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Abstract Using the three-dimensional morphological data
provided by computed tomography, finite element (FE) mod-
els can be generated and used to compute the stiffness
and strength of whole bones. Three-dimensional constitu-
tive laws capturing the main features of bone mechanical
behavior can be developed and implemented into FE software
to enable simulations on complex bone structures. For this
purpose, a constitutive law is proposed, which captures the
compressive behavior of trabecular bone as a porous mate-
rial with accumulation of irreversible strain and loss of stiff-
ness beyond its yield point and softening beyond its ultimate
point. To account for these features, a constitutive law based
on damage coupled with hardening anisotropic elastoplastic-
ity is formulated using density and fabric-based tensors. To
prevent mesh dependence of the solution, a nonlocal aver-
aging technique is adopted. The law has been implemented
into a FE software and some simple simulations are first
presented to illustrate its behavior. Finally, examples dealing
with compression of vertebral bodies clearly show the impact
of softening on the localization of the inelastic process.
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1 Introduction

The field of bone mechanics relies on numerical methods,
such as the finite element method, to investigate, for example,
implant design and predict the stiffness and strength of whole
bones (Prendergast 1997; Cristofolini et al. 2007). Three-
dimensional bone images obtained from computed tomogra-
phy provide input for patient-specific numerical models that
can be used in clinical studies and treatment evaluation (e.g.
Crawford et al. 2003; Melton et al. 2007; Keaveny et al. 2007;
Chevalier et al. 2008b). Incorporated in the FE method is the
constitutive law, which defines the relation between stresses
and strains. Most studies have used simple constitutive rela-
tions, for example linear elasticity with isotropic or transverse
isotropic symmetry.

So far, only little effort has been devoted to the devel-
opment of inelastic constitutive models specific to bone
(Zysset and Curnier 1996; Fondrk et al. 1999a; Garcia
et al. 2009; Natali et al. 2008b). The model presented by
Fondrk et al. (1999a) and Natali et al. (2008b) focused on
the rate-dependent behavior of compact bone under ten-
sion. While the model of Fondrk et al. (1999a) was solely
one-dimensional, unsuitable for three-dimensional finite ele-
ment simulations, the model of Natali et al. (2008b) was
implemented and used in dental implant studies (Natali
et al. 2008a). The models of Zysset and Curnier (1996) and
Garcia et al. (2009) aimed at describing the macroscopic
mechanical behavior of trabecular bone by fabric-based ten-
sors reflecting the morphology. With the exception of Natali
et al. (2008b), all other models made use of two inter-
nal variables to describe the nonlinearity occurring beyond
the yield point. These variables were linked to the loss of
stiffness and to the accumulation of residual strain, exper-
imentally observed for both compact and trabecular bone
(Fondrk et al. 1999b; Keaveny et al. 2001) and in mechanical
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terms described as damage and plasticity. None of the
models mentioned so far considered the softening of trabec-
ular bone, manifested by decreasing stress under increasing
strain.

In compression, the mechanical behavior of compact and
trabecular bone presents distinct characteristics. Compact
bone is quasi-brittle, while the mechanical behavior of tra-
becular bone is typical of an elastoplastic cellular material
(Gibson and Ashby 1999; Hayes and Carter 1976). For both
types of bone under compressive monotonic loading, the tan-
gent stiffness decreases already before the maximum force
is reached. For trabecular bone, a smooth and gradual reduc-
tion of the stress (softening) then occurs until a local min-
imum, followed by slight rehardening (Gibson and Ashby
1999).

The proposed model aims at describing the mechanical
behavior of trabecular bone in the range of small to mod-
erate compressive strains and thus considers simultaneous
accumulation of plastic deformation and damage that even-
tually leads to softening. Softening is one of the destabilizing
factors that may lead to localization of inelastic processes into
narrow bands. To avoid pathological sensitivity of the numer-
ical results to the finite element mesh, the model is regular-
ized by a nonlocal formulation based on a spatial averaging
procedure, which acts as a localization limiter (Bažant and
Jirásek 2002).

Section 2 of the paper describes the theoretical formula-
tion developed within the framework of plasticity coupled
with damage. The description of model parameters is pro-
vided in Sect. 3, and numerical aspects are discussed in detail
in Sect. 4. Section 5 introduces the nonlocal technique that
limits the localization, and finally in Sect. 6 some numerical
examples are presented to illustrate the behavior of the model
and the impact of softening on the results of complex bone
structure simulations.

The intrinsic notation will be used, with vectors
represented by lower case bold letters, e.g. a, second-order
tensors by upper case bold letters, e.g. A, and fourth-order
tensors by fonts with relief, e.g. A. The tensor products
a⊗b,A⊗B and A ⊗ B correspond respectively to ai b j , Ai j

Bkl and 1
2 (Aik B jl + Ail B jk) in index notation. Finally, a dot

indicates contraction and a colon indicates double contrac-
tion.

2 Constitutive model: general framework

This section presents the local constitutive model which is
specific to trabecular bone in compression. A general descrip-
tion and framework for elastoplasticity coupled with damage
can be found e.g. in Hansen and Schreyer (1994), Lubarda
and Krajcinovic (1995), Maugin (1992), Zysset and Curnier
(1996).
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Fig. 1 Stress-strain diagram of the plastic part of the model plotted
in terms of the effective stress (dotted line) and of the complete model
(with damage) plotted in terms of the nominal stress (continuous line)

2.1 Rheological model

To motivate the development, we start from a rheological
model that possesses the desired characteristics, namely,
simultaneous accumulation of plasticity and damage. The
plastic part of the model exhibits hardening with saturation,
i.e., the yield stress grows and asymptotically approaches a
finite limit (Fig. 1). Softening is attributed to the development
of damage (Fig. 1). The model is rate independent.

The formulation is based on three state variables. The
total strain E ∈ Sym (Green-Lagrange strain tensor) is the
observable variable. Sym is the set of symmetric second-
order tensors. To account for plasticity and damage, we use
two internal variables: the plastic strains Ep ∈ Sym and
a scalar κ that drives the hardening process and the evo-
lution of the scalar damage parameter D ∈ [0, DC ], where
DC ∈ (0, 1) is a critical damage value and κ is the cumulated
plastic strain, as will be seen later. The damage parameter D
represents the ratio between the number of broken elasto-
plastic units and the total number of units.

The rheological model in Fig. 2 is composed of identical
elastoplastic units placed in parallel, each of them consist-
ing of an elastic spring and a plastic pad arranged in series.
Green-Naghdi decomposition of the finite strain tensor is
used, E = Ee + Ep, where Ee is the elastic strain (Green
and Naghdi 1965). The yield function evolves with κ to
reflect isotropic plastic hardening. Softening is incorporated
through the damage part of the model.

The model parameters include a fourth-order positive
definite elasticity tensor S characterizing the elastic spring
in the elastoplastic unit, and a fourth-order positive semi-
definite tensor F used in the plastic yield function. A com-
plete description is provided in Sect. 3.
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Fig. 2 Rheological model composed of gradually breaking elastoplas-
tic units, each of which exhibits isotropic hardening

2.2 Basic equations

The constitutive model works with two kinds of stress. The
effective stress, S̄, is the stress transmitted by the yet unbro-
ken elastoplastic units and is considered as force per unit
undamaged area. It is linked to the elastic strain Ee = E−Ep

by the generalized Hooke’s law

S̄ = S(E − Ep) (1)

where S is the elastic stiffness tensor. From a physical per-
spective, the effective stress can be interpreted as the average
stress acting on the effective area of the material, assuming
that damage is a relative measure of decohesion in the mate-
rial (Kachanov 1986; Lemaitre and Chaboche 1994).

The total stress, S, is considered as force per unit total
area, and is obtained from the effective stress by taking
into account the effect of damage.1 The present model uses
a simple reduction by a scalar factor 1 − D, where D is
the damage variable that describes the reduction of stiffness
due to propagation of voids and cracks, and due to break-
age of individual trabeculae. The total stress is therefore
evaluated as

S = (1 − D(κ))S̄ = (1 − D(κ))S(E − Ep) (2)

where κ is an internal variable that drives the evolution of
damage. In the present model, κ is taken as the cumulated

1 In damage mechanics, this kind of stress is sometimes called nominal
(as opposed to effective), but this may lead to confusion with the first
Piola–Kirchhoff stress. The stress used here corresponds to the second
Piola–Kirchhoff stress and therefore we prefer to avoid the adjective
“nominal” and replace it by “total”.

plastic strain, so that the damage process is coupled to plas-
tic yielding. The damage variable D evolves monotonically
from its initial value 0 to its ultimate value Dc as κ grows
from zero to infinity. This is described by the damage func-
tion D(κ).

To complete the formulation, the evolution of the inelastic
variables Ep and κ must be defined. The plastic part of the
model is chosen to be associative and, as mentioned earlier,
to be governed by the effective stress. Therefore, the yield
function

f (S̄, κ) =
√

S̄:FS̄ − σ̄ p(κ) (3)

is defined as the difference between a generalized seminorm
of the effective stress and the current yield stress σ̄ p, which
directly depends on the cumulated plastic strain κ . Evolution
of plastic strain is described by the normality rule

Ėp = λ̇
∂ f (S̄, κ)

∂S̄
(4)

combined with the usual loading–unloading conditions

f (S̄, κ) ≤ 0, λ̇ ≥ 0, λ̇ f (S̄, κ) = 0 (5)

in which λ̇ is the rate of the plastic multiplier. These condi-
tions imply that

1. if f (S̄, κ) < 0 we have λ̇ = 0 and the material response
is elastic (no plastic flow),

2. if f (S̄, κ) = 0 we can have λ̇ > 0 and plastic flow may
occur, and

3. f (S̄, κ) > 0 is not admissible.

According to (4), the yield function f plays the role of the
plastic potential. Substituting the specific form of the yield
function (3) into (4), we obtain

Ėp = λ̇
FS̄√
S̄:FS̄

(6)

The cumulated plastic strain κ is defined by the evolution
equation

κ̇ = ‖Ėp‖ =
√

Ėp:Ėp (7)

from which

κ(t) =
t∫

0

κ̇(τ ) dτ =
t∫

0

√
Ėp(τ ):Ėp(τ ) dτ (8)

Substituting the flow rule (6) into Eq. (7), we obtain the rela-
tion between the rate of the plastic multiplier and the rate of
the cumulated plastic strain:

κ̇ =
∥
∥
∥
∥
∥
λ̇

FS̄√
S̄:FS̄

∥
∥
∥
∥
∥

= λ̇
‖FS̄‖√

S̄:FS̄
(9)
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Therefore, λ̇ can be expressed in terms of κ̇ and the flow rule
can be rewritten as

Ėp = κ̇
FS̄

‖FS̄‖ = κ̇Np (10)

where

Np = FS̄

‖FS̄‖ (11)

is a normalized tensor indicating the plastic flow direction,
while κ̇ indicates the magnitude of plastic flow.

As shown in Grassl and Jirásek (2006a), if the yield func-
tion is formulated in terms of effective stress, local unique-
ness of the solution (any prescribed strain history generates
a unique response) requires less restrictive conditions than if
the total stress is used. In the current formulation, with asso-
ciated plasticity and monotonic positive plastic hardening,
local uniqueness is always ensured.

2.3 Thermodynamic aspects

For the model to be thermodynamically admissible, the rate
of dissipation must always remain nonnegative, which is a
consequence of the second law of thermodynamics. At con-
stant temperature, the dissipation rate

D = S:Ė − ψ̇ (12)

can be computed as the difference between the stress power
density and the rate of Helmholtz free energy density. A plau-
sible choice of the expression for the free energy density of
an elastoplastic material with damage is

ψ(E,Ep, κ) = 1
2 (1 − D(κ)) (E − Ep):S(E − Ep) (13)

The dissipation rate then becomes

D = S:Ė − (1 − D(κ))S(E − Ep):Ė
+ (1 − D(κ))S(E − Ep):Ėp

+ 1
2 (E − Ep):S(E − Ep)D,κ κ̇ (14)

where D,κ = dD(κ)/dκ is the derivative of the damage func-
tion with respect to the cumulated plastic stress. By virtue of
(2), the first two terms on the right-hand side cancel and the
dissipation inequality can be written as

D = Dp + DD ≥ 0 (15)

where

Dp = (1 − D(κ))S(E − Ep):Ėp = S:Ėp
(16)

is the plastic dissipation rate and

DD = 1
2 (E − Ep):S(E − Ep)D,κ κ̇ (17)

is the damage dissipation rate.
For condition (15) to be verified, it is sufficient to show

that Dp ≥ 0 and DD ≥ 0. Since the elastic stiffness tensor S

is positive definite and κ̇ = ‖Ėp‖ is always nonnegative, the
damage dissipation inequality (17) is verified if D,κ is non-
negative, which means that damage cannot decrease. This is a
very natural requirement, as long as we do not consider bone
healing, which would require a much broader framework.

Using Eqs. (10) and (2), the plastic dissipation (16) can
be rewritten in the form

Dp = κ̇ S: FS̄

‖FS̄‖ = κ̇ (1 − D(κ))

‖FS̄‖ S̄:FS̄ (18)

Since D(κ) ≤ 1 and κ̇ ≥ 0, the fraction on the right-hand
side of (18) is always nonnegative, and since F is positive
semi-definite, the product S̄:FS̄ is also nonnegative. There-
fore, the plastic dissipation is always nonnegative and the
dissipation inequality is verified.

3 Constitutive model: specific details

3.1 Morphology and fabric tensor

The purpose of the model is to describe the constitutive
behavior of trabecular bone using a continuum description at
the macroscopic scale (e.g. Crawford et al. 2003; Chevalier
et al. 2008a). In this approach, the trabecular bone structure is
homogenized using morphological parameters obtained from
computed tomography. The porosity of the trabecular bone
is described by the bone volume fraction ρ ∈]0, 1], while
its anisotropy (actually limited to orthotropy) is reflected by
a second-order symmetric positive definite tensor M, pre-
sented in terms of its spectral decomposition

M =
3∑

i=1

mi (mi ⊗ mi ) (19)

Here, mi , i = 1, 2, 3, are the eigenvalues, and mi , i =
1, 2, 3, are the corresponding unit eigenvectors, which spec-
ify the orientation of the axes of orthotropy. The eigenvalues
are normalized such that Tr (M) = 3. For an isotropic mate-
rial, all eigenvalues are equal to 1 and M becomes a unit
tensor.

Similar to Garcia et al. (2009), the constitutive model
makes use of fourth-order tensors based on morphology and
related to the fabric tensor, as described in Curnier et al.
(1995), Zysset and Curnier (1995), Zysset (2003), Zysset
and Rincón (2006). For completeness, the basic ideas will
be briefly recalled in the next two subsections. After that, we
will specify the hardening function and the damage law, both
dependent on the cumulated plastic strain.

3.2 Elastic stiffness and compliance

The fourth-order elastic compliance tensor E corresponds to
an orthotropic material with principal directions given by the
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eigenvectors mi of the fabric tensor. The compliance coeffi-
cients are scaled with the bone volume fraction ρ and with
the eigenvalues mi of the fabric tensor. In Voigt notation, the
elastic compliance is represented by the matrix

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

ε1
−ν12

ε1
−ν13

ε1
0 0 0

−ν21

ε2

1

ε2
−ν23

ε2
0 0 0

−ν31

ε3
−ν32

ε3

1

ε3
0 0 0

0 0 0
1

μ23
0 0

0 0 0 0
1

μ31
0

0 0 0 0 0
1

μ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

with the elastic moduli given by

εi = ε0ρ
km2l

i (21)

μi j = μ0ρ
kml

i m
l
j (22)

and the Poisson ratios by

νi j = ν0
ml

i

ml
j

(23)

Constants ε0, μ0 and ν0 are the elastic properties of a fic-
titious bone material with zero porosity, and dimensionless
exponents k and l are determined by fitting of experimental
results.

The elastic stiffness tensor S = E
−1 is the inverse of the

elastic compliance tensor, and its explicit representation is
given in Zysset (2003). When this linear elasticity model
is formulated with large strain and stress measures, it holds
exactly only at the origin and is then progressively influenced
by the geometrical nonlinearity.

3.3 Yield criterion

Similar to Garcia et al. (2009), the tensile-compressive asym-
metry of the yield stress is described using a piecewise qua-
dratic generalized Hill criterion (Zysset and Rincón 2006).
The compressive and tensile parts of the yield surface meet
at the hyperplane given by

N̂ : S̄ = 0 (24)

where N̂ is a tensor orthogonal to that hyperplane (to be spec-
ified later, see (29)). Consequently, the tensor F that appears
in the yield function (3) is different in each part of the effec-
tive stress space. This tensor will be denoted as F

+ in the
tensile part, characterized by N̂ : S̄ ≥ 0, and as F

− in the
compressive part, characterized by N̂ : S̄ ≤ 0. Of course,
F

+ and F
− are not completely independent, because conti-

nuity of the yield surface must be preserved. Therefore, for

all effective stress states S̄ satisfying the condition N̂ : S̄ = 0
we must have S̄:F+S̄ = S̄:F−S̄.

The general structure of the fourth-order tensors F
+ and

F
− is the same as for the elastic compliance tensor. In the

Voigt notation, these tensors are represented by the matrices

F
± =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(σ±

1 )
2 − χ±

12
(σ±

1 )
2 − χ±

13
(σ±

1 )
2 0 0 0

− χ±
21

(σ±
2 )

2
1

(σ±
2 )

2 − χ±
23

(σ±
2 )

2 0 0 0

− χ±
31

(σ±
3 )

2 − χ±
32

(σ±
3 )

2
1

(σ±
3 )

2 0 0 0

0 0 0 1
τ 2

23
0 0

0 0 0 0 1
τ 2

31
0

0 0 0 0 0 1
τ 2

12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)

where

σ±
i = σ±

0 ρ
pm2q

i (26)

are the initial uniaxial tensile and compressive yield stresses
along individual axes of orthotropy,

τi j = τ0ρ
pmq

i mq
j (27)

are the initial yield stresses in shear in the planes of ortho-
tropy, and

χ±
i j = χ±

0

m2q
i

m2q
j

(28)

are the interaction coefficients. Exponents p and q in
(26)–(28), which reflect the influence of the bone volume
fraction and fabric, are in general different from exponents k
and l used in expressions (21)–(23) for the elastic constants.
Parameters σ±

0 , τ0 and χ±
0 correspond to the properties of

a fictitious material with zero porosity. As shown by Zysset
and Rincón (2006), the condition of continuous differentia-
bility of the yield surface (across the hyperplane separating
its tensile and compressive parts) is satisfied if the tensor
normal to the hyperplane is defined as

N̂ =
∑3

i=1 m−2q
i√∑3

i=1 m−4q
i

(mi ⊗ mi ) (29)

and if the parameter values are constrained by the condition

χ−
0 + 1

(σ−
0 )

2
= χ+

0 + 1

(σ+
0 )

2
(30)

3.4 Plastic hardening

The plastic hardening function describes the growth of the
yield stress beyond the initial yield point. We consider
an exponential hardening function, which asymptotically
approaches a limit value. Note that softening of the total stress
can be taken into account by the damage part of the model,
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and so, in terms of total stress, a purely hardening behavior
with saturation is sufficient. Using hardening plasticity with
associated flow has a positive effect on the robustness of the
numerical algorithm, because the stress return is equivalent to
a convex minimization problem, which always has a unique
solution.

Since the physical dimension of tensor F is chosen such
that the product S̄:FS̄ is dimensionless, the yield value σ̄ p

must be dimensionless as well, and it corresponds to the ratio
between the current yield stress and the initial one. The expo-
nential hardening function is then

σ̄ p = 1 + σ H (1 − e−sκ ) (31)

where σ H and s are two nonnegative dimensionless param-
eters, to be identified from experiments.

3.5 Damage evolution

The growth of damage, driven by the cumulated plastic strain,
is also described using an exponential function

D(κ) = DC (1 − e−aκ) (32)

with the derivative with respect to κ given by

D,κ (κ) = dD(κ)

dκ
= DC ae−aκ (33)

Dimensionless parameters a ≥ 0 and DC < 1 control the
softening part of the stress-strain diagram.

4 Numerical algorithm

To implement the constitutive model into a finite ele-
ment code, the basic equations need to be rewritten in
an incremental form, and a stress evaluation algorithm
needs to be developed (Simo and Taylor 1985; Zysset 1994;
Rakotomanana et al. 1991; Simo and Hughes 2000; Grassl
and Jirásek 2006a). At the global (structural) level, the non-
linear equilibrium equations are solved using a Newton–
Raphson scheme, which requires an algorithmic (consistent)
stiffness obtained by differentiation of the incremental stress
evaluation procedure.

The following subsection presents the solution of the
incremental strain-driven problem. Afterward, the contin-
uum and algorithmic tangent operators are presented.

4.1 Stress evaluation algorithm

For the present purpose, we introduce subscripts n and n + 1
that respectively correspond to the values at the beginning of
the step (converged values of the preceding step) and at the
end of the step. The plastic part of the model has been for-
mulated in the effective stress space, and so the plastic stress

Fig. 3 Graphical representation of the plastic stress return algorithm
for a model with isotropic hardening and associated plastic flow in the
effective stress space

return algorithm provides the effective stress. The damage
part of the model then gives the total stress.

In the context of the displacement-based finite element
method, the strain En+1 = En + ΔE at the end of the
increment is estimated by solving the linearized equilibrium
equations, and is considered as input into the stress eval-
uation algorithm. All other variables, such as the effective
and nominal stress, plastic strain, cumulative plastic strain
or damage, are known only at the beginning of the step, and
the purpose of the stress evaluation algorithm is to determine
their values at the end of the step, such that all the governing
equations are satisfied. The effective stress can be directly
computed from the total and plastic strain, the damage var-
iable uniquely depends on the cumulative plastic strain, and
the nominal stress can be obtained from the effective stress
and damage. It is therefore sufficient to specify En+1,Ep

n and
κn as the input variables.

4.1.1 Plastic stress return

The plastic strain increment is first set to zero, and the cor-
responding trial stress

S̄t = S(En+1 − Ep
n ) (34)

is computed. It corresponds to a tentative solution for which
plastic admissibility must be tested.

If f (S̄t , κn) ≤ 0, the increment is indeed elastic and
there is no evolution of the plastic strain and damage. The
solution of the incremental problem is then simply S̄n+1 =
S̄t ,Ep

n+1 = Ep
n , κn+1 = κn and Dn+1 = Dn = D(κn).

On the other hand, if f (S̄t , κn) > 0, plastic flow occurs
during the increment and the solution is found using a stress-
return algorithm (Fig. 3). The current development is similar
to Zysset (1994). The primary unknown variables S̄n+1 and
Δκ need to be solved from a system of nonlinear equations.

The first equation to be satisfied is the yield condition at
the end of the step:
√

S̄n+1:FS̄n+1 − σ̄ p(κn +Δκ) = 0 (35)
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Since Ep
n+1 = Ep

n + ΔEp, the effective stress at the end of
the step can be expressed as

S̄n+1 = S(En+1 − Ep
n −ΔEp) = S̄t − SΔEp (36)

Based on the flow rule (10), the plastic strain increment is
approximated using the backward Euler formula

ΔEp = Δκ Np
n+1 (37)

where

Np
n+1 = FS̄n+1

‖FS̄n+1‖
(38)

is the direction of plastic flow at the end of the step. Substi-
tuting (37)–(38) into (36), we obtain

S̄n+1 = S̄t −Δκ
SFS̄n+1

‖FS̄n+1‖
(39)

Equations (39) and (35) represent a set of nonlinear equa-
tions for unknowns S̄n+1 andΔκ . For convenience, they are
rewritten as

R(S̄n+1,Δκ) ≡ E(S̄n+1 − S̄t )+ΔκNp
n+1 = 0 (40)

f (S̄n+1,Δκ) ≡
√

S̄n+1:FS̄n+1 − σ̄ p(κn +Δκ) = 0 (41)

These equations can be solved iteratively by the Newton–
Raphson method. Their linearized form is

Ri+1 ≈ Ri + ∂Ri

∂S̄n+1
δS̄n+1 + ∂Ri

∂Δκ
δΔκ = 0 (42)

f i+1 ≈ f i + ∂ f i

∂S̄n+1
:δS̄n+1 + ∂ f i

∂Δκ
δΔκ = 0 (43)

where δS̄n+1 and δΔκ are the iterative corrections of S̄i
n+1

and Δκ i . Superscript i indicates the iteration number, not to
confuse with subscript n, which is the step number. Note that
we have simplified the writing by shorthand notation such
as Ri = R(Si

n+1,Δκ
i ). For each iteration i , the solution of

(42)–(43) is obtained as

δΔκ =

√
S̄i

n+1:FS̄i
n+1

‖FS̄i
n+1‖

f i − Np,i
n+1:Si

a,n+1Ri

Np,i
n+1:Si

a,n+1Np,i
n+1 +

√
S̄i

n+1:FS̄i
n+1

‖FS̄i
n+1‖

σ̄
p,i
,κ

(44)

δS̄n+1 = −S
i
a,n+1

(
Ri + Np,i

n+1δΔκ
)

(45)

where σ̄ p,i
,κ = σ H s e−s(κn+Δκ i ),Np,i

n+1 = FS̄i
n+1

‖FS̄i
n+1‖

, and

S
i
a,n+1 =

[

E + Δκ i

‖FS̄i
n+1‖

(
F − Np,i

n+1 ⊗ FNp,i
n+1

)
]−1

(46)

The improved approximation of the solution of (40)–(41) is
S̄i+1

n+1 = S̄i
n+1 + δS̄n+1 and Δκ i+1 = Δκ i + δΔκ .

The iterative process is repeated until the norm of Ri+1 and
the magnitude of f i+1 are below a prescribed tolerance. At
this stage, we obtain the converged effective stress S̄n+1 =
S̄i+1

n+1 and the increment of cumulated plastic strain Δκ =
Δκ i+1, and we can update

Ep
n+1 = Ep

n +Δκ
FS̄n+1

‖FS̄n+1‖
(47)

κn+1 = κn +Δκ (48)

The updated cumulated plastic strain κn+1 is then used to
compute the damage.

4.1.2 Damage evaluation

The damage variable at the end of the step is easily obtained
by substituting the updated cumulated plastic strain κn+1 into
the damage law (32):

Dn+1 = D(κn+1) = DC (1 − e−aκn+1) (49)

After that, the total stress is evaluated as

Sn+1 = (1 − Dn+1)S̄n+1 (50)

4.2 Tangent stiffness tensors

Implementation of the model into a finite element code using
the Newton–Raphson iterative scheme requires the evalua-
tion of the algorithmic tangent stiffness, which provides a
quadratic convergence rate. The algorithmic tangent oper-
ator comes from the linearization of the stress evaluation
algorithm that deals with a finite increment. In general, it is
different from the continuum tangent operator, which links
the strain rate to the corresponding stress rate.

4.2.1 Continuum stiffness

Taking the time derivative of stress-strain laws (1) and (2),
we obtain

˙̄S = S(Ė − Ė
p
) (51)

Ṡ = (1 − D) ˙̄S − ḊS̄ = (1 − D)S(Ė − Ė
p
)− D,κ S̄κ̇ (52)

The plastic strain rate can be eliminated using the flow rule
(10), which gives

˙̄S = SĖ − SNpκ̇ (53)

Ṡ = (1 − D)SĖ − (
(1 − D)SNp + D,κ S̄

)
κ̇ (54)

When no plastic flow occurs, we have κ̇ = 0, and the rela-
tion between the rates of strain and total stress is described
by the secant (damaged) stiffness tensor

S
D = (1 − D)S (55)
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During plastic flow, the yield function remains equal to
zero, and its time derivative vanishes. Differentiation of the
yield function (3) leads to

ḟ = S̄ : F
˙̄S√

S̄ : FS̄
− σ̄ p

,κ κ̇ (56)

The expression in the denominator can be replaced by σ̄ p,
because during plastic flow the yield function is equal to zero,
and the effective stress rate can be replaced by the right-hand
side of (53). The consistency condition

ḟ = 1

σ̄ p
S̄ : FS(Ė − Npκ̇)− σ̄ p

,κ κ̇ = 0 (57)

then represents a scalar equation from which the rate of cumu-
lated plastic strain can be expressed in terms of the strain rate:

κ̇ = S̄ : FSĖ

S̄ : FSNp + σ̄ pσ̄
p
,κ

= SNp

Np : SNp + σ̄ pσ̄
p
,κ/‖FS̄‖ : Ė

(58)

Elimination of κ̇ from (53) leads to the relation between the
rates of strain and effective stress described by the elasto-
plastic stiffness tensor

S
P = S − SNp ⊗ SNp

Np:SNp + σ̄ pσ̄
p
,κ/‖FS̄‖ (59)

Similar to that, elimination of κ̇ from (54) leads to the rela-
tion between the rates of strain and total stress described by
the damaged elastoplastic stiffness tensor

S
D P = (1 − D)S −

(
(1 − D)SNp + D,κ S̄

) ⊗ SNp

Np:SNp + σ̄ pσ̄
p
,κ/‖FS̄‖ (60)

Note that (59) is a special case of (60) with no damage
(D = 0, D,κ = 0). Stiffness tensor (59) exhibits major sym-
metry, as can be expected from an elastoplastic model with
an associated rule. In (60), major symmetry is lost due to the
effect of damage.

4.2.2 Algorithmic stiffness

In the numerical simulation, the strain incrementΔE is given
and the corresponding stress incrementΔS is computed using
the stress evaluation algorithm. The algorithmic stiffness ten-
sor S

D P
a relates infinitesimal changes of the finite strain incre-

ment, d(ΔE), to the corresponding infinitesimal changes of
the finite stress increment, d(ΔS).

We will first determine the algorithmic stiffness S
P
a that

refers to the plastic stress return algorithm. Recall that the
effective stress at the end of the increment, S̄n+1, is the solu-
tion of nonlinear Eqs. (40)–(41) with the trial stress S̄

t
depen-

dent on the strain increment according to (34). If the strain
increment ΔE changes by d(ΔE), the corresponding trial
stress changes by dS̄

t = S d(ΔE) and the corresponding
change of S̄n+1 can be found by linearizing (40)–(41) around

the original solution. Since the linearization has already been
developed in the description of the stress return algorithm,
there is no need to repeat it. We can simply reuse Eqs. (42)–
(43). The residual in (40) is dR = −E dS̄

t = −d(ΔE), the
residual in (41) is d f = 0, and the solution of linearized
Eqs. (42)–(43) is given by (44)–(45), where the state with
superscript i has to be interpreted as the converged result
of the stress-return algorithm for the original strain incre-
ment, and the iterative corrections δΔκ and δS̄n+1 repre-
sent infinitesimal changes d(Δκ) and d(ΔS̄) of the finite
increments Δκ and ΔS̄ that correspond to the infinitesimal
change d(ΔE) of the finite strain increment ΔE. Therefore,
substituting (44) into (45) gives the relation between d(ΔE)
and d(ΔS̄) in the form d(ΔS̄) = S

P
a d(ΔE). Working out

the details, we obtain the elastoplastic algorithmic stiffness
tensor

S
P
a = Sa − SaNp ⊗ S

T
a Np

Np:SaNp + σ̄ pσ̄
p
,κ/‖FS̄‖ (61)

with Sa defined in Eq. (46). Note that the algorithmic stiff-
ness (61) has the same structure as the continuum stiffness
(59), only with the elastic stiffness S replaced by Sa given
by (46). The difference between Sa and S is due to curvature
of the yield surface and would vanish if the yield surface
was planar. The difference also depends on the size of the
increment, entering through Δκ , and vanishes in the limit
for the increment size approaching zero. In this limit, the
algorithmic stiffness approaches the continuum stiffness.

The complete algorithmic stiffness, which takes into
account the influence of damage and links d(ΔE) to Sn+1,
can be constructed easily by linearizing Eq. (2). The resulting
expression

S
D P
a =(1 − D)Sa −

(
(1−D)SaNp+D,κ S̄

) ⊗ S
T
a Np

Np:SaNp + σ̄ pσ̄
p
,κ/‖FS̄‖ (62)

has the same structure as (60), with S replaced by Sa , and
approaches (60) in the limit for the increment size approach-
ing zero.

5 Nonlocal formulation

The motivation for using a nonlocal formulation comes from
the need to avoid pathological mesh dependence in bound-
ary value problems that use material laws with softening;
see e.g. Bažant and Jirásek (2002). The source of the unde-
sired sensitivity to the finite element size is best explained
using a simple one-dimensional model of a bar (Fig. 4) of
initial length L , which is fixed at one end and loaded by an
increasing displacement u applied at the other end.

If the bar is discretized by finite elements, the response
remains uniform as long as the stress keeps increasing under
increasing strain, i.e., as long as the material behavior is
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L u

F

Fig. 4 A one-dimensional bar of length L stretched by a displacement
u applied at the right support

hardening. After the onset of softening, the stress decreases
and remains uniform, but the strain can become nonuni-
form. An arbitrarily small imperfection (e.g. reduction of the
strength of one element) triggers localization of the inelastic
processes into the weakest element while the other elements
enter the unloading regime. For a given change of stress, the
corresponding changes of elastic strain and of inelastic strain
are uniquely determined by the constitutive law. The change
of the total bar elongation is the integral of the strain change,
and the contribution of the elastic strain change that takes
place in all the elements is independent of the number of
elements but the contribution of the inelastic strain change
that takes place in one single element is proportional to the
element size and thus inversely proportional to the number
of elements (assuming a uniform mesh). With mesh refine-
ment, the slope of the post-peak part of the load-displacement
diagram becomes steeper and the structural response is thus
more brittle. In the limit for the number of elements approach-
ing infinity, the size of the softening element tends to zero
and the dissipation rate as well. A regularization technique is
required to prevent localization of inelastic processes into an
arbitrarily small volume and to enforce the correct dissipation
rate and correct slope of the load-displacement diagram.

The regularization of the solution requires the introduc-
tion of an additional scalar parameter with the dimension
of length, related to the thickness of the localization band.
Similar to Grassl and Jirásek (2006b), the current model is
regularized by integral-type nonlocal averaging of the cumu-
lated plastic strain κ . The value of the nonlocal cumulated
plastic strain, κ̄ , depends on the surrounding points that are
within a certain distance R, related to the internal length of
the model, i.e., to the size and spacing of the dominating
heterogeneities in the microstructure.

It turns out that simply computing damage from the non-
local cumulated plastic strain κ̄ provides only a partial reg-
ularization. The dissipation rate remains finite but plastic
yielding still localizes into one single element; see Grassl
and Jirásek (2006b). Full regularization can be achieved if
damage D(κ̂) is computed from an internal variable

κ̂ = (1 − m)κ + mκ̄ (63)

defined as a linear combination of the local and nonlocal
cumulated plastic strains, with dimensionless parameter m

larger than 1. This strategy has been shown to act as a proper
localization limiter (preventing localization into a band of
zero thickness), to be free of stress locking, and to be com-
putationally efficient since the plasticity problem remains
local.

The nonlocal value of cumulated plastic strain is
defined as

κ̄(x) =
∫

V

α(x, s)κ(s)ds (64)

where V is the spatial domain occupied by the bone, x is
the point at which the nonlocal cumulated plastic strain is
evaluated, s sweeps through the domain V , and

α(x, s) = α0(‖ x − s ‖)
∫

V α0(‖ x − t ‖)dt
(65)

is the nonlocal weight function, typically nonnegative and
decaying with increasing distance r =‖ x − s ‖ between
points x and s. Function α0 is selected here as the truncated
quartic polynomial

α0(r) =
{(

1 − r2

R2

)2
if r < R

0 if r ≥ R
(66)

Parameter R, called the nonlocal interaction radius, has the
dimension of length and directly affects the size of the local-
ization band.

Note that the nonlocal cumulated plastic strain affects only
the damage evolution, while the current effective yield stress
is computed from the local cumulated plastic strain. There-
fore, the plastic stress-return algorithm is not affected by the
nonlocal formulation and can be used in its standard form.
After the evaluation of plastic strain increments in all Gauss
points of the finite element model, the local values of κ are
known and the nonlocal values κ̄ can be obtained in a straight-
forward manner, approximating the integral in (64) by a finite
sum.

The plastic dissipation rate Dp is given by the same
expression (18) as for the local model, only with D(κ)
replaced by D(κ̂), and it is thus guaranteed to remain nonneg-
ative. To verify thermodynamic consistency, it is sufficient
to show that the damage dissipation

DD = 1
2 (E − Ep):S(E − Ep)Ḋ (67)

remains nonnegative. For a positive definite elastic stiffness
S, condition DD ≥ 0 is satisfied if Ḋ ≥ 0, i.e., if damage
cannot decrease. For the local model, D is a nondecreasing
function of the local cumulated plastic strain κ , and the rate of
κ is nonnegative. The rate of the local cumulated plastic strain
is always nonnegative and this property is preserved by non-
local averaging, provided that the nonlocal weight function is
nonnegative, too. So the monotonicity of damage evolution
would be automatically guaranteed for a model with damage
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driven by the nonlocal cumulated plastic strain κ̄ . However,
with m > 1, the combined nonlocal variable κ̂ defined in
(63) can decrease if the local cumulated plastic strain grows
much faster than the nonlocal one. Therefore, to make sure
that the model remains thermodynamically consistent, κ̂ is
considered as the maximum value of (1 − m)κ + mκ̄ over
the previous history. This could be formalized by introducing
another loading function and the corresponding complemen-
tarity conditions.

6 Numerical examples

This section first presents examples with homogeneous mate-
rial properties that illustrate the main features of the proposed
law, its proper implementation, and, using the nonlocal for-
mulation, the convergence of the solution with mesh refine-
ment. Then, an example of application to compression of
vertebral bodies with heterogeneous material properties is
presented.

6.1 Specimen with homogeneous properties

At first, the behavior of the local formulation is illustrated
by a simulation of a single cubic element of edge length
1 mm. Afterward, a comparison between the local and non-
local formulation is presented to illustrate the impact of the
nonlocality on the solution.

In order to select reasonable parameters, the elasticity ten-
sor and yield criterion were first taken from Matsuura et al.
(2008), Zysset (2003), and Rincón-Kohli and Zysset (2009)
and then, together with the hardening and softening parame-
ters, were adjusted to match an experimental curve (Fig. 5).
This approach to parameter selection is appropriate for the
present examples, as their only purpose is to illustrate the
characteristics of the material model. The parameters used,
except if mentioned otherwise, are those listed in Table 1.

6.1.1 Local formulation

The experimental curve in Fig. 5 shows the typical behav-
ior observed in compression of trabecular bone. Beyond a
certain threshold, the bone accumulates irreversible strain
and its stiffness is reduced, which in mechanical terms cor-
respond to plasticity and damage, both considered in the cur-
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Fig. 5 Figure depicting a post-yield cyclic compressive test on a
trabecular bone biopsy that shows the accumulation of irreversible
strain. Parameters used are ρ = 0.34,m1 = m2 = 0.8 and m3 = 1.4
(transversal isotropy)

rent law. After reaching the ultimate point, the force gradually
decreases.

The local formulation of the law has been implemented
into OOFEM, an open-source object-oriented finite element
code (Patzák and Bittnar 2001). All elements of the elasticity
and yield tensors have been verified by simulating confined
compression, tension and shear in several directions using a
single cubic linear element of length 1 mm on which nodal
displacements are imposed. The main results are presented
in Fig. 6.

6.1.2 Nonlocal formulation

The nonlocal formulation has been introduced to ensure con-
vergence of the localized solution upon mesh refinement. A
bar of length 1 mm and cross-sectional area 0.2 mm × 0.2 mm
has been discretized with different numbers of elements and
subjected to confined compression up to 10% strain. To trig-
ger localization, the yield stress of the central element has
been reduced by 2%. Results obtained with both nonlocal
and local formulations are presented in Figs. 7 and 8. By
redistributing the damage from the weakest element to its
neighbors, the nonlocal formulation prevents localization in
a single element. Softening, which is directly linked to the
damage parameter, occurs in all elements within a band of

Table 1 Default parameters used in the simulations (except if mentioned otherwise)

ε0 [MPa] ν0 k l σ0 [MPa] χ0 p q σ H s DC a R [mm] m

2080 0.18 1.45 1.3 8.15 0.327 1.45 1.16 1.7 1100 0.925 200 0.25 1.5

The shear values are set to μ0 = ε0
2(1+ν0)

and τ0 = σ±
0√

2(1+χ±
0 )

and the yield criterion is considered as symmetric in tension and compression

(σ0 = σ+
0 = σ−

0 and χ0 = χ+
0 = χ−

0 ). Parameters R and m are relevant to nonlocal simulations only
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Fig. 6 Comparison of different loading cases. An orthotropic
symmetry was used with m1 = 0.8,m2 = 1 and m3 = 1.2, and
the asymmetry between compression and tension was considered with

σ+
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0 + 1)
(σ+

0 )
2

(σ−
0 )

2 − 1

Fig. 7 A compressive displacement has been applied on a bar
discretized by an increasing number of elements (from 15 to 135),
using both nonlocal (top) and local (bottom) formulations. The figures
depict the accumulation of plastic strain. While the nonlocal formula-
tion clearly approaches a converged solution with mesh refinement, the
local formulation highly depends on the mesh size as only the central
element accumulates plastic strain. The hardening-softening parameters
have been reduced to s = 10 and a = 110 for the nonlocal formulation
and to s = 2 and a = 110 for the local formulation in order to clearly
illustrate the impact of mesh size on the solution

width 2R, which makes the solution independent of mesh-
ing (the mesh size needs to be smaller than the radius of
interaction). Also the nonlocal parameters, R and m, have
an impact on the stress-strain diagram. Reducing their value
increases the slope of the softening while ultimate stress and
residual stress at large strain are unaffected. For example,
the strain corresponding to half the ultimate stress changes
by 12.1% and −11.6% with a variation of ±10% of both R
and m. These results are again independent of the meshing.
The local formulation without any localization limiter leads
to strain localization in a single element, as expected.
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Fig. 8 Figure depicting the stress-strain diagram of the long bars
presented in Fig. 7. As expected, the results of the nonlocal formu-
lation are insensitive to the mesh size while for the local formulation
the softening part strongly depends on the mesh size

6.2 Example of application

The nonlocal constitutive law has been applied to vertebral
bodies. The finite element models of the vertebral bodies are
identical to the models in Chevalier et al. (2008a), but the
constitutive law is different and covers softening.

For the present model, the nonlocal tangent stiffness
matrix has not been developed yet, and therefore the equilib-
rium iteration is performed with the secant stiffness, S

D
a =

(1 − D)S, which provides a linear convergence rate.

6.2.1 Method

Vertebral bodies have been scanned using a high-resolu-
tion peripheral QCT (pQCT) system (XtremCT, 82 µm
isotropic, 59.4 kV, 1000 µA, Scanco MedicalAG, Zürich,
Switzerland) and the image data sets have been resampled to
a resolution of 1312 µm. Bone voxels grey values have been
converted to bone volume fractions using a calibration curve
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Table 2 Description of the parameters used in the simulation of the vertebrae

ε0 [MPa] ν0 k l σ+
0 [MPa] σ−

0 [MPa] χ+
0 χ−

0 p q σ H s DC a R [mm] m

8237.1 0.18 2.5 1.88 57.4 132.4 −0.748 0.340 2.5 0.86 6.0 37.5 0.6 22.5 3.936 1.5

The shear values are set equal to μ0 = ε0
2(1+ν0)

and τ0 = σ±
0√

2(1+χ±
0 )

. Parameters R and m are only active in nonlocal simulations

Table 3 Quantitative results for the vertebral bodies

Stiffness [N/mm] Strength [N] Ult. Displ. [mm]

B-L3 8459 5165 1.12

C-L4 14355 9488 1.23

based on hydroxyapatite content, and a threshold value has
been chosen to define the external contours of the vertebrae.
Voxels representing PMMA end plates (linear elastic and
isotropic) have been added using an automated method and
all the voxels have been converted to hexahedral elements.
A more complete description of the method can be found in
Chevalier et al. (2008a).

Simulations are performed under compression along the
anatomic superior-inferior axis. The parameters have been
chosen using a similar approach as for the homogeneous
models. The parameters for the elasticity tensor and yield
criterion have been first taken from the study of Chevalier
et al. (2008a). Then, together with the hardening and soften-
ing parameters, they have been adjusted to match the ultimate
force of the simulation presented in Chevalier et al. (2008a)
and to give a reasonable softening when compared to the
experiments presented in Chevalier et al. (2008b) (Table 2).
The end plates are described by a linear elastic and isotro-
pic constitutive law with Young’s modulus of 3 GPa and
Poisson’s ratio of 0.35. Since large deformations arise due
to localization, the Jacobian is evaluated at every integration
point in order to detect negative volumes. The last step con-
sidered in the simulation is the last step without a negative
Jacobian. Of course, a more rigorous approach would be to
use a large-strain formulation with an additional term that
reflects the re-hardening of the material after pore closure.
This is the subject of further research.

6.2.2 Results

The force-displacement curve exhibits the expected behavior,
reaching an ultimate point after which softening occurs
(Fig. 9). The vertebra C-L4 presents a higher stiffness and
peak force, with respective values of 14.4 GPa and 9.49 kN,
than specimen B-L3, with respective values of 8.46 GPa and
5.16 kN. The ultimate displacement for both specimens is
similar with values of 1.23 and 1.12 mm for specimens C-L4
and B-L3, respectively (Table 3).
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Fig. 9 Force-displacement curves from the simulation made on the
two vertebral bodies (continuous lines). Dotted lines are the simulation
results found in Chevalier et al. (2008a)

Within the vertebral body, the inelastic processes (irre-
versible strain and damaging) concentrate in specific regions
in each specimen (Fig. 10). Before the ultimate point, these
regions are similar to the result of Chevalier et al. (2008c),
who used a nonlinear constitutive law without softening.
Within sample B-L3, the inelastic process clearly evolves
in two distinct layers, while in sample C-L4 it is more dif-
fuse. After the ultimate point, the inelastic process localizes
mostly into a single layer for each vertebra so that only one
region over the height of the sample accumulates strain.

7 Conclusion

A novel constitutive relation has been presented; it captures
the hardening–softening response of trabecular bone in com-
pression. The model couples damage and plasticity and is
enhanced with a nonlocal formulation which ensures mesh
independence of the solution (Hansen and Schreyer 1994;
Lubarda and Krajcinovic 1995; Maugin 1992; Zysset and
Curnier 1996; Grassl and Jirásek 2006b). The constitutive
law has been implemented in a finite element package, and
numerical examples have been presented to show the poten-
tial of the approach.

The constitutive law has been developed primarily for
numerical simulations performed under compression. While
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Fig. 10 Lateral cut of the
vertebral bodies showing the
cumulated plastic strain before
and after the ultimate point for
both vertebrae. Note that the
scales in the top and bottom
figures are different

it includes an asymmetric tension/compression yield func-
tion, the critical damage DC is a scalar and is active for all
strain states. Therefore, a critical damage value lower than 1
prevents the stress from completely vanishing, even in ten-
sion. This choice is motivated by applications that mainly
require an accurate description of the mechanical behavior
of bone in compression. For example, FE simulations of
vertebral bodies are usually performed under compression
or bending (Crawford et al. 2003; Chevalier et al. 2008a,b;
Eswaran et al. 2006, 2007) and distal radius fractures are
investigated using FE simulations performed under com-
pression (Pistoia et al. 2002; Boutroy et al. 2008; Melton
et al. 2007; Macneil and Boyd 2008; Verhulp et al. 2008).
As these two anatomical sites are of high importance in frac-
tures related to osteoporosis, we believe that describing the
compressive behavior of trabecular bone is highly relevant.

The development of this constitutive law is motivated
by advances in numerical methods that provide a patient-
specific digital model of bone directly from clinical tomogra-
phy using an automated procedure (Chevalier et al. 2008a,b;
Pahr and Zysset 2009). To show the compatibility of the pro-
posed constitutive law with these numerical methods, the
law has been adopted by voxel models created from vertebral
bodies using the method presented in Chevalier et al. (2008a).
On the one hand, the resulting force-displacement curve
shows the desired softening behavior, which is the novel fea-
ture of the law. On the other hand, interesting conclusions can
be made by looking at the regions where inelastic processes
(irreversible strain and damage accumulation) occur within
the vertebral body. First, similar to Chevalier et al. (2008c),
several transverse layers can be observed before the ultimate

point, whereas beyond this point, results start to differ. The
nonlinear constitutive law in Chevalier et al. (2008c) does not
include softening and the layers are simply growing while
the current voxel model presents, beyond the ultimate force,
a single layer of localized inelastic processes (Fig. 10). The
explanation is that the solution with several layers becomes
unstable and the numerical solution is attracted by the sta-
ble solution with dissipative processes localized into a single
layer (Bažant and Cedolin 1991). The effect of softening
on the size of the region where plastic yielding and damage
growth occur is of high importance for simulations reaching
moderate strains, because the total energy dissipation dur-
ing failure can be properly evaluated only when this effect is
taken into account.

Finally, several steps are required before using the pro-
posed models directly in studies focused on clinical appli-
cations (e.g. Keaveny et al. 2007; Imai et al. 2009). First,
there is a need for identification of a set of parameters suit-
able for trabecular bone. In the literature, data for elastic-
ity and yield criterion are already available (Matsuura et al.
2008; Rincón-Kohli and Zysset 2009; Chevalier et al. 2008a),
while the hardening and softening parameters remain to be
determined and thus require an experimental study. Second,
using the secant stiffness to solve the global problem pro-
vides only linear convergence rate. In applications reaching
moderate strains, it would be preferable to use a different
strategy to reduce the computational time, for example by
developing a nonlocal tangent stiffness (Jirásek and Patzák
2002). With these issues addressed, we believe the proposed
law to be highly attractive for bone mechanics applications
based on continuum FE models.
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