity and phase direction

In this section, the solution is developed for waves that prop-
agate in the direction of a principal axis of the fabric tensor.
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The direction of propagation is selected to be the one direc-
tion, thus F and n are given by

n = {1, 0, 0} and F =
⎡
⎣ F1 0 0

0 F2 0
0 0 F3

⎤
⎦ , (74)

and the displacement vectors reduce to

u(x, t)=aeiω(
x1
v

−t) =aei((k+iα)x1−ωt) =ae−αx1 ei(kx1−ωt),

w(x, t)=beiω(
x1
v

−t) =bei((k+iα)x1−ωt) =be−αx1 ei(kx1−ωt).

(75)

The solution to the problem is the solution of the 6 by 6
system of equations given by (58), thus the values of the ten-
sors J, R, C and Q in the coordinate system of the principal
axes of the fabric tensor and at the vector n = {1, 0, 0} are
determined first. Under these conditions, J and R are given
by

J =
⎡
⎣ J11 0 0

0 J22 0
0 0 J33

⎤
⎦ , R =

⎡
⎣ R11 0 0

0 R22 0
0 0 R33

⎤
⎦ , (76)

where R and J are given by (62) and (63), thus

J =

⎡
⎢⎢⎣

j1+ j2 F1+ j3 F2
1 0 0

0 j1+ j2 F2+ j3 F2
2 0

0 0 j1+ j2 F3+ j3 F2
3

⎤
⎥⎥⎦ ,

R =

⎡
⎢⎢⎣

r1+r2 F1+r3 F2
1 0 0

0 r1+r2 F2+r3 F2
2 0

0 0 r1+r2 F3+r3 F2
3

⎤
⎥⎥⎦
(77)

C is given by (61) as

Cik = Mni nk − M

3K m
{acd

o ni +acd
I Fi j n j +acd

I I Fiq Fq j n j }nk,

C =

⎡
⎢⎢⎣

C11 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ , (78)

and Q is given by (59c) as

Q = (ccd
1 + ccd

2 F1 + ccd
3 F2

1 )

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ + q1

⎡
⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+ ccd
2

⎡
⎢⎢⎢⎣

F1 0 0

0 F2 0

0 0 F3

⎤
⎥⎥⎥⎦ + q2

⎡
⎢⎢⎢⎣

2F1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+ccd
3

⎡
⎢⎢⎢⎣

F2
1 0 0

0 F2
2 0

0 0 F2
3

⎤
⎥⎥⎥⎦ + q3

⎡
⎢⎢⎢⎣

2F2
1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+q4

⎡
⎢⎢⎢⎣

F2
1 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ + 2q5

⎡
⎢⎢⎢⎣

I F2
1 − I I F1 + I I I 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

+q6

⎡
⎢⎢⎢⎣

(I•I − I I )F2
1 −(I•I I − I I I )F1+ I•I I I 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

Q11 0 0

0 Q22 0

0 0 Q33

⎤
⎥⎥⎦ , (79)

where

Q11 = q11
o + q11

1 F1 + q11
2 F2

1 ,

Q22 = ccd
1 + ccd

2 (F2 + F1) + ccd
3 (F2

2 + F2
1 ) (80)

Q33 = ccd
1 + ccd

2 (F3 + F1) + ccd
3 (F2

3 + F2
1 ),

and where

q11
o = ccd

1 + q1 + 2I I I q5 + q6 I•I I I,

q11
1 = 2ccd

2 + 2q2 − 2I I q5 − q6(I•I I − I I I ), (81)

q11
2 = 2ccd

3 + 2q3 + q4 + 2I q5 + (I•I − I I )q6.

In the coordinate system of the principal axes of the fabric
tensor and at the vector n = {1, 0, 0}, the four 3 by 3 sub-
matrices that form the 6 by 6 matrix in Eq. (58) are given
by

Q − ρv21 =

⎡
⎢⎢⎣

Q11 − ρv2 0 0

0 Q22 − ρv2 0

0 0 Q33 − ρv2

⎤
⎥⎥⎦ ,

(82)

C − ρ f v
21 = CT − ρ f v

21

=
⎡
⎢⎣

C11 − ρ f v
2 0 0

0 −ρ f v
2 0

0 0 −ρ f v
2

⎤
⎥⎦ , (83)
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Mn ⊗ n − ρ f v
2{J + iμ

ω
R}

=

⎡
⎢⎢⎣

M − ρ f v
2{J11 + iμ

ω
R11} 0 0

0 −ρ f v
2{J22 + iμ

ω
R22} 0

0 0 −ρ f v
2{J33 + iμ

ω
R33}

⎤
⎥⎥⎦ . (84)

Substitution of the four 3 by 3 matrices above into the 6 by
6 determinant (58) reveals that the result may be expressed
as three 2 by 2 matrices for the three sets of components,
{a1, b1}, {a2, b2} and {a3, b3};⎡
⎣ Q11 − ρv2 C11 − ρ f v

2

C11 − ρ f v
2 M − ρ f v

2{J11 + iμ
ω

R11}

⎤
⎦[

a1

b1

]
= 0,

⎡
⎣ Q22 − ρv2 −ρ f v

2

−ρ f v
2 −ρ f v

2{J22 + iμ
ω

R22}

⎤
⎦
[

a2

b2

]
= 0, (85)

⎡
⎣ Q33 − ρv2 −ρ f v

2

−ρ f v
2 −ρ f v

2{J33 + iμ
ω

R33}

⎤
⎦[

a3

b3

]
= 0.

Requiring that the determinants of these 2 by 2 matrices van-
ish yields four non-trivial solutions for the squared wave
speed v2. The vanishing of the first of the determinants of
these 2 by 2 matrices provides two roots of a quadratic equa-
tion that represent the fast and the slow squared longitudinal
wave speeds. These speeds are given by

v2 = ω2

(k1 + iα1)2 , (86)

where the specific formulas for calculating k1 and α1 require
a hierarchy of substitutions specified by the following equa-
tions and the interposed text. k1 and α1 are given by

k1 = 1√
2

√√
k2

o + α2
o + ko, α1 = sgnαo√

2

√√
k2

o + α2
o − ko,

(87)

where the two possible values of both ko and αo are given by

ko =
2ρω2

[(
J11 − ρ f

ρ

) (
ρ
ρ f

M+ J11 − 2C11±k−1

)
+ μ

ω
R11

(
μ
ω

R11 Q11±α−1
)]

(
ρ
ρ f

M+ J11 − 2C11±k−1

)2+(
μ
ω

R11 Q11±α−1
)2

+αo =
2ρω2

[
μ
ω

R11

(
ρ
ρ f

M+ J11 − 2C11±k−1

)
− (

μ
ω

R11 Q11±α−1
) (

J11− ρ f
ρ

)]
(

ρ
ρ f

M+ J11−2C11±k−1

)2+(
μ
ω

R11 Q11±α−1
)2

, (88)

where the two possible values are determined by selecting
the + and − signs. The two roots correspond to the fast and
the slow longitudinal waves. The k−1 and α−1 appearing
in the formulas for ko and αo above are given by

k−1 = 1√
2

√√
k2−2 + α2−2 + k−2,

(89)

α−1 = sgnα−2√
2

√√
k2−2 + α2−2 + k−2,

where the k−2 andα−2 appearing in the aforementioned equa-
tion are given by

k−2 =
(

ρ

ρ f
M

)2

+ 2C2
11

ρ

ρ f
M

+2J11

(
Q11

(
ρ

ρ f
M − C2

11

)
+ 2C2

11
ρ

ρ f

)

+(Q11)
2
{
(J11)

2 −
(μ

ω
R11

)2
}

α−2 = 2
μ

ω
R11

(
Q11

(
ρ

ρ f
M − C2

11

)
+ J11 + 2C2

11
ρ

ρ f

)
.

(90)

Fortunately, the formulas for the shear waves are much sim-
pler. The vanishing of the second and third of the determi-
nants of the 2 by 2 matrices in (86) provide a zero root and
a non-zero root from each determinant. The two non-zero
roots are the squared shear wave speeds

v2 = Q22

ρ

J22 + iμ
ω

R22

J22 − ρ f
ρ

+ iμ
ω

R22
and

(91)

v2 = Q33

ρ

J33 + iμ
ω

R33

J33 − ρ f
ρ

+ iμ
ω

R33
.
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When the first of these are recast in the form of (51), k2

and α2 are given by

k2 = ω√
2

Q22
ρ

×

√√√√√√√
√√√√√√
⎧⎪⎨
⎪⎩
⎛
⎝1−

ρ f
ρ J22

J 2
22+(μ

ω R22
)2

⎞
⎠

2

+
( ρ f

ρ
μ
ω R22

)2

(
J 2
22+(μ

ω R22
)2)2

⎫⎪⎬
⎪⎭+

⎛
⎝1 −

ρ f
ρ J22

J 2
22+(μ

ω R22
)2

⎞
⎠,

α2 = ω√
2

Q22
ρ

×

√√√√√√√
√√√√√√
⎧⎪⎨
⎪⎩
⎛
⎝1−

ρ f
ρ J22

J 2
22+(μ

ω R22
)2

⎞
⎠

2

+
( ρ f

ρ
μ
ω R22

)2

(
J 2
22+(μ

ω R22
)2)2

⎫⎪⎬
⎪⎭−

⎛
⎝1−

ρ f
ρ J22

J 2
22+(μ

ω R22
)2

⎞
⎠,

(92)

and similar formulas apply for the recasting of the second of
(88); one need only replace the 2’s by 3’s in Eq. (92).

6.2 Wave polarization

The vectors a and b for the fast and slow waves are given by

a = {a1, 0, 0}b = {b1, 0, 0} (93)

where a1 and b1 are related by the following two equivalent
expressions for the fast wave

a1 = ρ f (v
2
o + c2

o − C11)

ρ(v2
o + c2

o) − ρ f Q11
(94)

b1 = (J11 + iμ
ω

R11)(v
2
o + c2

o) − M

v2
o + c2

o − C11
b1,

and the next two equivalent expressions for the slow wave,

a1 = ρ f (v
2
o − c2

o) − ρ f C11

ρ(v2
o + c2

o) − ρ f Q11
(95)

b1 = (J11 + iμ
ω

R11)(c2
o − v2

o) + M

c2
o − v2

o + C11
b1,

and for the two shear waves by

a = {0, a2, 0}b = {0, b2, 0}, a2 = −
(

J22 + iμ

ω
R22

)
b2,

and

a = {0, 0, a3}, b = {0, 0, b3}, a3 = −
(

J33 + iμ

ω
R33

)
b3,

(96)

respectively.

6.3 Numerical example applied to cancellous bone

The anisotropic poroelastic model of wave propagation is
now applied to the case of cancellous bone, and these numer-

ical results will be used to analyze fast and slow wave
velocity measurements from bovine and human bone sam-
ples previously reported (Cardoso et al. 2003). In order to
apply the model to cancellous bone, values of the fluid and
solid constituents of bone were obtained from the litera-
ture. Since the fluid saturating the cancellous bone struc-
ture in our experiments is water, the fluid mass density
ρ f = 1, 000 Kg/m3, bulk modulus K f = 2.25 GPa and
viscosity μ = 1 × 10−3 Pa s. Furthermore, the mass density
of the solid tissue in trabecular bone ρs , has been reported
to vary between 1,800 and 2, 200 Kg/m3 (Ashman and Rho
1988; Nicholson et al. 1997; Morgan et al. 2003) depending
on the tissue mineral density of the sample being measured.
Likewise, the Young’s elastic modulus of the mineralized
matrix, Es , has been determined using acoustic micros-
copy and nanoindentation (Turner et al. 1999; Jorgensen and
Kundu 2002; Rho et al. 1997, 1999; Roy et al. 1999; Zysset
et al. 1999; Hoffler et al. 2000a,b; Hengsberger et al. 2001,
2002), exhibiting values ranging from 11.4 to 22.7 GPa. Spe-
cifically, the Es value measured in the circumferential direc-
tion varies between 13.5 and 16 GPa, and in the longitudinal
direction the Es value varies between 19 and 23 GPa. These
values of Es obtained at the subtrabecular scale are close
to the classical values measured for cortical bone, which
are 15 GPa in the circumferential direction and 20 GPa in
the longitudinal direction. This large variability reported in
the literature for Es is certainly due to the intrinsic variabil-
ity of the tissue mineralization and organic composition, but
may also be a consequence of using estimation approaches
based on different assumptions (boundary conditions, geom-
etry, homogeneity), and experimental conditions (tempera-
ture, tissue dehydration, strain rate, size scale). The values
for the material properties of the solid and fluid constituents
of bone considered in our numerical results are summarized
in Table 1.

In addition to the material properties of the solid and fluid
constituents of bone, the model requires the value of the
average, or effective, pore diameter d and the average intrin-
sic permeability κ0 as a function of the porosity. Histomor-
phometrical studies on cancellous bone have reported pore

Table 1 Bone tissue modulus, mass density and fluid viscosity of fluid
in bone

Parameter Symbol Value Units

Young’s elastic modulus of the solid E s 18 GPa

Mass density of the solid ρs 2000 Kg/m3

Mass density of the fluid ρf 1000 Kg/m3

Fluid bulk modulus K f 2.25 GPa

Fluid viscosity μ 1 × 10−3 Pa s

Pore size–porosity
proportionality constant in Eq. (96) c 5 × 10−5 m
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Fig. 1 Pore diameter d as a function of porosity (a) and intrinsic permeability κ0 as a function of porosity (b)

Fig. 2 Phase velocity as a function of porosity of the four wave modes in isotropic bone medium (a), and along the axes of symmetry in orthotropic
bone sample (b)

sizes (trabecular spacing) ranging from 300 to 2, 200 μm for
samples between 52 and 96% porosity (Parfitt et al. 1983;
Rehman et al. 1994; Hildebrand et al. 1999; Glorieux et al.
2000). Furthermore, the pore size in 5–10% porosity cortical
bone tissue is considered to vary around 20 to 60μm, which
corresponds to the pore size of Haversian canals (Jones et al.
2004; Basillais et al. 2007). Based on such bounds, the fol-
lowing empirical relationship for the pore diameter d as a
function of the porosity is proposed:

d (φ) = c [φ/(1 − φ)] (97)

where c is a constant of proportionality, in this study chosen
equal to 5 × 10−5 m, which leads to a variation of the pore
diameter as a function of porosity (Fig. 1a) that corresponds
to the bounds previously mentioned. It is important to notice
that this is just an approximation to relate the variation of the
average pore size with the porosity, but that such relationship
may be different and much more complex. This aspect would
be further explored in the near future by the authors.

Based on the pore size–porosity relationship (97), the
dependence of the intrinsic permeability on the effective pore
size κ0 = d2 (Bear 1988), can be transformed to be depen-

dent on the porosity as well κ0 (φ) = c2 [φ/(1 − φ)]2. Pre-
dictions of the intrinsic permeability are shown in Fig. 1b,
and exhibit a large variability that coincides with studies
reporting experimental measurements of the permeability
κ0(1 × 10−12 − 1 × 10−7m2) on cancellous bone (Lim and
Hong 2000; Grimm and Williams 1997b; Nauman et al. 1999;
Kohles et al. 2001; Kohles and Roberts 2002; Baroud et al.
2004; Beaudoin et al. 1991; Li et al. 1987). The variability
of the intrinsic permeability in porous media is due to the
dependence of the permeability on the porosity (Grimm and
Williams 1997b; Nauman et al. 1999) and the microstruc-
ture of the sample (Nauman et al. 1999; Kohles et al. 2001;
Kohles and Roberts 2002; Baroud et al. 2004).

6.4 Phase velocity as a function of porosity

The phase velocities of the two longitudinal modes of wave
propagation along the axes of symmetry of an isotropic
bone specimen (Fig. 2a) and an orthotropic bone specimen
(Fig. 2b) are shown as functions of the porosity in Fig. 2.
The fast wave velocity (squares) depicted in Fig. 2a line-
arly decrease as the porosity increases from zero to 80%;
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Fig. 3 a Fast (squares) and slow (diamonds) wave velocities aver-
aged over three orthogonal directions on each sample plotted as a
function of bone porosity, compared to the theoretical fast (solid)
and slow wave velocities (dashed) in isotropic medium; b Fast wave
velocity (squares) and slow wave velocity data (diamonds) measured

in three orthogonal directions on each sample plotted as a function
of the measured bone porosity, and comparison with the theoretical
fast (solid) and slow wave velocities (dashed) in anisotropic bone
(F1 = 1.05, F2 = 1.1, F3 = 1.15)

conversely, the slow wave velocity (diamonds) increase with
the porosity within the same range of porosity. However, this
monotonic behavior changes drastically for porosities higher
than about 80%, and the fast wave velocity becomes almost
constant and independent of the porosity. At the same high
porosity level, the slow wave velocity shows a clear inflexion,
becoming inversely related to the porosity. It is important to
notice that in addition to being independent of the porosity,
the fast wave at high porosity exhibits velocity values equal
to the wave propagation in the fluid saturating the pores, the
velocity of sound in water (vfluid = 1480–1500 m/s).

Figure 2b is presented to illustrate the much greater var-
iability possible with an orthotropic material compared to
the isotropic material illustrated in Fig. 2a. In Fig. 2b, the
two longitudinal wave modes are shown propagating along
all three axes of symmetry of an orthotropic bone sample.
Anisotropy is characterized by three distinct principal values
of fabric, F1, F2 and F3, and their associated perpendicular
directions. In Fig. 2b note the variability of the fast wave
for porosities lower than about 80% porosity for the three
different directions, as well as in the variability of the slow
wave at porosities higher than 80%, for the three directions.
In contrast, the slow wave velocity below 80% porosity and
fast wave velocity above 80%, are practically insensitive to
the anisotropy of the trabecular bone structure.

These theoretical results indicate that changes in both
porosity and anisotropy are mainly shown in the fast wave
velocity at low and mild porosities, while these changes are
observed in the slow wave velocity mainly at high porosi-
ties. In contrast, the slow wave at low and mild porosities is
slightly sensitive to changes in porosity and practically insen-
sitive to bone anisotropy; and the fast wave at high porosities

is independent of both porosity and anisotropy. All together,
these findings indicate the existence of a wave mode transi-
tion between the longitudinal wave mode (fast or slow) that
is most sensitive to changes in porosity and anisotropy.

Predictions of the fast and slow wave velocities done by
this model will now be compared with experimental obser-
vations made previously by our group (Cardoso et al. 2003).
Briefly, fourteen bovine and sixty human trabecular bone
samples were retrieved from bovine femoral heads, human
femoral heads and femoral and tibial condyles. Ultrasound
wave propagation measurements were obtained from the
three orthogonal directions of these cubic shaped samples
(A, B, and C), thus taking into consideration the directional
variability of the bone sample microarchitecture. Measure-
ments were performed in immersion with distilled water at
room temperature, using two broadband ultrasound trans-
ducers (Panametrics V323-SU) at a central frequency of
2.25 MHz (0.25 in diameter). The emitter was excited by a
damped single pulse generated by an ultrasonic source (Pan-
ametrics 5052 UA) operated in a transmission mode. The
signal was amplified in 40 dB and digitized by a 100 MHz
Digital Oscilloscope (Tektronic model 2,430) with a digitiz-
ing resolution of 10 bits and using a time window of 20.48 μs,
and the post treatment data was performed in MatLab.

Measurements of wave velocities obtained on three
orthogonal directions on each sample were averaged and ana-
lyzed as a function of the porosity only (Fig. 3a). Figure 3b
shows both the theoretical predictions and experimental wave
velocity measurements obtained on three orthogonal direc-
tions on each sample. The theoretical curves were computed
for fabric anisotropy values F1, F2 and F3 equal to 1.05,
1.10 and 1.15, respectively. This choice of fabric anisotropy
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Fig. 4 a Ultrasound wave after propagation through a fluid satu-
rated human cancellous bone sample b signal propagated through the
same human sample after the water was removed from the pores, and
c detected pulse after propagating in water on a distance identical to the
sample’s size. Corresponding spectrograms of a human signal showing

the two waves having different frequency compounds and time local-
ization d, when the fluid is removed from the pores e and when the
porous sample is removed and the wave propagates in the fluid only
f. The color bar indicates the respective power spectra density value
(Vrms2)

corresponds to the degree of anisotropy (5–17%) measured
in the whole set of cancellous bone samples in our previous
study (Cardoso et al. 2003). Comparison of experimental
data and theoretical results shows a qualitative agreement
for both fast and slow wave measurements and these theo-
retical bounds. However, this last analysis is limited by the
fact that the experimental data was obtained measuring the
wave propagation in samples that were not cut aligned to
their axes of symmetry. Therefore, the measured waves on
those samples are not pure wave modes, but quasi-waves.
The development of the fabric-dependent anisotropic theory
of propagation of quasi-waves in porous media will be pre-
sented in a separate study shortly, and a quantitative analysis
of these experimental results would be performed.

Another important observation in our previous study of
wave propagation in cancellous bone indicated that the fast
wave is mostly related to the propagation in the solid structure
and the slow wave is highly related to the fluid constituent
(Cardoso et al. 2003). Figure 4 shows a typical set of sig-
nals obtained in a single direction of a human sample: (i)
a well- defined, single ultrasound wave excited the sample
(Fig. 4a), (ii) the signal received after propagating through
the fluid-saturated cancellous bone sample (Fig. 4b), (iii) the
signal received through the sample when the water medium
was removed (Fig. 4c) and (iv) the signal received when the
cancellous bone sample was removed, thus representing the
propagation through the fluid alone (Fig. 4d). From these
figures, it is clear that propagation through the cancellous

bone structure dramatically alters the waveform, which after
propagation is made of at least two distinguishable waves.
When removing the water from the sample (Fig. 4c), only
the very first part of the signal remains. On the contrary,
when removing the sample while leaving the transducers in
place, this first signal disappears and the remaining signal is
very similar to the second part of the transmitted signal of
Fig. 4b. From these results, one may conclude that the two
waves observed with fluid-saturated cancellous bone corre-
spond in general to: (i) a first propagation mode related to the
presence of a solid phase within the biphasic material and (ii)
a second wave highly related to the effect of the fluid phase.

This observation is also verified by analyzing the wave
propagation in the theoretical model when K f tends to 0.
Figure 5 shows the fast and slow wave velocities when the
compressibility of the fluid tends to zero, for the isotropic
(Fig. 5a) and the anisotropic case (Fig. 5b). Here, the fluid
does no longer contribute in the propagation of the waves;
thus, the fast wave velocity is equivalent to the wave propa-
gation velocity in the porous solid structure without fluid (as
in Fig. 4c), and the slow wave does not propagate.

We return to the consideration of the wave mode transition
that occurs for the fast wave at porosities below about 80%
and it is related to the propagation in the solid bony structure,
while the slow wave is mostly related to the fluid saturating
the pores, as illustrated in Figs. 2 and 3. The behavior of fast
and slow waves above about 80% porosity follows the oppo-
site trend, indicating that the fast wave is mostly related to the
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Fig. 5 Phase velocity as a function of porosity of the fast and slow
wave modes in isotropic bone medium (a), and along the axes of sym-
metry in orthotropic bone sample (b) when the compressibility bulk

modulus of the fluid is considered equal to zero. Under this condition
the fluid does not contribute to the wave propagation

Fig. 6 Phase velocity as a function of porosity of the two shear wave modes in isotropic bone medium (a), and along the axes of symmetry in
orthotropic bone samples (b)

propagation in the fluid, and the slow wave is related to the
solid bony structure. Both experimental measurements and
theoretical predictions presented in this study indicate that
the fast wave, when propagating in highly porous samples,
is insensitive to the anisotropy of the cancellous bone struc-
ture and corresponds to the propagation in the fluid within
the pores. The clinical relevance of this finding is that the
measurement of the fast wave, the wave measured by most
clinical densitometers, lacks sensitivity to provide informa-
tion on the bone structure when bone becomes osteoporotic.

In addition to the longitudinal waves, the shear waves pre-
dicted by the theoretical model were analyzed. The two shear
waves S1 (circles) and S2 (stars) have the exact same veloc-
ity in the isotropic case (Fig. 2a) and demonstrate a linear
dependence on the media’s porosity. The two shear waves in
the orthotropic medium exhibit a dependence on the bone’s
anisotropy, but smaller than the one observed in the fast or

slow wave velocities (Fig. 6). However, the decrease in the S1
and S2 wave velocities as a function of porosity is monotonic
within the whole range of porosity, and the bone structure
anisotropy can be observed as shear wave velocity differ-
ences for the three analyzed directions (F1, F2 and F3). Since
shear waves cannot propagate in the fluid, S1 and S2 veloc-
ities do not exhibit the change in behavior at about 80%
porosity that is observed in the P1 and P2 longitudinal waves
(Fig. 6).

6.5 Wave dispersion as a function of frequency

Figure 7 shows both the fast and slow wave velocities as a
function of frequency for different values of porosity (Fig. 7a,
c, e) and fabric (Fig. 7b, d, f). In Fig. 7a, the acoustic disper-
sion of all four wave-modes is depicted for a 50% porosity
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Fig. 7 Wave dispersion of fast and slow longitudinal modes in an isotropic porous media with 50% (a), 70% (c) and 90% porosity (e); as well as
in an anisotropic media at 50% (b), 70% (d) and 90% porosity (f)

isotropic bone sample. A strong positive dispersion (velocity
increasing with frequency) behavior is observed below the
critical frequency in the slow wave. The dispersion of the
fast wave is practically negligible at this porosity level, and
the velocity of both fast and slow waves is constant at fre-
quencies higher than the critical frequency. Figure 7c depicts

the wave dispersion in an isotropic bone sample with 70%
porosity. This figure shows tendencies that are similar to the
ones shown in Fig. 7a, but differ in that the velocities of the
fast and shear waves are smaller than the wave velocities in
the 50% porosity medium. Also, a slight dispersion in the fast
wave velocity can be observed around the critical frequency
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value, and the slow wave transition from zero to a constant
velocity value occurs around the same frequency. Figure 7e,
for a 90% porosity isotropic medium, demonstrates that in a
highly porous medium, both slow and fast waves are strongly
dispersive. Even more interesting, there also exists a wave
mode transition between the slow and the fast wave occur-
ring around the critical frequency. The slow wave has a zero
velocity at low frequencies (does not propagate) and above
zero it starts propagating with a low speed that increases with
the frequency. However, this dispersive behavior of the slow
wave changes drastically and its velocity becomes constant
for higher frequencies (the curve with diamonds). The fast
wave, in turn, has the opposite behavior. It has a constant
velocity at low frequencies and a sharp change in dispersion
occurs at exactly the same frequency the slow wave disper-
sion changes. Moreover it must be noted that, in all cases, the
slow wave velocity tends to zero as the frequency of the wave
approaches zero. At frequencies much higher than the criti-
cal frequency, the fast wave has a constant velocity, which is
in fact equal to the velocity in the fluid phase of the porous
medium, in this case 1480–1500 m/s.

The observations characterized by diamonds in Fig. 7a,c
and e are also distinguished in Fig. 7b,d and f, with the dif-
ference that these last include the role of anisotropy. For
each wave mode, a set of three curves is produced; the three
curves represent the wave propagation along the dynamic
axes of symmetry in an orthotropic bone sample (F1, F2 and
F3). In Fig. 7b, one can distinguish that the fast and shear
waves exhibit changes in their respective velocities as a con-
sequence of the anisotropy. Anisotropy has a mild effect on
the slow wave velocity when the porosity is 50%. The effect
of the anisotropy on the fast and shear waves is smaller when
the porosity increases (Fig. 7e), and a little more pronounced
in the slow wave than before. Figure 7f, which corresponds
to a 90% porosity anisotropic medium, shows again a wave
mode transition between the fast and slow waves. The fast
wave is non-dispersive and sensitive to the anisotropy at low
frequencies, while the slow wave becomes the non-disper-
sive wave mode and sensitive to anisotropy at high frequen-
cies. After the critical frequency, the fast wave becomes
dispersive until it reaches the velocity of propagation of
sound in the fluid. In contrast to longitudinal waves, the
shear waves are non-dispersive but sensitive to the medium’s
anisotropy.

The critical frequency fcri t changes with both the porosity
and the fabric anisotropy. This result demonstrates that the
transition in the wave mode from non-dispersive to disper-
sive is an indicator of the porosity in the media. The critical
frequency, and thus the dispersive/non-dispersive behavior
of longitudinal waves, also changes for the three analyzed
directions in the anisotropic cancellous bone. In theory, above
the critical frequency fcri t = μ/πρ f d2, both fast and slow
waves may be expected to propagate.

Fig. 8 Ultrasound waves propagated in three orthogonal directions of
the same specimen. Only one wave was observed in the third direction.
This observation is related to a high attenuation of the slow wave in this
direction

Overall, this analysis demonstrates that the acoustic dis-
persion and the transition between the fast and slow wave
modes depend on both the porosity and the fabric anisot-
ropy. These structural parameters and the viscosity of the
fluid determine the magnitude of the viscous friction between
the solid and the fluid constituents, and thus the frequency
in which the transition between the low and high frequency
domains of Biot’s theory occurs.

The theoretical results shown in Figs. 2, 3 and 7 could
explain our experimental observations that the slow wave
may not be observed at the three orthogonal directions (A,
B and C) of the same specimen. We have hypothesized
(Cardoso et al. 2003) that two reasons could explain this
observation: (i) the two waves superimpose in the time
domain or (ii) the amplitude of the fast and slow waves
are very different and settings of the electronics did not
allow observing both of them simultaneously. Superimpo-
sition of the fast and slow waves was clearly observed in
some of the samples, as shown in Fig. 8: in the B direc-
tion both waves were observed and could be easily dis-
tinguished, while in the A direction, the two waves were
found closer to each other and pulses difficult to isolate. This
behavior of wave superposition was also observed in Hos-
okawa’s work (Hosokawa and Otani 1998) when changing
the ultrasonic propagation direction within the sample. The
anisotropic theoretical model predicts specific conditions of
porosity and fabric for which the velocities of the fast and
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Fig. 9 Attenuation of longitudinal (a and b) and shear waves (c and d) as a function of porosity in isotropic bone media (a and c), and along the
axes of symmetry (F1, F2 and F3) in orthotropic bone sample (b and d)

slow wave modes are almost identical, thus supporting the
first interpretation.

6.6 Wave attenuation as a function of porosity or frequency

The ultrasonic attenuation coefficient α represents the
amount of energy lost by the ultrasonic beam during its prop-
agation through the medium due to absorption. In porous
media, the solution of the poroelastic Christoffel equation
gives complex roots since absorption is considered in the
model. The complex wave number defines the attenuation
coefficient α for the corresponding wave mode

kRe + iαI m = ω

vRe + ivI m

= ωvRe

(vRe)
2 + (vI m)2 − i

ωvI m

(vRe)
2 + (vI m)2 (98)

αI m = − ωvI m

(vRe)
2 + (vI m)2 (99)

and

Attd B (ω) = −20 log (e) (x2 − x1) αI m, (100)

The attenuation of longitudinal waves as a function of poros-
ity is shown in Fig. 9a for isotropic, and in 9c for an
anisotropic bone sample of 1 cm size (x2 − x1 = 1 cm) cal-
culated at 1 MHz. Attenuation of the fast wave (squares) is
smaller than the attenuation of the slow wave at porosities
below about 80%. However, the attenuation of both waves
change in behavior above about 80%, and the slow wave
becomes slightly less attenuated than the fast wave (Fig. 9a).
The porosity at which this transition between fast and slow
wave occurs is, however, affected by the fabric anisotropy,
as shown in Fig. 9b. This observation indicates that there
exist a range of porosity and anisotropy where the absorp-
tion-related attenuation for both waves is of the same order or
magnitude. Therefore, whether both waves may have similar
amplitude and might be observed simultaneously depends on
both the porosity and anisotropy of the sample.

In addition to the role of the porosity and fabric anisot-
ropy, the dependence of attenuation on frequency was ana-
lyzed. The attenuation of longitudinal waves on frequency is
shown in Fig. 10a for isotropic, and in 10b for an anisotropic
bone sample of 1 cm size and 80% porosity. Attenuation of
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Fig. 10 Wave attenuation as a function of frequency of the fast and
slow wave modes in isotropic bone medium (a), along the axes of sym-
metry (F1, F2 and F3) in orthotropic bone sample (b), shear wave modes

in isotropic bone medium (c), and shear waves along the axes of sym-
metry (F1, F2 and F3) in orthotropic bone sample (d)

the fast wave (squares) is smaller than the attenuation of
the slow wave at low frequencies. However, the attenua-
tion of both waves change in behavior, and the slow wave
becomes slightly less attenuated than the fast wave at high
frequencies (Fig. 10a). The frequency at which this transi-
tion between fast and slow wave occurs is determined by
the pore diameter, fluid density and viscosity. Figure 10b
shows that the transition in attenuation between the fast
and slow wave also depends on the fabric. The transi-
tion in attenuation between the fast and slow waves only
occurs at direction F1, but not in F2 and F3, for which
the slow wave remains the most attenuated for all frequen-
cies.

The implication of these results is that both the porosity
and the fabric play a critical role in the absorption-dependent
attenuation of longitudinal waves. This theoretical result is
also a plausible explanation for the observation of two waves
with a high difference in their respective amplitude. Fig-
ure 11 provides a signal obtained with a highly porous sample
where the fast wave is almost undetectable. This fast wave
still existed, as demonstrated in Fig. 11b where the signal

was magnified, and its amplitude was about 30 times lower
than that of the slow wave. The theoretical results shown in
Fig. 9 indicate that the fast wave can be more attenuated than
the slow wave at certain conditions of porosity and fabric,
and could explain our experimental observations that one
of the two waves may be overlooked and remain unmea-
sured. In Fig. 11, the undetected wave is the fast mode, and
in Fig. 8c is the slow wave. Superimposition of the fast and
slow waves was thus clearly predicted by the anisotropic
poroelastic model.

7 Discussion

Anisotropic poroelastic wave propagation theory was
extended in this study by introducing the dependence of the
wave motion equations upon fabric, a tensorial descriptor
of the porous microarchitecture. Solution of the constitu-
tive equations for harmonic displacements of the solid and
fluid constituents leads to a modified Christoffel equation for
anisotropic porous media that includes the acoustic tensor
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Fig. 11 Case of signals detected in a very porous sample where (a) the
fast wave was almost imperceptible. b a higher magnification showing
the existence of the fast wave

Q, the solid-fluid interaction tensor C, and the permeability
tensor K(ω). These tensors describe the elastic and viscous
effects in the wave equation, and they all depend on the mea-
surable fabric tensor, F. The modified Christoffel equation
represents an eigenvalue problem with a sixth order charac-
teristic equation and four non-zero roots. This system reduces
to the isotropic formulation developed by Biot when the fab-
ric tensor is isotropic. Two eigenvalues represent the longitu-
dinal wave modes P1 and P2 and the other two correspond to
the shear wave modes S1 and S2. Such eigenvalues are com-
plex valued, and describe the phase velocity and attenuation
due to absorption of the four wave modes.

Propagation of plane waves in both isotropic and aniso-
tropic saturated porous media was analyzed as a function
of the porosity and fabric. Elastic constant and density val-
ues for the mineralized bone tissue and water were used in
the poroelastic model to study the wave propagation in can-
cellous bone. Two constants are used to describe the solid
phase (E s and ρs), three for the fluid phase (ρf , K f and μ)
and one constant to relate the porosity to the pore diame-
ter. Two independent variables (φ and F), one scalar and the
other tensorial, respectively, were integrated in the model to
study the influence of material properties on both global and
directional changes in the velocity and attenuation of the four
wave modes generated in porous media.

The theoretical model predicted that in isotropic media
with porosity below 80%, the fast wave decreases with the
porosity. At porosities higher than 80%, the fast wave exhib-
its a constant velocity, and the slow wave is the wave mode
that is sensitive to changes in porosity. This result demon-
strated that one of the two wave modes is more sensitive
than the other to changes in porosity; however, there exists
a transition in sensitivity between the two longitudinal wave
modes at approximately 80% porosity. The fast wave is sen-
sitive to the porosity when the apparent modulus to density

ratio of the solid phase ((1 − φ)K s/ρs) is higher than that
of the fluid phase (φK f/ρf); while the slow wave is sensi-
tive to porosity when the apparent modulus to density ratio
of the solid phase is smaller than that of the fluid phase.
Therefore, the porosity level at which this transition between
the fast and the slow wave modes occurs is a consequence
of the intrinsic properties of the solid (E s and ρs) and fluid
(ρf , K f and μ) constituents. For instance, if the properties
for the fluid phase are changed to those of glycerol (ρf =
1, 261 Kg/m3, K s = 4.35 GPa, and μ = 1.5 Pa s), the tran-
sition between the wave modes happens at 65% and with
ethanol at 20◦C(ρf = 789 Kg/m3, K f = 0.902 GPa, and
μ = 1.2 × 10−3 Pa s) the transition between the wave modes
happens at 90% (figure not shown). The shear wave modes,
in contrast, are not affected by the presence of the fluid and
do not exhibit a change in behavior as shown in the longi-
tudinal waves. Shear waves are, however, sensitive to both
porosity and anisotropy.

It is important to note that the porosity at which the
fast wave—slow wave mode transition occurs in longitudi-
nal waves depends on the fabric anisotropy. The theoretical
model predicted that mild changes in anisotropy would pro-
duce this transition to occur in the porosity range between 70
and 90%. In an orthotropic bone sample, the direction with
lower modulus will exhibit a transition at a lower porosity
than the direction with intermediate and high modulus. Con-
sequently, this theoretical model indicates that an anisotropic
bone sample with approximately 80% porosity may exhibit
either a fast or slow wave that is sensitive or insensitive to the
anisotropy of the medium depending on the direction being
analyzed.

The wave mode transition observed in the analysis of
velocity as a function of porosity and fabric anisotropy is also
observed when the wave velocity is analyzed as a function
of the frequency. The wave mode transition occurs around
the critical frequency in samples with high porosity (>80%).
The fast and slow wave dispersion changes drastically in
behavior at the frequency where the velocity (and the wave
length) of both wave modes becomes very similar. However,
the frequency at which this transition occurs is also affected
by the fabric anisotropy. Therefore, the transition frequency
from being non-dispersive to dispersive and vice versa is a
consequence of the intrinsic and extrinsic properties of the
medium (material constituents, porosity and fabric anisot-
ropy). The transition between the low and high frequency
regimes defined by Biot (critical frequency) at which the
slow wave becomes a propagative wave mode occurs at fre-
quencies much lower than the ones usually employed for
ultrasound characterization of bone. In fact, the model pre-
dicted very low acoustic dispersion into the range of porosity,
fabric and frequencies generally used in clinical applications.
It is important to notice that the wave dispersion predicted
by the model is a consequence of the absorption in either iso-
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tropic media or in anisotropic media along the dynamic axes
of the sample. However, dispersion processes may be more
complex when the wave propagation is analyzed in directions
that are not normal to planes of material symmetry.

The theoretical model also predicted the high variability of
fast and slow wave velocities observed in bovine and human
bone in our experimental study. Comparison of experimen-
tal data and theoretical results shows a qualitative agreement
for both fast and slow wave velocities. Directional variabil-
ity within a sample was effectively explained by the theo-
retical model after inclusion of the fabric; this directional
variability could not be explained by the porosity only. The
agreement between experimental and theoretical values in
this study indicate that despite the complexity added to the
poroelastic theory, a tensorial variable describing the bone
microstructure is required to explain the directional variabil-
ity of the wave propagation with bone architecture. None-
theless, the comparison between experiments and theoretical
predictions in this study is limited by the fact that the exper-
imental data was obtained measuring the wave propagation
in samples that were not cut aligned to their axes of symme-
try. Therefore, the measured waves on those samples are not
pure wave modes, but quasi-waves. The development of the
fabric-dependent anisotropic theory of propagation of quasi-
waves in porous media will be presented in a separate study,
and a quantitative analysis of these experimental results will
be performed. Moreover, solid and fluid interaction phenom-
ena should be thoroughly investigated. For this reason, stud-
ies of ultrasonic wave propagation properties using various
solid porous materials mimicking cancellous bone structure
as well as various saturating fluids exhibiting different phys-
ical properties (elasticity, density, viscosity) are needed.

The analysis of the wave attenuation as a function of the
porosity, fabric and frequency demonstrated that there exist
a range of porosity and anisotropy—at a given fixed fre-
quency—in which the attenuation due to absorption is of the
same order of magnitude for both fast and slow wave modes.
Similarly to the longitudinal wave velocities, a transition in
the attenuation of the two wave modes occurs around 80%
in an isotropic medium and within the 70–90% range when
anisotropy is considered. The important implication of this
theoretical result is that, depending on the porosity and the
fabric anisotropy of the sample, one wave mode—either the
fast or the slow—may be highly attenuated with respect to
the other and remain practically undetected as shown in our
experimental study. Notice that the fast to slow wave atten-
uation ratio depends on the porosity and fabric anisotropy.
In other words, the direction in which the sample is inter-
rogated may not allow a clear observation of both waves
simultaneously if they superimpose due to having similar
velocities or having very different attenuations. This may
explain why the clinical densitometer systems measuring the
wave propagation in the medial-lateral direction at the calca-

neum might not be able to distinguish, thus far, both waves in
vivo. Usually, velocity and attenuation measurement meth-
ods (in clinical densitometers) presuppose that only one wave
propagates in cancellous bone. However, if only one wave
is observable/measurable at a given direction, then it is even
more important to distinguish whether that wave is the fast or
the slow wave mode, and whether that wave mode is sensitive
or not to the anisotropy of the cancellous porous structure.

Overall, the results from the present study demonstrate the
ability of the proposed model to describe the acoustic behav-
ior of the fast and slow wave velocities in cancellous bone.
Both phase velocity and attenuation are dependent on the
architecture (porosity and fabric) and the composition of the
medium (solid and fluid mass density, solid elastic modulus,
fluid bulk modulus and fluid viscosity). For given frequency
and material parameter values, the behaviors of the fast and
slow waves are governed by the extrinsic properties of the
media: the porosity and fabric anisotropy. These theoreti-
cal predictions also corroborate our experimental observa-
tions which indicate that at high porosities the fast wave is
mostly related to the propagation in the fluid constituent and
the slow wave is highly related to the solid structure. There-
fore, the theoretical predictions confirm our observations that
the measurement of the fast wave lacks sensitivity to pro-
vide information on the bone structure when bone becomes
osteoporotic. In contrast to empirical relationships used by
ultrasound densitometers, the fabric-dependent anisotropic
poroelastic model proposed in this study provides a theoret-
ical framework to predict, analyze and interpret changes in
elastic constants of the trabecular bone structure. Since the
velocity and attenuation predictions provided by this novel
approach depend on the tissue composition, porosity and
architecture of the cancellous bone sample, it has the poten-
tial to characterize bone quality beyond BMD.
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Appendix

The purpose of this appendix is to record the derivation of
the formulas for the three Young’s moduli and the three shear
moduli expressed in terms of the porosity φ and the princi-
pal values of the fabric Fi , i = 1, 2, 3 in Eqs. (38) and (39).
These results stem from the dependence of the compliance
tensor upon fabric is given by [Eq. 4 in Cowin (1985)]:
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Si jkm = a1δi jδkm + a2(Fi jδkm + δi j Fkm)

+a3(δi j Fkq Fqm + δkm Fiq Fq j )

+b1 Fi j Fkm + b2(Fi j Fkq Fqm + Fkm Fiq Fq j )

+b3 Fis Fs j Fkq Fqm + c1(δkiδmj + δmiδk j )

+c2(Fkiδmj + Fkjδmi + Fimδk j + Fmjδki )

+c3(Fir Frkδmj + Fkr Fr jδmi + Fir Frmδk j

+Fmr Fr jδik), (A-1)

where the coefficients a1, a2, a3, b1, b2, b3, c1, c2 and c3 are
functions of φ and the two invariants of F, II and III,

a1 (Vv, I I, I I I ) = g1 + g2 + g3 + g4 I I,

a2 (Vv, I I, I I I ) = g5 + g6 I I, a3 (Vv, I I, I I I ) = g7 I I,

b1 (Vv, I I, I I I ) = g8 I I, b2 (Vv, I I, I I I ) = 0,

b3 (Vv, I I, I I I ) = 0, c1 (Vv, I I, I I I ) = h1+h2+h3+h4 I I

b2 (Vv, I I, I I I ) = h5+h6, c3 (Vv, I I, I I I ) = h7,

(A-2)

and the fabric tensor is normalized by the trace of F so that
I = trF = 1. Thus the orthotropic elastic constants may be
deduced from (A-1) and are given by,

1/Ei = 1

Es

[
k1 + 2k6 + (k2 + 2k7) I I + 2 (k3 + 2k8) F1

+ (2k4 + k5 + 4k9) F2
1

]
, (A-3)

1

Gi j
= 1

Gs

[
k6 + k7 I I + k8

(
Fi + Fj

) + k9

(
F2

i + F2
j

)]
,

(A-4)

vi j = −Ei

[
k1 + k2 I I + k3

(
Fi + Fj

) + k4

(
F2

i + F2
j

)
+ k5 Fi Fj

]
. (A-5)

where

k1 = g1+g2+g3, k2 = g4, k3 = g5+g6, k4 = g7, k5 = g8,

k6 = h1+h2+h3, k7 = h4, k8 = h5+h6, k9 = h7, (A-6)

k1 to k9 are compliance coefficients that depend on the vol-
ume fraction (Turner et al. 1990). Following a similar devel-
opment, the dependence of the stiffness tensor upon fabric
leads to the following relationships:

Ei = Es
[
m1 + m2 I I + m3 F1 + m4 F2

1

]
, (A-7)

Gi j = Gs

[
m5 + m6 I I + m7

(
Fi + Fj

) + m8

(
F2

i + F2
j

)]
,

(A-8)

vi j = −Ei

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
1

m1
− 2

m5

)
+
(

2m6
m2

5
− m2

m2
1

)
I I +

(
2m7
m2

5
− m3

2m2
1

)
(
Fi +Fj

)
. . .

. . .+
{

1
3

(
m2

3
m3

1
− m4

m2
1

− 4m1m2
7

m4
5

+ 4m8
m2

1

)}
{(

F2
i +F2

j

)
+Fi Fj

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A-9)

in which the stiffness coefficients m1 to m8 are related to k1

to k9 by

m1 = 1

[k1+2k6]
, m2 =− k2+2k7

[k1+2k6]2 , m3 =−2 (k3+2k8)

[k1+2k6]2 ,

m4 = −2k4+k5+4k9

[k1+2k6]2 + 4 [k3+2k8]2

[k1+2k6]3 , (A-10)

m5 = 1

k6
, m6 =−k7

k2
6

, m7 =− k8

k2
6

, m8 =− k9

k2
6

+ k2
8

k3
6

Either k’s or m’s are usually obtained from curve fitting
of theory to experimental measurements or finite element
modeling. Such approaches have shown a dependence of the
stiffness coefficients in the volume fraction to a power n that
ranges from 0.5 to 3, and conversely, the compliance coeffi-
cients depend on the volume fraction to the power−n. Here, it
is proposed that the coefficients m1 through m6 are functions
that depend on the volume fraction following the relation-
ships

m1 = d2
[
(1 − φ)n + d1φ (1 − φ)n] ,

m2 = m3 = m4 = −d1φ (1 − φ)n (A-11)

m5 = d3
[
(1 − φ)n + d1φ (1 − φ)n] ,

m6 = m7 = m8 = −d1φ (1 − φ)n (A-12)

thus, Eqs. A-7 and A-8 become

Ei = Es

[
d2 (1−φ)n +d1φ (1−φ)n

(
d2− I I −Fi −F2

i

)]
,

(A-13)

Gi j = Gs

[
d3 (1 − φ)n + d1φ (1 − φ)n

×
[
d3 − I I − (

Fi + Fj
)

i −
(

F2
i + F2

j

)]]
. (A-14)

The left term inside the bracket in Eqs. A-13 and A-14 is
dependent on the volume fraction and independent of fab-
ric, but the term in the right hand side of Eqs. A-13 and
A-14 depend on both volume fraction and fabric. When the
porous medium is isotropic, the term in the right hand side
is required to vanish. Therefore, the coefficients d2 and d3

are constants that can be obtained from the requirement of
isotropy Fi = Fj = 1/3. It is important to note that the term
in the right hand side of Eqs. A-13 and A-14 represents the
deviation from isotropy; the coefficient d1 is a proportional-
ity constant between the magnitude of the anisotropy in the
porous medium and the fabric components measured using

123



Fabric dependence of anisotropic wave propagation 63

the mean intercept length or any other method of determining
the fabric,

d2 = I I + Fi + F2
i = 1

3
+ 1

3
+ 1

9
= 7

9
= 0.7778 (A-15)

d3 = I I + (
Fi + Fj

) +
(

F2
i + F2

j

)
= 1

3
+ 2

3
+ 2

9

= 11

9
= 1.2222 (A-16)

Thus, the coefficients k1 to k9 are described by

k1 =
[

1

d2
− 2

d3

]
1[

(1 − φ)n + d1φ (1 − φ)n]

k2 =
[

1

d2
2

− 2

d2
3

]
d1φ (1 − φ)n[

(1 − φ)n + d1φ (1 − φ)n]2

k3 =
[

1

2d2
2

− 2

d2
3

]
d1φ (1 − φ)n[

(1 − φ)n + d1φ (1 − φ)n]2

k4 = k5 = 1

3

{[
1

C3
2

]
−
[

4

d3
3

]} [
d1φ (1−φ)n]2[

(1−φ)n +d1φ (1−φ)n]3

+1

3

{[
1

d2
2

]
−
[

4

d2
3

]}
d1φ (1−φ)n[

(1−φ)n +d1φ (1−φ)n]2

k6 =
[

1

d3

]
1[

(1 − φ)n + d1φ (1 − φ)n]

k7 =
[

1

d2
3

]
d1φ (1 − φ)n[

(1 − φ)n + d1φ (1 − φ)n]2

k8 =
[

1

d2
3

]
d1φ (1 − φ)n[

(1 − φ)n + d1φ (1 − φ)n]2

k9 =
[

1

d3
3

] [
d1φ (1 − φ)n]2[

(1− φ)n + d1φ (1 − φ)n]3

+
[

1

d2
3

]
d1φ (1 − φ)n[

(1 − φ)n + d1φ (1 − φ)n]2 . (A-17)

The coefficients ksd
1 through ksd

9 appear in the formulas for
the three Young’s moduli and the three shear moduli (38) and
(39). The formulas (A-3) and (A-4) are recorded as Eqs. (38)
and (39) in the text.
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