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Abstract Mechanical stimuli can improve bone function
by promoting the proliferation and differentiation of bone
cells and osteoblasts. As precursors of osteoblasts, human
mesenchymal stem cells (hMSCs) are sensitive to mechani-
cal stimuli. In recent years, fluid shear stress (FSS) has been
widely used as a method of mechanical stimulation in bone
tissue engineering to induce the osteogenic differentiation
of hMSCs. However, the mechanism of this differentiation is
not completely clear. Several signaling pathways are involved
in the mechanotransduction of hMSCs responding to FSS,
such as MAPK, NO/cGMP/PKG and Ca2+ signaling path-
way. Here, we briefly review how hMSCs respond to fluid
flow stimuli and focus on the signal molecules involved in
this mechanotransduction.
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1 Introduction

Bone in a healthy person or animal can adapt to mechani-
cal loads (Wolff 1986). If the loading on a particular bone
is increased, the bone may be remodeled and become stron-
ger to resist the loading. An appropriate mechanical load-
ing is necessary for bone to maintain homeostasis (Harada
and Rodan 2003). The mineral content of an astronaut’s
bone decreases due to the microgravity during spaceflight
(Zayzafoon et al. 2004), and bone hypertrophy occurs when
bone is subjected to increased mechanical loads (Tschantz
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and Rutishauser 1967; Turner et al. 1994). Various mechan-
ical stimuli including compressive, tensile, curvature, tor-
sional and fluid shear stress may produce the loading effects
on bone.

Bone formation in vivo, no matter it stems from embry-
onic development, normal growth, remodeling or fracture
healing, follows a common course. It begins with the aggre-
gation of undifferentiated mesenchymal cells or preosteo-
blasts followed by a period of proliferation to provide
sufficient cell numbers for the tissue. After the initial cell
proliferation, the cells start to synthesize and secrete a loose
organic matrix and differentiate into osteoblasts. Mesenchy-
mal stem cells (MSCs), as precursors of osteoblasts, exist
in bone marrow where there is a unique mechanical envi-
ronment. The main mechanical forces in this environment
are hydrostatic pressure and fluid shear stress (FSS). FSS,
as a major stress produced by the interstitial fluid flow (IFF)
through the lacunar or canalicular spaces and exerted on the
cell surface, can generate the mechanical stimulus to cells,
and then this stimulus is translated into biochemical signals
in cells to exert biological effects, such as affecting the pro-
liferation of osteocytes and the differentiation of osteoblasts
and mesenchymal stem cells. IFF can be driven by mechan-
ical loading and bone bending that cause strain gradients as
well as local pressure gradients in the bone and in the med-
ullary cavity (Gurkan and Akkus 2008). The level of FSS
induced by IFF in lacuna-canalicular spaces within bone tis-
sue is about 8–30 dyn/cm2 and it may vary due to physical
activities (Weinbaum et al. 1994). FSS is a significant stim-
ulus for osteoprogenitor cells (such as MSCs) in the marrow
and results in recruitment, proliferation and osteogenic dif-
ferentiation of these cells in bone formation sites (Li et al.
2004). In recent years, human MSCs (hMSCs) have been
widely used as the seeded cells to construct the engineered
bone tissue. An ideal engineered bone tissue should have
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the capacity to adapt to its functional environment and meet
the mechanical demand. Therefore, in order to construct the
ideal artificial bone tissues with properties of natural bones,
FSS is also used in bone tissue engineering to simulate the
environment of mechanical stimuli in vivo and promote the
formation of artificial bones (Bjerre et al. 2008; Martino et al.
2009; Marolt et al. 2006; Yang et al. 2010).

Bioreactors are wildly used to produce FSS in bone tissue
engineering, especially in the bone tissue engineering with
hMSCs as seeded cells. A great deal of research has demon-
strated that FSS enhances deposition of mineralized matrix
and expression of osteoblastic specific genes in hMSCs
(Bancroft et al. 2002; Kreke et al. 2005; Scaglione et al. 2008;
Sharp et al. 2009; Zhao et al. 2007). It has been accepted that
three processes are involved in mechanotransduction of FSS
in hMSCs: the response of cells to the physical stimulus (me-
chanocoupling), the transformation of mechanical signal into
biochemical signal (biochemical coupling) and the transduc-
tion of intracellular biochemical signal into the nucleus to
regulate the expression of genes specific for osteogenic dif-
ferentiation (see Table 1) (Duncan and Turner 1995).

hMSCs respond to FSS via the recognition of cell sur-
face receptors to the mechanical stimulation. Ion channels
and integrins are considered as mechanoreceptors involved
in mechanotransduction. Ion channels are the first described
mechanosensors to respond directly to membrane perturba-
tion (Guharay and Sachs 1984). Ca2+ channels are espe-
cially critical for hMSC’s responses to FSS. FSS can induce
a high concentration of Ca2+ in hMSCs (Riddle et al. 2006;
Stiehler et al. 2009). In addition, integrins are transmembrane
receptor proteins that connect cytoskeleton with extracellu-
lar matrix (ECM) and are also considered as main mechano-
receptors (Kamioka and Yamashiro 2008; Lee et al. 2008).
Moreover, the surface proteoglycan layer, glycocalyx, is also
considered as a primary mechanotransducer for mechanical
stimuli. It has been demonstrated that glycocalyx is impor-
tant for the mechanotransduction of FSS in some types of
cells, such as endothelial cells and leukocytes (Coughlin and
Schmid-Schonbein 2004; Kawano et al. 2002). FSS can also
lead to the reorganization of actin cytoskeleton (Patwari and
Lee 2008). It was reported that actin cytoskeleton in hMSCs
was remolded during osteogenic differentiation (Titushkin
and Cho 2007). Actin cytoskeleton links cell surface recep-
tors, such as integrins and proteoglycans, to internal architec-
ture and plays a pivotal role in determining the mechanical
properties and signaling pathways that regulate intracellular
processes and protein expression. Therefore, the remodeling
of actin cytoskeleton may also play an important role in the
mechanotransduction of FSS in hMSCs.

Matrix metalloproteases (MMPs) are speculated to be rel-
evant to mechanical signal transformation. Mechanical stim-
uli can regulate the expression of MMP gene family and break
the balance of MMP/TIMP (tissue-specific inhibitors of

metalloproteases) in hMSCs (Kasper et al. 2007; Fehren-
bacher et al. 2003; Sternlicht and Werb 2001). MMPs can
cleave ECM and substrate proteins to release signaling mol-
ecules, such as transforming growth factor β (TGF-β), and
initiate signal transduction. FSS, as a major mechanical stim-
ulus, also leads to an increase in expression of MMPs in
osteoblasts (Charoonpatrapong-Panyayong et al. 2007).

In recent years, more studies have focused on the intra-
cellular signal transduction rather than the extracellular
responses. Focal adhesion kinase (FAK) plays an impor-
tant role in the mechanotransduction of FSS (Goessler et al.
2008). FSS also increases the level of nitric oxide (NO) and
prostaglandin E2 (PGE2) (McAllister et al. 2000). NO acts as
the second messenger to activate the PKG signaling pathway.
Furthermore, an enhanced concentration of Ca2+ caused by
FSS can activate the Ca2+ signaling pathway. Through these
signaling cascades, FSS finally activates extracellular sig-
nal-regulated kinase1/2 (ERK1/2), which can influence the
expression and activation of transcriptional factors, such as
runt-related transcription factor 2 (Runx2) and activator pro-
tein1 (AP-1) (Grellier et al. 2009; Rubin et al. 2006). These
transcription factors can subsequently initiate the transcrip-
tion of specific genes related to osteogenic differentiation,
such as alkaline phosphatase (ALP), osteocalcin, collagen I
and osteopontin. With the expression of osteogenic differen-
tiation-related genes, hMSCs differentiate into osteoblasts.

This review is focused on mechanoreceptors, mechano-
sensors, intracellular signaling molecules and signaling path-
ways that play essential roles in the mechanotransduction of
FSS in hMSCs.

2 Detection of mechanical stimulation caused by FSS

The primary step of mechanotransduction is to detect
mechanical stimulus. Ion channels, integrins, glycocalyx and
cytoskeleton are very important for mechanically sensitive
cells to detect FSS (Liu et al. 2008; Salter et al. 2001;
Tarbell et al. 2005). Via above cellular elements, mechanical
signals can be transmitted to apical structures of cells such
as the plasma membrane or the actin cortical web, where
transduction usually occurs or signals are transmitted to the
intracellular regions of the cell (Tarbell et al. 2005).

2.1 Ion channel

FSS-induced deformation of cell membrane and alteration
of membrane proteins can cause stretch-activated ion chan-
nels to open and consequently lead to the influx of cat-
ions, such as Ca2+, Na+ and K+, into the cell (McMahon
et al. 2008). Intracellular Ca2+ concentration increases by
tenfold in 3-D dynamic cultured hMSCs after FSS stim-
ulation (Stiehler et al. 2009). However, Ca2+ release in
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Table 1 Definition of special terms

Definition References

Mechanotransduction The process of mechanical signal leading to cell response
including four distinct steps: mechanocoupling,
biochemical coupling, transmission of signal and cell
response

(Duncan and Turner 1995)

Mechanocoupling Conversion of a mechanical stimulation applied to cells into
mechanical signal

(Robling et al. 2001; Duncan and Turner 1995)

Biochemical coupling Conversion of mechanical signal into a biochemical signal (Robling et al. 2001; Turner and Pavalko 1998)

Mechanoreceptor Cell surface structure to detect mechanical stimulus and
initiates a variety of signaling transduction, such as
integrins

(Ali and Schumacker 2002)

Mechanotransducer/
mechanosensor

Cell structure or molecules to sense or transmit mechanical
signals, such as ion channel, glycocalyx and cytoskeleton

(Tarbell et al. 2006; Sadoshima et al. 1992)

Special genes related to
osteogenic differentiation

Special protein expressed when preosteoblasts differentiated
into steoblasts so that cells have special properties of
osteoblasts. Such as osteocalcin, ALP and osteopontin

(Catelas et al. 2006; Chen et al. 2008)

hMSCs is different from that in osteoblasts. In MC3T3-
E1 osteoblasts, the inhibition of both L-type voltage-sensi-
tive Ca2+ channel and the mechanosensitive cation-selective
channel blocks the phosphorylation of ERK1/2 induced by
FSS (Liu et al. 2008). In contrast, Riddle et al. (2006) reported
that treatment of hMSCs with pharmacological antagonists
against these channels had no significant effect on either fluid
flow-induced Ca2+level or ERK1/2 phosphorylation. As
undifferentiated MSCs are non-excitable cells, only a small
fraction of MSCs (15%) express functional L-type Ca2+
channel (Heubach et al. 2004). A major source of Ca2+ for
the oscillations is the intracellular Ca2+ storage in hMSCs.
The release of Ca2+ is mediated by inositol 1,4,5-trisphos-
phate receptors (InsP3Rs), whereas the entry of Ca2+ into
cells through plasma membrane is mainly mediated by the
store-operated Ca2+ channels (SOCs) with little contribution
of voltage-operated Ca2+currents (VOCCs) (Kawano et al.
2002). Therefore, compared to osteoblasts, hMSCs have a
different way of releasing Ca2+ under FSS. Ca2+ can bind
calmodulin (CaM) to form the Ca2+/CaM complex and initi-
ate the activation of Ca2+ signal pathway, which leads to the
activation of transcription factors such as �Fos B and FosB
(both belong to AP-1 family transcription factors) associated
with osteogenic differentiation. By summarizing the above
discussion, ion channels are judged as important mechano-
sensors for the mechanotransduction of FSS in hMSCs.

2.2 Integrin and integrin-associated kinase

Many types of cells, such as osteoblasts, osteocytes, endo-
thelial cells and hMSCs, are sensitive to mechanical stim-
uli, including FSS. FSS leads to similar outcomes in these
cells. Therefore, it is possible that common mechanisms are
involved in response to FSS. FSS is reported to induce the
activation of ERK1/2 in osteobalsts, endothelial cells and

hMSCs (Kim et al. 2007; Liu et al. 2008; Sumpio et al. 2005).
Phosphorylated ERK1/2 can, in turn, up-regulate and acti-
vate transcription factors, such as AP-1 (Haasper et al. 2008;
Lee et al. 2008; Nagel et al. 1999). Integrins, as the upstream
molecules of mechanotransduction, in concert with other sig-
naling molecules to activate ERK 1/2, are widely consid-
ered as mechanoreceptors in the mechanotransduction of FSS
(Kapur et al. 2003; Ward et al. 2007; Weyts et al. 2002).

Integrins of focal adhesion complexes are heterodimer-
ic transmembrane proteins that interlink ECM with cyto-
skeleton through several actin-associated proteins, including
α-actin, vinculin, talin and tensin (Fig. 1) (Hynes 2002). Two
subunits of integrin, α and β subunits, are non-covalently
associated (Humphries 2000). To date, 18 different α sub-
units and 8 different β subunits have been described in ver-
tebrates. These subunits form 24 distinct heterodimers, 12 of
which contain the β1 subunit (Al-Jamal and Harrison 2008).
The main function of integrins is to mediate cell adhesion,
link cells to ECM, make transmembrane connections to cyto-
skeleton, and activate many intracellular signaling pathways
including mechanical signaling pathways (Hynes 2002). β1
integrins play a prominent role in shear-induced signaling
conduction and bone formation-related gene expression in
osteoblast-like MG63 cells, such as fibronectin, type I colla-
gen and laminin. Integrin αV β3 also plays significant roles
in such responses in osteoblasts (Lee et al. 2008). There-
fore, integrins have an intimate relationship with mechanical
stimulation because of their connection to ECM. Through
this connection, integrins may detect the mechanical stim-
ulation when cells are subjected to FSS. Integrin β1/Shc
(Shc, an adaptor protein containing C-terminal Src homology
domain-2 (SH2) domain) association leads to the activation
of ERK, which is critical for shear-induction of bone for-
mation-related genes in osteoblast-like cells (Kapur et al.
2003; Lee et al. 2008). Similarly, integrins are also very
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Fig. 1 Signal pathways involved in the osteogenic differentiation of
hMSCs under FSS. FSS can activate many signal pathways in hMSCs.
Integrins, connecting with cytoskeleton and ECM, act as important
mechanical sensor for stimulation of FSS and participate in the forma-
tion of FA (Lee et al. 2008). Then integrin/FAK pathway activates the
ERK1/2/MAPK signaling pathway (Kapur et al. 2003). NO and Ca2+
are important signal molecules in this mechanotransduction (McAllister
et al. 2000). They can activate ERK1/2/MAPK signal pathway through

PKG or PKC pathway. ERK1/2 seems to be the centre of this mecha-
nism. Phosphorylated ERK1/2 can activate transcription factors, such
as Runx2 and AP-1 (Damoulis et al. 2007; Rangaswami et al. 2009).
Higher level of PGE2 caused by FSS can activate PKA signal pathway
(Cherian et al. 2003). Activated ERK1/2 and PKA can activate tran-
scription factors, such as Runx2 and AP-1, which can promote the tran-
scription of osteogenic differentiation special genes (Kleiveland et al.
2008)

important in the osteogenic differentiation of hMSCs. FSS
can up-regulate the level of α5β1 in human adipose-derived
MSCs (McIlhenny et al. 2010). Meanwhile, integrin α5β1
has been demonstrated to have an important role in the regula-
tion of MSC osteogenic differentiation in 2D and 3D culture
(Martino et al. 2009). Therefore, it is inferred that the
increased level of integrins promoted osteoblastic differenti-
ation of hMSCs.

Integral membrane proteins laterally assemble into
micrometer-scale clusters known as “focal adhesions” (FAs)
(Hynes 2002). FAs recruit multiple kinase and phosphatase
proteins, in addition to cytoskeletal proteins (Zhao et al.
2009). Several studies seem to support the concept that focal
adhesions are sites of mechanotransduction. Blockade of
focal adhesion formation decreases the production of cyclo-
oxygenase-2 (COX-2) and PGE2. COX-2 and PGE2 are nec-
essary for mechanical induction of bone formation (Li et al.
2002; Ponik and Pavalko 2004; Young et al. 2009). Focal
adhesion kinase (FAK) responds to integrin clustering and FA
formation by autophosphorylation (Schlaepfer et al. 1999).
FAK is an important kinase in the mechanotransduction of
FSS in hMSCs. Inhibition of FAK blocks osterix transcrip-

tional activity and the osteogenic differentiation of hMSCs.
It has also been demonstrated that FAK plays an important
role in regulating ECM-induced osteogenic differentiation of
hMSCs (Salasznyk et al. 2007b). Pavalko et al. (2003) men-
tioned a model termed as mechanosomes that comprise ECM,
focal adhesion proteins, adherens junctions, cytoskeleton and
nuclear matrix. The FSS-induced membrane deformation of
cells leads to the conformational change of membrane pro-
teins linking to mechanosomes and, in turn to release protein
complexes to conduct mechanical signals.

2.3 Glycocalyx

The cell surface proteoglycan layer, glycocalyx, is consid-
ered as a primary sensor for mechanical stimulus. Glycoca-
lyx connects ECM to cellular membrane proteins and lipids
by covalent bonds. This connection forms a physical struc-
ture to sense the mechanical stimulus loaded on the surface
of cells. It has been proved that glycocalyx is necessary
for the response of endothelial cells (EC) to FSS and is
modulated by the fluid flow (Nijenhuis et al. 2008). FSS
can induce the incorporation of hyaluronan in glycocalyx
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(Gouverneur et al. 2006). Depletion of heparan sulfate (HS),
hyaluronic acid (HA) and sialic acids (SA) blocks shear-
induced NO production but has no influence on shear-
induced prostaglandin I2 (PGI2) production (Pahakis et al.
2007). Modification of glycocalyx quantity affects signifi-
cantly both short-term and long-term shear responses (Yao
et al. 2007). Glycocalyx can affect the reorganization of actin
cytoskeleton. Thi et al. (2004) have pointed out that glycoca-
lyx reorganizes actin cytoskeleton like a bumper-car. The
actin cortical web (ACW) and the dense peripheral actin
bands (DPABs) are loosely connected to the basal attach-
ment sites. When cells are exposed to FSS, FSS may produce
a drag on the tips of core proteins at the edge of glycocalyx
and cause a torque on the ACW that consequently leads to a
clockwise rotation. All core proteins act in concert to produce
a clockwise rotation of DPAB, which creates a disjoining
torque that is resisted by vascular cadherins in the adherens
junction. When forces and torques exceed the bond strength
of vascular cadherins, these bonds rupture, and DPAB gradu-
ally breaks up into fragments. At this time, the lateral margins
of cells are in an unstable configuration. New focal adherens
(FAs) and stress fibers (SFs) need to be formed in the junc-
tional region at the basal margins of cells, which requires the
migration of vinculin to the cell borders to form new basal
peripheral adhesions. It has also been found that the signals
caused by FSS can be transmitted to the basal FAs via SFs
that attach at apical plaques, whether glycocalyx is intact or
not (Catelas et al. 2006). Therefore, two distinct cellular sig-
naling pathways may be involved in response to FSS: one is
transmitted by glycocalyx core proteins as a torque that acts
on ACW and DPABs, and the other is emanating from focal
adhesions and stress fibers at the basal and apical membranes
of the cell. Through these cell surface structures, the signals
caused by FSS are conveyed into cells.

Most of evidence for the role of glycocalyx in mechano-
transduction comes from the response of EC to FSS (Lopez-
Quintero et al. 2009; Nijenhuis et al. 2009; Thi et al. 2004).
Lanctot et al. (2007) have found that glycocalyx plays signif-
icant role in the differentiation of mesenchymal stem cells.
However, it should be remained for further study whether gly-
cocalyx is also an important mechanical sensor for hMSCs
to detect FSS like other cells from diverse tissues (Kernan
et al. 1994; Sachs 1986).

2.4 Cytoskeleton

FSS can induce the modification of molecular structures in
various cells, especially the cytoskeletal proteins (Jaasma
et al. 2007). The cytoskeleton is rearranged and the amount
of special structural proteins in the cytoskeleton changes in
response to FSS (Fu et al. 2008; Jaasma and O’Brien 2008).
The rearrangement of the cytoskeleton is critical in the reg-
ulation of osteogenic differentiation of hMSCs (Rodriguez

et al. 2004). During differentiation of hMSCs, microfilaments
change from parallel-oriented actin stress fibers extending
across the entire cytoplasm to a cortical organization. Dis-
rupting microfilament with cytochalasin D can decrease the
activity of ALP in hMSCs at early stage of osteogenic dif-
ferentiation. However, no significant change of the micro-
tubule structure takes place between osteoblast and hMSCs
(Titushkin and Cho 2007). During the first 5 days of oste-
ogenic differentiation, cells with microtubule destroyed by
nocodazole display the same ALP activity as those untreated
cells (Rodriguez et al. 2004). Therefore, the main cytoskele-
ton that plays a critical role in the mechanotransduction dur-
ing FSS-induced osteogenic differentiation of hMSCs should
be actin cytoskeleton (Arnsdorf et al. 2009).

Cytoskeleton plays a key role not only in cell-shape stabil-
ity but also in signaling pathways that regulate intracellular
processes and protein expression in response to a varying
biomechanical environment. The role of cytoskeleton as a
mechanotransducer has been articulated in the studies of
cellular responses to changes of substrate stiffness and cell
shape, stretching of cells and shear stress. However, there
are significant differences in cytoskeleton reorganization
between osteoblasts and hMSCs. HMSCs display many thick
actin bundles or stress fibers, extending throughout the cyto-
plasm and terminating at focal contacts on the cell mem-
brane. In contrast, osteoblasts have fewer stress fibers and
show, predominantly, a thin dense meshwork structure of
actin. This difference is reflected in the cell elasticity: the
Young’s modulus for hMSCs is twofold higher than that for
osteoblasts (Titushkin and Cho 2007). Cell stiffness is regu-
lated by actin organization. hMSCs cultured on stiff substrate
spread out, and cytoskeletal contraction generates high lev-
els of tensile forces that pull on the surface (Patwari and Lee
2008). These changes promote differentiation of stem cells
towards the osteoblast lineage. Moreover, the over-expres-
sion of either Rho or Rho-associated kinase (Rock), both
stimulate contraction of actin cytoskeleton, also promotes
osteoblastic differentiation (Arnsdorf et al. 2009). The acti-
vation of Rho is mediated by guanine nucleotide exchange
factors (GEFs). GEF binds to inactived Rho-GDP to form
a Rho-GEF dimer that destabilizes the GDP binding. The
upstream signals regulating Rho GTPase activity, such as
integrin and TGF-β, may induce the relocalization of GEFs
to membrane structures containing the GTPase targets. GTP
replaces GDP to activate Rho and GEFs are released from
Rho-GTP (Sinha and Yang 2008). Active Rho interacts with
Rock and, in turn to phosphorylate myosin phosphatase. Acti-
vated myosin phosphatase activates myosin light chain to
increase the contraction of actin cytoskeleton (Maekawa et al.
1999). The contraction of actin cytoskeleton is critical for the
differentiation of MSCs (Patwari and Lee 2008). Moreover,
the activated Rho has an additive effect on Runx2 expres-
sion (Arnsdorf et al. 2009). Therefore, the over-expression
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of Rho and Rock promotes the osteogeinc differentiation of
hMSCs.

3 MMPS and mechanotransduction of FSS in hMSCs

FSS stimulates hMSCs in the form of a biomechanical sig-
nal. This biomechanical signal must be translated into the
biochemical signal to induce cellular responses. MMPs are
thought to play an important role in mechanical signal trans-
formation. MMPs are a family of endoproteinases compris-
ing more than 25 members. Not only can they cleave all
components of extracellular matrix but also other substrates
such as growth factor binding proteins or latent growth fac-
tors, thus regulating their bioavailability (Fig. 1) (Chang
and Werb 2001; Kasper et al. 2007; Stamenkovic 2000).
The catalytic activities of MMPs depend on metal ions. At
least three members of MMPs family, including MMP2,
MMP9 and membrane type 1 MMP, affect bone development
and homeostasis (Kasper et al. 2007). It was reported that
patients with an inherited MMP2 gene mutation exhibited
nodulosis, arthropathy and osteolysis syndrome (Martignetti
et al. 2001; Parikka et al. 2005; Sternlicht and Werb 2001).
Mechanical stimulation can up-regulate activities of MMP2,
MMP3, MMP13 and tissue-specific inhibitors of metallo-
proteases (TIMP2) in hMSC (Charoonpatrapong-Panyayong
et al. 2007; Chen et al. 2008; Kang et al. 2008; Kasper et al.
2007). Moreover, the activity of MMP-13 influences osteo-
genic differentiation of hMSCs and the MMPs/TIMP balance
seems to play an important role in transferring mechanical
signal into cellular function in hMSCs (Kasper et al. 2007).

MMPs affect hMSC’s behavior by degrading ECM com-
ponent and dissolving mechanical barriers to expose cryptic
sites that could act to regulate MSCs’ activities (Mott and
Werb 2004; Parikka et al. 2005). Furthermore, the modulation
of growth factor activity or bioavailability is another likely
mechanism of MMPs’ impact on MSC behavior. Indeed,
MMPs have been shown to modulate important molecules
responsible for MSC migration, differentiation, and prolif-
eration, including transforming growth factor β (TGF-β),
vascular endothelial growth factor (VEGF) and fibroblast
growth factor (FGF) (Scutt and Bertram 1999). Therefore,
the mechanism by which mechanical stimulation translated
into cellular response may be inferred as follows: the bal-
ance of MMP/TIMP can be broken by mechanical stimuli
(Fehrenbacher et al. 2003; Kasper et al. 2007). The alter-
ation of MMP/TIMP leads to an enhancement of proteolytic
enzyme activity, especially gelatinolytic enzyme activity in
hMSCs. This may be very important to mechanotransduction
in hMSCs. Collagen is the major extracellular matrix com-
ponent. The enhancement of gelatinolytic enzyme activity
results in the breakdown of extracellular matrix components
so that the latent growth factors are released. Growth factors

can activate intracellular signaling pathways. Accordingly,
hMSCs might respond to the stimulation of FSS in an auto-
crine manner.

4 Intracellular signaling pathways activated by FSS
in hMSCs

During osteogenic differentiation of hMSCs induced by FSS,
multiple intracellular signaling pathways are activated, such
as NO/PKG, PGE2/PKA, Ca2+/PKC and MAPK signaling
pathway. Runx2 and AP-1 are important transcription factors
in osteogenic differentiation. Their activities can be increased
via the aforementioned signaling pathways. Activated Runx2
and AP-1 promote the expression of specific genes, such
as alkaline phosphatase (ALP), osteocalcin, collagen I and
osteopontin. Consequently, the mineralization of hMSCs is
greatly increased (Haasper et al. 2008; Stiehler et al. 2009).

4.1 NO and PGE2

The level of nitric oxide (NO) and prostaglandin E2 (PGE2)
in MSCs can be increased in response to FSS (McAllister
et al. 2000). The inhibition of nitric oxide synthase (NOS)
activity reduces the osteogenic differentiation of MSCs
(Knippenberg et al. 2005; Ocarino et al. 2008). In addition,
in vivo studies have shown that new bone formation induced
by mechanical loading can be blocked by indomethacin, a
prostaglandin inhibitor (Pead and Lanyon 1989). Therefore,
NO and PGE2 are important to the osteogenic differentiation
of MSCs induced by FSS.

NO, a lipophilic molecule, can rapidly diffuse through bio-
logical membranes, activate guanylyl cyclase and promote
cGMP synthesis (Espanol and Sales 2000). FSS-induced
NO response is independent of FSS-induced PGE2 response
in osteoblasts and osteocytes. McGarry et al. (2005) found
that the fluid flow-induced NO response in osteoblasts was
accompanied by parallel alignment of stress fibers, whereas
PGE2 response was related to fluid flow stimulation of focal
adhesions formed after cytoskeletal disruption. In addition,
NO synthesis can lead to activation of cGMP-dependent pro-
tein kinase (PKG) by promoting the formation of cGMP.
Subsequently, PKG causes the phosphorylation of receptor
serine/threonine kinases, increases the activity of ERK, and
finally increases the activity of transcription factors, such
as Runx2 and AP-1. The activation of these transcription
factors promotes the transcription of collagen I, osteocal-
cin and other special genes involved in osteogenic differen-
tiation (Fig. 1) (Damoulis et al. 2007; Rangaswami et al.
2009). Indeed, some studies showed that NO played an
important role in the osteoblastic differentiation of hMSCs
(Orciani et al. 2009; Xiao et al. 2001). Collectively, the
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NO/cGMP/PKG signal pathway plays a role in FSS-induced
osteogenic differentiation of hMSCs.

PGE2 also plays an important role in the osteogenic dif-
ferentiation of hMSCs induced by mechanical force loading.
An early up-regulation of prostaglandin release in response
to mechanical stress is associated with the subsequent induc-
tion of COX-2. COX-2 mediates conversion of arachidonic
acid to PGE2 (Kreke and Goldstein 2004). All PGE2 recep-
tors (EP), including EP1, EP2, EP3 and EP4, are G-pro-
tein-coupled receptors (GPCRs). The binding of PGE2 to its
receptor leads to the activation of adenyl cyclase, which con-
verts ATP into cAMP and activates cAMP-dependent protein
kinase A (PKA) (Fig. 1) (Cherian et al. 2003). PKA elicits an
immediate response through the induction of genes such as
inhibitor of DNA-binding protein (ID2) and FosB followed
by sustained secretion of bone-related cytokines such as bone
morphogenetic protein (BMP-2), insulin-like growth factor
I (IGF-1) and interleukin 1 (IL-1). These bone-related cyto-
kines can up-regulate the expression of osteogenic differen-
tiation related genes, such as ALP and collagen I (Siddappa
et al. 2008). In summary, PGE2 affects the differentiation
of hMSCs through cAMP/PKA signal pathway (Kleiveland
et al. 2008).

4.2 Ca2+ signaling pathway

FSS can increase intracellular Ca2+ concentration in hMSCs
(Riddle et al. 2006; Stiehler et al. 2009). Ca2+ concentration
is a key factor in intracellular signaling and regulation of cell
functions such as proliferation and differentiation. Cellular
responses to Ca2+ signals are modulated by Ca2+/calmod-
ulin-dependent protein kinase, such as calmodulin kinase
II (CaMKII). The increasing of Ca2+ leads to the activa-
tion of CaMKII, which subsequently phosphorylates ERK1/2
(Fig. 1) (Shin et al. 2008). Therefore, Ca2+ signal can lead
to the activation of ERK1/2 signaling pathway, which is crit-
ical for osteoblastic differentiation. Phosphorylated ERK1/2
can activate many transcription factors including AP-1 fam-
ily transcription factors, such as �Fos B and FosB. AP-1
family transcription factors are necessary for up-regulation
of ostoegenic differentiation-specific genes, such as ALP and
osteocalcin (Baba et al. 2003). Additionally, Ca2+ can stim-
ulate NOS activity through CaMKII. NOS stimulation may
increase the production of NO that is an important signal-
ing molecule for mechanotransduction of FSS in hMSCs
(Orciani et al. 2009; Zayzafoon 2006).

4.3 MAPK signaling pathway and mechanotransduction
in hMSCs

There is strong evidence that mitogen-activated protein
kinase (MAPK) pathways, a complex network of sequential
protein kinases, are an important intracellular signaling arm

of mechanotransduction (Kim et al. 2007; Rodriguez et al.
2004; Salasznyk et al. 2004). It is believed that all mechanical
stimuli result in the activation of MAPK signaling pathway,
no matter in osteoblasts, epithelial cells or hMSCs (Alexan-
der et al. 2004; Iqbal and Zaidi 2005; Kim et al. 2007). To
date, ERK1/2 and p38 are most widely investigated in FSS-
induced mechanotransduction in hMSCs.

ERKI/2 is believed to be essential in FSS-induced mech-
anotransduction in hMSCs. As shown in Fig. 1, many
upstream signal molecules can activate ERK1/2. The high
expression of integrins and the activation of FAK promote the
activation of Ras through adaptor proteins that contain SH2
and SH3 structures (Salasznyk et al. 2007a,b). Subsequently,
the activated Ras initiates MAPK signaling pathway by acti-
vating Raf, leading to the activation of MEK1/2 / ERK1/2
pathway. In addition, a high Ca2+ concentration, caused by
Ca2+ influx and intracellular Ca2+release, leads to the eleva-
tion of ATP level and PKC activation through CaM. PKC can
also phosphorylate ERK1/2 (Iqbal and Zaidi 2005). More-
over, sufficient NO induced by FSS in hMSCs may activate
ERK1/2 signaling pathway through NO/cGMP/PKG path-
way (Rangaswami et al. 2009). Activated ERK1/2, in turn,
activates transcription factors, such as FosB and Runx2, both
are necessary for specific gene expression in osteogenic dif-
ferentiation (Haasper et al. 2008).

FSS can up-regulate the expression of MAP kinase kinase
kinase 8 (MAP3K8) and interleukin-1 beta (IL1 β) (Glossop
and Cartmell 2009). IL-1 is an activator of the MAPK signal-
ing pathways, acting through the IL-1 receptor and an adapter
protein MyD88. My88 recruits a signaling complex, con-
sisting of IL-1 receptor-associated kinase (IRAK) and TNF
receptor-associated kinase 6, to the cell membrane (Cao et al.
1996; Glossop and Cartmell 2009; Medzhitov et al. 1998).
This leads to the activation of kinase TAK (MAP3K7) to
form a complex with TAB proteins and ultimately to acti-
vate the JNK and p38 signaling pathway. Rodriguez et al.
(2006) reported that IL-1 promotes a 10-fold increase in
the induction of MAP3K8. The substrates of MAP3K8 are
ERK1/2, JNK and p38. Collectively, the p38 signaling path-
way in hMSCs can be activated by FSS. However, the role
that the p38 signaling pathway plays in the FSS-induced
osteogenic differentiation of hMSCs remains controversial.
Simmons et al. (2003) found that p38 seemed to inhibit FSS-
induced osteogenic differentiation of hMSCs. The inhibition
of p38 pathway resulted in a mature osteogenic phenotype,
suggesting an inhibitory role of p38 pathway in modulating
FSS-induced osteogenic differentiation of hMSCs. In con-
trast, Grellier et al. (2009) proposed a different role for p38
in the FSS-induced osteoblastic differentiation of hMSCs.
Phosphorylated p38 was markedly increased at 90 min after
fluid flow loading when compared with static controls and
resulted in a large increase in ALP gene expression. FSS
did not induce ALP gene expression in hMSCs treated with
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SB203580, a specific inhibitor to p38 MAPK. In conclusion,
p38, like ERK1/2, played an active role in FSS-induced oste-
ogenic differentiation of hMSCs.

4.4 Transcription factors related to osteogenic
differentiation: Cbfa1/Runx2 and AP-1

Cbfa1/Runx2 and AP-1 are important transcription factors
involved in osteogenic differentiation of hMSCs (Bjerre et al.
2008; Haasper et al. 2008; Shin et al. 2008). Runx2 is essen-
tial not only in the osteogenic differentiation of hMSCs but
also in the differentiation of osteoblasts and chondroblasts
(Fu et al. 2007). It is modulated by various signals such
as ECM, osteogenic growth factors such as bone morpho-
genic proteins (BMPs) and fibroblasts growth factor-2 (FGF-
2), mechanical loading and hormones (Franceschi and Xiao
2003). In response to FSS, the mRNA and protein levels as
well as the DNA-binding ability of Runx2 are augmented
via ERK1/2/MAKP pathway in hMSCs (Fig. 1) (Kim et al.
2007). Runx2 controls the expression of osteoblast-related
genes, such as osteocalcin, ALP, MMP-13, bone sialopro-
tein and collagen type I α1, by binding to osteoblast-specific
cis-acting element (OSE2) in their promoter region of these
genes (Ducy et al. 1997).

AP-1 transcription factors are dimers of Fos (c-Fos, FosB,
�FosB, Fra-1, Fra-2) and Jun (c-Jun, JunB, JunD) leu-
cine zipper-containing proteins. Some AP-1 factors, such as
c-Fos, f os B,�Fos B and c-jun can be activated in response
to FSS (Haasper et al. 2008; Rangaswami et al. 2009; Young
et al. 2009). Similar to Runx2, AP-1 factors can also bind
to the consensus sequence in the promoters of several oste-
ogenic differentiation-related genes to regulate their expres-
sion (Ducy and Karsenty 1995). As Runx2 can bind to some
AP-1 factors, such as c-Fos, c-Jun and JunD (Swarthout et al.
2002), it is possible that Runx2 and AP-1 factors synergize in
regulating the expression of downstream target genes related
to osteogenic differentiation though they can also affect these
target genes alone.

5 Conclusions

HMSCs are widely used in bone tissue engineering because
of their capacity to differentiate into almost all lineages of
bone cells. Strategies for bone tissue engineering require col-
lecting hMSCs from the patient and cultivating them in an
appropriate environment in vitro to proliferate, differenti-
ate, and generate extracellular matrix prior to reimplantation
in bone defects. An ideal artificial bone tissue should have
the uniform texture and the capacity to adapt to its func-
tional environment so that its morphology is “optimized” for
the mechanical demand (Rubin et al. 2006). FSS produced
by proper bioreactors can not only improve the cell seeding

distribution, promote proliferation and osteogenic differenti-
ation of hMSCs, but also provide mechanical stimulus to pro-
duce bone tissues with a proper resistance against mechani-
cal failure (Chen et al. 2008; Riddle et al. 2006; Zhao et al.
2009). Understanding the molecular mechanism of the oste-
ogenic differentiation of hMSCs induced by FSS will help
us to reasonably use FSS in bone tissue engineering. The fre-
quency and strength of FSS should be optimized for the best
formation of bone tissue. In addition, findings of FSS study
will facilitate us to identify new approaches for treatment of
bone diseases, such as osteoporosis and osteoarthritis, and
bone injuries. The elucidation of FSS mechanotransduction
in hMCSs is also helpful to study the effect of mechanical
stress on other cells.

However, the mechanism of FSS-induced osteogenic dif-
ferentiation in hMSCs is very complex. As shown in Fig. 1,
many signal pathways are involved in this mechanotrans-
duction. Yet, the mechanism is not completely clear. There
may be other signal pathways related to this mechanism. As
undifferentiated osteoprogenitor cells, hMSCs have differ-
ent characteristics from other cells. It is proposed that the
mechanotransduction of hMSCs could be different in some
aspects from those of other types of cells, such as osteoblasts
and endothelial cells. Further studies should be performed to
investigate the mechanism for FSS-induced osteogenic dif-
ferentiation of hMSCs.
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