
Biomech Model Mechanobiol (2010) 9:127–139
DOI 10.1007/s10237-009-0163-4

ORIGINAL PAPER

Evaluating patient-specific abdominal aortic aneurysm wall stress
based on flow-induced loading

A. Dorfmann · C. Wilson · E. S. Edgar · R. A. Peattie

Received: 27 February 2009 / Accepted: 16 June 2009 / Published online: 4 July 2009
© Springer-Verlag 2009

Abstract In this paper, we develop a physiologic wall stress
analysis procedure by incorporating experimentally measu-
red, non-uniform pressure loading in a patient-based finite
element simulation. First, the distribution of wall pressure is
measured in a patient-based lumen cast at a series of physio-
logically relevant steady flow rates. Then, using published
equi-biaxial stress-deformation data from aneurysmal tis-
sue samples, a nonlinear hyperelastic constitutive equation
is used to describe the mechanical behavior of the aneurysm
wall. The model accounts of the characteristic exponential
stiffening due to the rapid engagement of nearly inextensi-
ble collagen fibers and assumes, as a first approximation, an
isotropic behavior of the arterial wall. The results show a
complex wall stress distribution with a localized maximum
principal stress value of 660 kPa on the inner surface of the
posterior surface of the aneurysm bulge, a considerably larger
value than has generally been reported in calculations of
wall stress under the assumption of uniform loading. This
is potentially significant since the posterior wall has been
suggested as a common site of rupture, and the aneurysmal
tensile strength reported by other authors is of the same order
of magnitude as the maximum stress value found here.

A. Dorfmann (B) · C. Wilson
Department of Civil and Environmental Engineering,
Tufts University, Medford, MA 02155, USA
e-mail: luis.dorfmann@tufts.edu

E. S. Edgar
Department of Chemical Engineering, Oregon State University,
Corvallis, OR 97331, USA

R. A. Peattie
Department of Biomedical Engineering, Tufts University,
Medford, MA 02155, USA

Keywords Abdominal aortic aneurysms · Non-uniform
wall pressure distribution · Patient-specific analysis ·
Flow field measurements

1 Introduction

Abdominal aortic aneurysms (AAAs) represent permanent
localized expansions of the aorta that form between the renal
arteries and the iliac bifurcation. Their prevalence increases
with age, and it has been estimated that they may occur
in as many as 9% of males over 65 (Newman et al. 2001;
Singh et al. 2001). Since AAAs form at regions in which the
vessel wall is diseased and weakened, they are at risk of
rupture. Johansson and Swedenborg (1986) report that mor-
tality associated with AAA rupture can exceed 90%, account-
ing for 15,000 deaths annually in the U.S. alone (National
Center for Health Statistics 2008, http://www.cdc.gov/nchs/
deaths.htm), making AAA ruptures the 13th leading cause
of death in western societies. Although AAAs can be sur-
gically repaired by either open-abdomen or endovascular
approaches if diagnosed, those procedures have their own
risks. Hence clinical decisions concerning AAA manage-
ment are normally made balancing the risks associated with
surgical intervention against the risk of eventual lesion
rupture.

Unfortunately, there does not yet exist a quantitatively
accurate method for assessing failure likelihood for specific
AAA patients. Current clinical practice is to evaluate the like-
lihood of rupture only on the basis of the maximum transverse
bulge diameter, ignoring all other factors that contribute to
failure. Nevitt et al. (1989) and Ashton et al. (2002) have sug-
gested that failure probability is significantly increased when
bulge diameter exceeds 5 cm. However, Darling et al. (1977)
have shown that even lesions <4 cm can fail with significant
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frequency. Moreover, from a biomechanical standpoint, inter-
nal stress is the physical factor that causes wall failure, not
wall diameter. Accordingly, rupture can be expected to be
increasingly likely as the wall stresses generated by flow-
induced hemodynamic forces approach or exceed the strength
of the diseased wall. In addition, local geometric factors other
than diameter can be expected to alter flow field properties
and lead to local stress concentrations that increase the prob-
ability of failure, while wall material property variations can
alter the wall’s ability to support those stresses. Thus an accu-
rate method for predicting risk of rupture for specific patients
should properly be based on quantitative understanding of
the relations between the evolution of flow fields within the
lesions of those patients and the resulting wall stress devel-
opment.

Although no valid technique for measuring wall stress
non-invasively in vivo has been developed yet, techniques for
modeling wall stress on a patient-specific basis have evolved
rapidly in the last few years, representative publications being
the papers by Speelman et al. (2007), Vande Geest et al.
(2008), Li et al. (2008) and Rodríguez et al. (2008). Recent
reviews articles are the papers by Fillinger (2006), Vorp
(2007) and Humphrey and Taylor (2008). Broadly speak-
ing, efforts to model wall stress can be categorized into two
groups, (i) static and quasi-static finite element wall-only
models in which no account is taken of flow within the
lesion other than to assume pressure is constant along the
wall inner surface and (ii) fluid–structure interaction (FSI)
calculations in which a large computational package is used
to compute the flow field and resulting wall stress distribution
simultaneously. Efforts to perform finite element wall stress
analyzes in patient-based models were introduced by
Raghavan and Vorp (2000) and Raghavan et al. (2000), and
have evolved rapidly in complexity from initial isotropic
material models to recent studies incorporating anisotropic
behavior, non-uniform thrombus distribution and wall cal-
cifications (Raghavan and Vorp 2000; Vande Geest 2005;
Vande Geest et al. 2004, 2008; Wang et al. 2002; Speelman
et al. 2007). Maximum principal stress values and directions
have been found to be highly dependent on the specific shape
and thrombus distribution of the patient lesion and the mate-
rial behavior emulated in the calculation, though values in
the range of 400–750 kPa are typical. Generally consistent
results have been reported by Speelman et al. (2007), Truijers
et al. (2007), Vande Geest et al. (2008) and Li et al. (2008),
with maximum stress values dependent on the specific model
details.

A significant limitation of these methods, though, is that
patient-based finite element calculations to date have relied
on the assumption that the wall is subject only to uniform
internal loading at constant pressure, normally a peak sys-
tolic of 16 kPa. FSI computations (Li and Kleinstreuer 2006;
Papaharilaou et al. 2007; Scotti et al. 2008; Bluestein et al.

2009; Rissland et al. 2009) avoid this assumption, by calculat-
ing an intraluminal flow field and allowing non-uniform wall
pressure to be elicited by the flow. However, all published
FSI computations to date have assumed the flow field to be
laminar. Unfortunately, it has been shown repeatedly in vivo
and in vitro, in idealized and patient-based phantoms, under
steady and pulsatile conditions, that AAA flow fields are
usually highly non-laminar. Results published on this topic
are described in the papers by Bluth et al. (1990), Asbury
et al. (1995), Peattie et al. (2004, 1996a,b) and O’Rourke
and McCullough (2008). Thus there remains the need for an
analysis approach that calculates wall stress based on load-
ing that replicates in vivo conditions, and incorporates the
effects of wall loading when the flow is unstable.

In the present paper, we describe an initial attempt to
develop a physiologic wall stress analysis procedure; that
is, a finite element computational technique that evaluates
the wall stress distribution and maxima in models accurately
replicating the shape of individual AAA patient lesions and
incorporating published wall material properties, but using
load distributions derived from wall pressure measurements
in corresponding experimental phantoms. As flow rate var-
ies, the flow field may be either laminar or turbulent. In either
case, the flow-induced wall pressure distribution reflects the
flow field, and may or may not be stable or show nearly uni-
form magnitude depending on the patient geometry and flow
rate. We show that the measured wall pressure distribution
can be applied as loading condition for a finite element wall
stress calculation, and the resulting wall stress field can be
quantitatively characterized in detail.

2 Experiments

2.1 Methods

All procedures were carried out with full approval from the
Institutional Review Boards of Hartford Hospital and Tufts
University. The AAA models were developed from a AAA
patient CT image series performed at Hartford Hospital
(Hartford, CT) using a spiral CT imaging system (Model
9800 High Speed Scanner, General Electric Healthcare Inc.),
with a nominal slice thickness of 0.6 mm and a helical pitch of
1.5 : 1. Images were obtained from one end of the abdomen to
the other during a single sustained breath hold by the patient
to minimize respiratory-induced artifacts, after intravenous
administration of standard non-ionic contrast enhancement
agent.

Commercial software (MIMICS V9.0, Materialise Inc.)
was used to create the three-dimensional representation of
the AAA lumen, which is shown in Fig. 1. Initially, the CT
series contained segments of the non-dilated aorta both prox-
imal and distal to the bulge, as well as the iliac bifurcation
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Abdominal aortic aneurysm wall stress 129

Fig. 1 Three-dimensional solid model of the patient-specific AAA
lumen with non-dilated inner diameter of 23.2 mm, maximum bulge
outer diameter of 56.5 mm and bulge length of 67 mm

and short segments of each common iliac artery. However,
to facilitate installation in a flow loop, prior to model con-
struction it was terminated proximally at the plane of the T 11
vertebra and distally one diameter downstream of the bulge,
leaving an entrance length of approximately four aorta dia-
meters upstream of the bulge. Branch arteries were trimmed
from it as well. The result was a single curved, bulged but
unbranched vessel, of non-dilated aortic diameter 2.3 cm,
maximum bulge lumen diameter 5.5 cm and bulge length
6.7 cm. The magnitude of the principal geometric dimen-
sions are listed in Table 1 and a full description of the lumen
is given by Edgar (2008).

Two types of models were created from the imaging. The
first, a benchtop phantom replicating the diseased aortic
lumen, is schematically shown in Fig. 2. The second, shown
in Fig. 3, is the computational model of the arterial wall for
finite element analysis. Methods for constructing the phan-
tom and its use in a flow loop are described in detail by Edgar
(2008). In brief, a solid polymeric construct of the lumen
was fabricated by stereolitography, then replicated in wax.
The wax replica was then suspended in a polished casting jig
and an elastomer (Sylgard 184, Dow Corning, Midland, MI)
poured around it. When the elastomer had cured, the wax
was dissolved away, leaving a clear, effectively rigid, flow-
through cast whose interior precisely replicated the desired
lumenal shape.

Steady flow was delivered through the phantom by a con-
stant head, gravitationally driven flow loop schematically
shown in Fig. 4. Experiments were conducted at a series
of flow rates between 0.3 and 1.5 L/min, producing Rey-
nolds numbers from 500 to 3000, the operating range of
the abdominal aorta under conditions from rest to exercise

Fig. 2 Benchtop phantom replicating the diseased aortic lumen

Fig. 3 Geometric layout and element distribution of the finite element
model used to compute wall stress distributions. The model uses a total
of 63,654 elements connected at 127,926 nodes. Four hexahedron ele-
ments are used through the wall thickness

(Fung 1981). To ensure the flow field was fully developed
at the measurement locations, 1.5 m lengths of straight, rigid
tubing were positioned in the flow loop immediately up- and

Table 1 Magnitudes and dimensions of geometric model parameters

d (cm) DAAA (cm) Dl (cm) LAAA (cm) VAAA (cm) VTh (ml) κ (cm−1) T

2.32 5.65 5.50 6.70 135.1 0 0.453 1.38

d non-dilated vessel inner diameter, DAAA maximum bulge outer diameter, Dl maximum lumen diameter, L AAA bulge length, VAAA bulge volume,
VT h mural thrombus volume, κ maximum bulge curvature, T tortuosity
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Fig. 4 Schematic diagram of the flow loop, showing the positions of
the model, the reservoirs and the control valves. Flow in the forward
direction refers to proximal-to-distal motion from the forward reservoir,
while retrograde motion is the reverse

Fig. 5 Pressure tap positions in the phantom

downstream of the phantom. The working fluid of these
experiments was tap water. Reynolds numbers were calcu-
lated as Re = 4Q/πνd, where Q is volume flow rate, ν is
kinematic viscosity and d is the diameter of the non-dilated
entrance tube proximal to the bulge.

The pressure distribution along the phantom wall was
measured at eleven 3 mm taps drilled through the wall and
connected to pressure transducers (Utah Medical Products
Inc., model DPT-400), see Fig. 5. The noise-limited reso-
lution of these transducers was measured in situ in both the
presence and absence of flow, and was found to vary between
0.1 and 0.15 mmHg, depending on flow rate. Output from
the transducers was obtained from a four-channel monitor
(Hewlett-Packard Inc., model 78532B). The transducers were
calibrated by applying a set of known hydrostatic pressures
via a column of water prior to making measurements.

Measurements were first corrected to account for the ver-
tical distance of the transducers above the bulge surface. Raw
wall pressure values were then decomposed into the sum of
hydrostatic and dynamic components. Each term was sepa-
rately re-scaled to reflect in vivo conditions, based on the den-
sity of blood and on the dynamic pressure (0.5ρU 2) where
ρ is the density and U = 4Q/πd2 is the mean velocity in
the entrance tube. The terms were then re-combined, so that
the pressure values presented represent in vivo values.

Pressure was recorded at each station at a series of steady
flow rates between 0.3 and 1.5 L/min, producing Reynolds
numbers from 500 to 3000. At flow rates below Re = 1500,
the pressure signal at each transducer was steady, so that
direct readings were sufficient. As the flow rate increased
beyond Re = 1500, however, the pressure signal became
progressively unstable and fluctuated randomly. Separate
velocity measurements showed the flow to be very unstable
and to break down into turbulence at these high flow rates.
Both the time-average and standard deviation of the pressure
signal were then determined.

2.2 Results

Only the mean pressure at each station at Re = 3000 was
used for subsequent calculations. Figure 6 presents the mean
± standard deviation of the pressure distribution at this Re,
curve fitted by least squares regression for subsequent com-
putation purposes. Wall pressure was greatest at the phantom
entrance (16.0 kPa at x = 0, where x is axial position mea-
sured from the phantom entrance), dipped to a minimum of
15.5 kPa at the mid-bulge (x = 120–140 mm), then recov-
ered to 15.9 kPa at the bulge exit (x = 215 mm). The overall
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Fig. 6 Mean pressure ± standard deviation at Re = 3000 at each
measurement station. Curve fitted by least squares regression for sub-
sequent computation purposes
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pressure drop along the phantom was therefore 0.1 kPa, and
the associated pressure gradient was sufficient to produce a
net flow rate of Re = 3000. Although the pressure drop in
the middle of the bulge was surprising, it was found repeat-
ably for all Reynolds numbers. Presumably, it results from the
combination of hydrostatic and inertial effects in the fluid and
the curvature of the phantom axis. Standard deviations of the
pressure values reflect the instability of the measurements.
They are an order of magnitude larger than the noise-limited
resolution of the transducers, and presumably result from the
effects of flow turbulence.

For test purposes, the pressure distribution shown in Fig. 6
was used as loading for subsequent calculation of wall stress
distribution. A control case with uniform p = 16 kPa was
also calculated.

3 Basic equations

In this section, we provide a brief overview of the nonlin-
ear theory of elasticity, which is of fundamental importance
to describe the resulting finite deformations of soft biologi-
cal tissues in general and the arterial response in particular.
Note, that in this analysis we focus merely on the isotropic
mechanical behavior and do not account of preferred direc-
tions attributed to the presence of collagen fibers. Also, we do
not separately include the mechanical characteristics of the
three individual arterial layers but focus on the macroscopic
behavior of the arterial wall. We account of finite deforma-
tion, highly nonlinear stress–strain response and exponential
stiffening at high pressures. For a detailed discussion of the
mechanical response of individual layers of the arterial wall,
including anisotropic constitutive laws, we refer to Holzapfel
et al. (2000). The main emphasis of this work is to use, for the
first time, an experimentally determined flow-induced wall
pressure distribution to evaluate the wall stress in a patient-
based aneurysm model.

3.1 Kinematics

To describe the deformation, we denote the stress-free ref-
erence configuration by Br and identify a generic material
point by its position vector X relative to an arbitrary chosen
origin. Application of mechanical forces deforms the body,
so that the point X occupies the new position x = χ(X) in
the deformed configuration B. The vector field χ describes
the deformation of the body and assigns to each point X a
unique position x in B and viceversa attributes a unique ref-
erence position X in Br to each point x. In other words, the
deformation function χ is a one-to-one mapping with suit-
able regularity properties.

The deformation gradient tensor F relative to Br , is defined
by

F = Gradx, (1)

Grad being the gradient operator with respect to X. The
Cartesian components are Fiα = ∂xi/∂ Xα , where xi and
Xα are the components of x and X, respectively, with i, α ∈
{1, 2, 3}. Roman indices are associated with B and Greek
indices with Br . We also adopt the standard notation

J = det F = dv

dV
> 0. (2)

The deformation gradient can be decomposed according
to the unique polar decomposition

F = RU = VR, (3)

where R is a proper orthogonal tensor and U and V are pos-
itive definite and symmetric, respectively, the right and left
stretch tensors. These can be expressed in spectral form. For
U, for example, we have the spectral decomposition

U =
3∑

i=1

λi u(i) ⊗ u(i), (4)

where the principal stretches λi > 0, i ∈ {1, 2, 3}, are the
eigenvalues of U, u(i) are the (unit) eigenvectors of U, and
⊗ denotes the tensor product. For an incompressible mate-
rial, which is a typical assumption for biomaterials, we have

J = det F = det U = det V = λ1λ2λ3 ≡ 1. (5)

Using the polar decomposition (3), we define

C = FTF = U2, B = FFT = V2, (6)

which denote the right and left Cauchy–Green deformation
tensors, respectively.

The three principal invariants for C, equivalently B, are
defined by

I1 = trC, I2 = 1

2

[
(trC)2 − tr(C2)

]
, I3 = det C = J 2,

(7)

where tr is the trace of a second-order tensor. Recall that
for an incompressible material the third invariant I3 ≡ 1.
Alternatively, in terms of principal stretches, the invariants
I1, I2, I3 are expressed as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = λ2
1λ

2
2λ

2
3. (8)

For full details of the kinematics of solid continua we refer
to, for example, Ogden (1997) and Holzapfel (2001).
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3.2 Hyperelasticity

The theory of hyperelasticity characterizes the elastic res-
ponse of a material by a strain energy function W defined per
unit volume in the reference configuration Br . For a homoge-
neous material W depends only on the deformation gradient
F and we write W = W (F). For an incompressible material,
the nominal stress tensor S and the symmetric Cauchy stress
tensor σ are given in terms of W , respectively, by

S = ∂W

∂F
− pF−1, σ = F

∂W

∂F
− pI, (9)

where I is the identity tensor and p an arbitrary hydrostatic
pressure. Equation (9) shows that for an incompressible mate-
rial, the Cauchy stress σ and the nominal stress S are related
by σ = FS.

According to the principle of objectivity, W depends on
F through U and we write

W (F) = W (U). (10)

This allows to introduction of the symmetric stress tensor T
defined by

T = ∂W

∂U
− pU−1, det U = 1, (11)

known as Biot stress tensor. If the strain energy formulation
is expressed in terms of U, the objectivity requirement is
automatically satisfied.

3.2.1 Isotropic hyperelasticity

For an isotropic elastic solid W depends on the deformation
only through the principal invariants defined by Eq. (7), we
write W = W (I1, I2, I3). In order to obtain explicit expres-
sions of the nominal stress tensor S and the associated Cauchy
stress tensor σ , the derivatives of the strain invariants with
respect to F are needed. Following standard derivation rules,
these are given by

∂ I1

∂F
= 2FT,

∂ I2

∂F
= 2(I1FT − FTFFT),

∂ I3

∂F
= 2I3F−1. (12)

For an incompressible material I3 = 1 and only two
invariants are needed. These are I1 and I2 and the strain
energy function can be written in the form W = W (I1, I2).
A direct calculation of the Eqs. (9), using the results shown
in (12), leads to

S = 2(W1 + I1W2)FT − 2W2C FT − p F−1, (13)

and

σ = 2(W1 + I1W2)B − 2W2B2 − p I, (14)

where the notation Wi = ∂W/∂ Ii with i ∈ {1, 2} has been
introduced.

Equivalently, we may regard W as a symmetric function of
the principal stretches λ1, λ2, λ3. We write this dependence
as

W (λ1, λ2, λ3) = W (λ2, λ3, λ1) = W (λ3, λ1, λ2). (15)

Consequences of isotropy are that S = TRT and that T is
coaxial with U. Thus, similarly to (4), we have

T =
3∑

i=1

ti u(i) ⊗ u(i), (16)

where ti , i ∈ {1, 2, 3}, are the principal Biot stresses, given
by

ti = ∂W

∂λi
− pλ−1

i , λ1λ2λ3 = 1. (17)

The principal Cauchy stresses σi , i ∈ {1, 2, 3} for an
incompressible material are

σi = λi
∂W

∂λi
− p. (18)

3.2.2 Application to homogeneous biaxial deformations

In this subsection, we apply the theory described above to the
problem of homogeneous biaxial deformations. On use of the
incompressibility constraint (5), the strain–energy function
(15) can be written in terms of two independent stretches in
the form

Ŵ (λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ), (19)

which is symmetric in λ1 and λ2. Then, from (18), after elimi-
nating the pressure p, we obtain the Cauchy stress differences

σ1 − σ3 = λ1
∂Ŵ

∂λ1
, σ2 − σ3 = λ1

∂Ŵ

∂λ2
. (20)

Equations (20) provide a basis for characterizing the form of
the energy function using biaxial tests in which λ1 and λ2 are
varied independently, for more detail we refer to Holzapfel
and Ogden (2009). For this purpose and without loss of gener-
ality we can set σ3 equal to zero so that, in particular, Eqs. (20)
become

σ1 = λ1t1 = λ1
∂Ŵ

∂λ1
, σ2 = λ2t2 = λ2

∂Ŵ

∂λ2
. (21)

Accurate determination of material model parameters inclu-
ded in Ŵ (λ1, λ2) requires use of (21) with t1 and t2 measured
for given pairs of values of λ1 and λ2.
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3.2.3 Simple tension and compression

In the simple tension (or compression) specialization we take
λ2 = λ3, and we use the notation

λ1 = λ, λ2 = λ−1/2. (22)

The strain energy then depends on the one remaining inde-
pendent stretch, and we write

W̃ (λ) = Ŵ (λ, λ−1/2). (23)

In this case σ2 = σ3 = 0 and the Cauchy and nominal (or
Biot) stresses associated with λ1 are, respectively,

σ = σ1 = λ
dW̃ (λ)

dλ
, t = σ

λ
= dW̃ (λ)

dλ
. (24)

4 Constitutive model

An arterial wall has residual stresses in the load-free config-
uration and is known to be anisotropic due to the presence
of embedded collagen fibers. Appropriate constitutive laws
have been developed to account for the rather complicated
structure. In this study, however, as a first approximation, we
assume the mechanical response of the arterial wall to be
isotropic. The rapid stiffening, when large loads are applied,
can best be described by a constitutive model based on an
exponential strain energy formulation. Following Demiray
(1972), Humphrey and Yin (1987), Rodríguez et al. (2008)
and Lin et al. (2009), amongst many others, we propose the
simple I1 function in the form

W = µ

2α
{exp[α(I1 − 3)] − 1}, (25)

where µ is the shear modulus of the material in the reference
configuration, α is a positive parameter both to be determined
from experimental data. Note, that in the limit for α → 0 the
strain energy formulation (25) becomes the classical neo-
Hookean model.

Biological materials, including arterial walls, are assumed
to be almost incompressible for the physiological range of
deformations (Chuong and Fung 1984; Holzapfel et al. 2000).
Using Eq. (14) the Cauchy stress tensor becomes

σ = µ{exp[α(I1 − 3)]B} − pI}, (26)

and in component form

σi j = µ{exp[α(I1 − 3)]Bi j } − pδi j , (27)

where Bi j are the components of the left Cauchy–Green ten-
sor. In the absence of mechanical body forces, the Cauchy
stress tensor must satisfy the equilibrium equation

divσ = 0. (28)

together with properly posed boundary conditions.

4.1 Homogenous biaxial deformation

In this subsection the constitutive equation is applied to basic
deformation, known as pure homogeneous strain and given
by

x1 = λ1 X1, x2 = λ2 X2, x3 = λ3 X3, (29)

where the principal stretches λ1, λ2 and λ3 are constants.
The Cartesian coordinates in the reference configuration are
denoted (X1, X2, X3) and in the deformed configuration
(x1, x2, x3). For a planar biaxial deformation the gradient
F = U and the principal axes of deformation coincide with
the Cartesian coordinate directions.

Consider a thin square specimen of an arterial wall that lies
in the (X1, X2)-plane and free to deform in the X3-direction.
For incompressible materials we have λ1λ2λ3 = 1, which
implies that only two of the stretches are independent, i.e.
λ3 = λ−1

1 λ−2
2 . Therefore, for the planar biaxial deformation

the invariant I1 becomes

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 . (30)

The principal in-plane stresses are then obtained from (21)
as

σ1 = µ(λ2
1 − λ−2

1 λ−2
2 ) exp[α(I1 − 3)],

σ2 = µ(λ2
2 − λ−2

1 λ−2
2 ) exp[α(I1 − 3)],

(31)

with all remaining stress components equal zero.

4.2 Simple tension

As in Sect. 3.2.3, for simple tension we take σ2 = σ3 = 0
and write σ1 = σ . We also write λ1 = λ, so that λ2 = λ3 =
λ−1/2, and define W̃ by

W̃ (λ) = Ŵ (λ, λ−1/2). (32)

On the basis of Eq. (24)1, the Cauchy stress component for
simple tension is

σ = µ(λ2 − λ−1) exp[α(I1 − 3)] (33)

with I1 = λ2 − 2λ−1.

4.3 Anisotropy and residual stresses

The constitutive law considered thus far does not account
for the markedly anisotropic behavior of arterial tissues aris-
ing from the recruitment of collagen fibers for increasing
wall pressures and from the residual stress distribution in the
load-free configuration. It is well known that the degree of
anisotropy depends on the magnitude of applied load and
the amount of pre-stretch, i.e. it is specified with respect
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Fig. 7 Equi-biaxial data of
healthy abdominal aortic
specimen on the left, and of an
AAA specimen on the right.
The symbols open circle and
open square indicate the
response, respectively, in the
circumferential and longitudinal
directions. Solid line is the best
fit using the isotropic
constitutive law (39).
Experimental data are from
Vande Geest et al. (2006a)
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to a particular configuration. For example, when a residual
stress arises the natural configuration changes and the mate-
rial response relative to a different reference configuration
in general has a symmetry different from that relative to the
original natural configuration.

Ogden and Schulze-Bauer (2000) have shown that resid-
ual stresses and collagen fibers in the arterial wall have an
important influence on the overall behavior during exten-
sion and inflation and on the stress–strain distribution in
general. Following the constitutive framework proposed by
Holzapfel et al. (2000), Rodríguez et al. (2008) and Basciano
and Kleinstreuer (2009) suggest, amongst many others, an
additive strain energy function to include the contributions
of the isotropic matrix material and of the two families of
collagen fibers. For a detailed discussion and relevant ref-
erences on anisotropic behavior, residual stresses and their
correlation to structural constituents within the arterial wall
we refer to Humphrey (2001).

The assumption of isotropy in the reference configura-
tion and during inflation is in general untenable. However,
we believe that using an isotropic constitutive law does not
limit or restrict the main objective of this study, which is to
show that experimentally determined pressure loads can be
used to determine the wall stresses in a patient-specific aneu-
rysm model. Importantly, also note that inconsistent results
have been obtained using an anisotropic constitutive relation
to evaluate the stress distribution in patient-specific aortic
aneurysms models (Vande Geest et al. 2008).

Another limitation of this analysis is the assumption of a
stress free reference configuration. However, since no exper-
imental data are currently available to characterize the mag-
nitude and directions of residual stresses in an aneurysmal
abdominal aorta, we did not include such an option in the
constitutive formulation. For a more detailed discussion on
this subject, we refer to Rodríguez et al. (2008). Once, how-
ever, additional data become available, it is a straight forward
exercise to modify the constitutive law.

5 Numerical analysis

5.1 Model parameters

The material parameters µ and α in the strain energy function
(25) need to be determined based on available experimental
data. To the best of our knowledge, the only set of data is
by Vande Geest et al. (2006a), where planar biaxial exten-
sion tests are performed on a total of 26 AAA specimens
and 8 age-matched healthy abdominal aortic samples. Data
from aneurysmal specimens show an increased stiffness and a
reduced extensibility and a higher degree of anisotropy com-
pared to non-aneurysmal tissues, see Fig. 7. Unfortunately,
no other experimental data on the nonlinear response of aneu-
rysmal aortic specimens, with which to compare constitutive
theories are available at present. In particular, not sufficient
data are available to fully characterize the anisotropic elastic
properties. For this reason we have restricted attention to a
very simple material model, which merely forms a starting
point for further developments.

Vande Geest et al. (2006a) use square specimens cut with
the edges parallel to the longitudinal and circumferential ori-
entations of the artery and labeled these directions using sub-
scripts Z Z and 

, respectively. All stress–strain data are
reported as second Piola–Kirchhoff stress P versus Green–
Lagrange strain E. For incompressible material the second
Piola–Kirchhoff stress P is related to the nominal stress by

P = SF−T, (34)

and the strain tensor E is defined as

E = 1

2
(FTF − I). (35)

Following Vande Geest et al. (2006a), we denote by λ


and λZ the principal stretches, respectively, in the circum-
ferential and axial directions. The in-plane Green–Lagrange
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components are then given by

E

 = 1

2
(λ2


 − 1), EZ Z = 1

2
(λ2

Z − 1). (36)

The Biot (or nominal) stress components in each direction
are calculated as

t
 = f

H L Z

, tZ = fZ

H L


, (37)

where f
 and fZ are the measured loads, H the average
thickness and L
 and L Z the dimensions of the specimen
in the circumferential and longitudinal directions, all deter-
mined in the unloaded reference configuration.

To determine the model parameters and to compare the
numerical results to the experimental equi-biaxial data by
Vande Geest et al. (2006a), we write the components of the
second Piola–Kirchhoff stress tensor as

P

 = λ−1

 t
 = µ(1 − λ−4


 λ−2
Z ) exp[α(I1 − 3)],

PZ Z = λ−1
Z tZ = µ(1 − λ−2


 λ−4
Z ) exp[α(I1 − 3)],

(38)

where Eqs. (21), (31) and (34) have been used. As discussed
above, the preliminary analysis here considered assumes an
isotropic elastic material and restricts attention to the equi-
biaxial data. This allows to introduce the notations λ = λ
 =
λZ and P = P

 = PZ Z and Eqs. (38) reduce to the single
constitutive formulation

P = µ(1 − λ−6) exp[α(I1 − 3)], (39)

with I1 = 2λ2 + λ−4.
Planar equi-biaxial extension data are extracted from the

article of Vande Geest et al. (2006a) and used to determine
the two material parameters α and µ in Eq. (39). Using
µ = 2.5 kPa and α = 43.5 most accurately reproduces the
experimental data of the healthy abdominal aortic specimens,
see left graph in Fig. 7. The equi-biaxial data of the AAA
specimen show a high degree of anisotropy and an aniso-
tropic model is required to account for it. This implies many
more material model parameters and, therefore for this ini-
tial analysis, we restrict attention to isotropy. The model (39)
with µ = 1.04 kPa and α = 150 has been used to produce
the numerical data shown by the solid line on the right in
Fig. 7.

6 Finite element model

The constitutive law discussed in the earlier section has been
implemented as a user-defined material (user-subroutine
UMAT) utilizing the commercial finite element software
package, ABAQUS/Standard (2007). The subroutine UMAT
must contain instructions on how to evaluate the components
of the Cauchy stress tensor and the tangent stiffness tensor.

Such a computational environment is obviously needed to
solve boundary value problems in a full three-dimensional
setting and involving stress and deformation states that are
generally non-uniform. In is convenient to adopt a multipli-
cative decomposition of the deformation gradient tensor into
volumetric and deviatoric parts and therefore the material
response is, in general, no longer considered incompress-
ible. In this paper, we do not provide information on the
computational framework that is utilized to implement the
constitutive model in the context of a nonlinear finite element
solution procedure. We refer to Holzapfel et al. (2000) and
Bose and Dorfmann (2009) for a detailed discussion on the
implementation process of isotropic and anisotropic material
models.

The numerical implementation of the constitutive law was
first validated and verified by reproducing the analytically
obtained equi-biaxial stress-deformation data shown in
Fig. 7. As expected, there are very small differences between
the two sets of results due to the incompressibility constrained
employed in Eq. (39) and the isochoric and volumetric
decomposition in UMAT.

Two sets of calculations were performed. The first was
a test case to verify the computational approach, using a
straight, non-bulged tube loaded with a uniform internal pres-
sure of 16 kPa. The second was the experimental case, in
which the patient-based model was loaded with the non-
uniform pressure distribution shown in Fig. 6. In each case,
wall thickness was assumed to be uniform and was set at
2 mm and the outer diameter at the model entrance was set
at 25.4 mm.

The boundary conditions, for the straight tube model,
restrained the longitudinal displacement component on each
of the two end sections and left all remaining displacement
degrees of freedom unrestrained. It is also well known that
eight-node hexahedron elements do not have rotation degrees
of freedom and are therefore not effective in modeling bend-
ing. To account for the bending stiffness we performed grid
independency studies and found that four elements through
the wall thickness are necessary.

The geometric layout of the patient-based AAA model,
shown in Fig. 1, was used to build the finite element model
in Fig. 3. The computational model uses a total of 63,654 ele-
ments connected at 127,926 nodes. This results into 383,778
degrees of freedom. The applied boundary conditions res-
trained all displacement degrees of freedom on each of the
two cross-sectional boundary surfaces. These conditions cre-
ate artificially high stress concentrations at the edges but do
not influence the results in the zone of interest. The pressure
applied to the inner surface was uniform in the circumferen-
tial direction and varied longitudinally as shown in Fig. 6.
In both calculations, the outer surfaces of the models were
traction free.
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Fig. 8 Axisymmetric distribution of the maximum principal stress in
a straight non-bulged tube with constant pressure of 16 kPa applied to
the inner surface

Fig. 9 Highly non-uniform maximum principal stress distribution on
the outer surface of the patient-specific AAA model. The pressure
applied to the inner surface is uniform in the circumferential direction
and varies longitudinally, the outer surface is traction free

6.1 Results

The maximum principal stress distribution for the straight
tube is shown in Fig. 8 and for the patient-based AAA model
in Figs. 9 and 10. As expected, the results for the straight tube
show a uniform and axisymmetric distribution of max princi-
pal wall stresses. In particular, the magnitude of the principal
stress is largest on the inner surface equal to 220 kPa. Between
the inner and outer surfaces, the value of the maximum prin-
cipal stress decreases monotonically with radial position and
reduces to its minimum of 97.9 kPa.

The principal stress distribution in the patient-based
model, shown in Figs. 9 and 10, is much more complex than

Fig. 10 Maximum principal stress distribution on the inner surface of
the patient-specific AAA model. Regions of high stress concentration
of approximately 660 kPa are visible on the posterior side of the wall

the straight tube. The magnitude of the stress on the outer sur-
face is relatively small, but not uniform over the whole model,
varying from 50 kPa both proximal and distal to the bulge to
approximately 400 kPa on the posterolateral surface. Stress
on the inner surface of the anterior wall, along the bulge, is
also relatively low. However, localized regions of elevated
stress form on the inner surface of the posterior side of the
wall, both at the proximal neck and at the mid-bulge, with a
maximum value of 660 kPa.

7 Discussion

The goal of this study was to use a patient-specific geome-
try to first experimentally determine the non-uniform distri-
bution of wall pressure produced by steady flow, and then
use this pressure distribution as a loading condition to eval-
uate the associated wall stress field. It has been shown by
several authors that aortic aneurysm simulations based on
simplified, idealized geometries approximating the shape of
patient lesions do not accurately evaluate the wall stress dis-
tribution (Mower 1993; Elger et al. 1996; Hua and Mower
2001; Stringfellow et al. 1987). A general agreement has
developed that accurate representation of the wall geometry
taking into consideration the complex variation of its cur-
vatures is essential for meaningful analysis of wall stress
as emphasized, for example, by Vorp (2007) and Watton and
Hill (2009). Accordingly, our analysis reproduced the patient
wall and lumen geometry. Flow field measurements were per-
formed at Reynolds numbers dynamically emulating in vivo
flow conditions, and the wall material properties and consti-
tutive law were selected to reflect patient-average aneurysmal
properties.

Physiologically correct representation of these patient fea-
tures can alter predictions of both wall stress magnitude
and wall stress distribution significantly. For example,
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Vorp et al. (1998) report that maximum wall stress in ideal-
ized, smoothly curved models occur on the posterior wall for
bulges of <5 cm maximum diameter, but migrate to the ante-
rior wall for lesions with larger diameters. In contrast, the
patient-based lesion studied here showed maximum stress
on the posterior wall even though maximum diameter was
5.6 cm.

Oddly, the small region of near maximum principal stress
on the posterior wall in the mid-bulge occurred in a region
for which the wall pressure had its smallest magnitude as
shown in Fig. 6. Clearly, this locally elevated stress region
resulted from the combined effects of the pressure distri-
bution, the wall curvature and the wall elasticity. Although
autopsy studies have not shown any one particular region of
the AAA wall to be a predominant site of rupture, it is inter-
esting to note that failure along the posterior wall has been
reported to occur more frequently than failure at other sites
(Darling et al. 1977). The actual likelihood of any individ-
ual aneurysm failing at a specific location can be expected to
depend on both the wall stress and its strength at that position.
We refer to Vande Geest et al. (2006b) for a statistical model
to estimate the wall strength and its spatial distribution. In
our calculation, the maximum principal stress occurred at
the proximal bulge neck. However, wall strength in the neck
region has been suggested to be greater than strength in the
bulge (Vorp et al. 1998). Consequently, it is possible that fail-
ure would be most probable in the dilated bulge, if relatively
high stresses occurred in the bulge, even if higher stresses
occurred in the neck. Thus the elevated stress region found on
the mid-bulge posterior inner surface in our calculation may
credibly be associated with a position at which the aneurysm
is potentially at risk of failure. This correspondence suggests
the plausibility of our calculations.

To our knowledge, the experiments and calculations pre-
sented here are the first attempt to develop a wall stress anal-
ysis incorporating non-uniform pressure reflecting in vivo
physiologic conditions. As such, a number of assumptions
were made to simplify the calculations. First the patient
studied was selected specifically for the smoothly varying,
relatively uniform curvature of its lesion, to minimize the
difficulty of fabricating the phantom and measuring its wall
pressure distribution and to maximize the likelihood of obta-
ining converged wall stress results. As a result, though, its
wall pressure distribution was comparatively uniform, which
minimized the deviation of the maximum principal stress
from that calculated under a uniform loading assumption.
A control calculation applying uniform load to this patient
geometry produced only small differences in maximum stress
magnitude and location from the non-uniformly loaded
model. However, such small differences would not be expec-
ted to be representative of the results when more significantly
non-uniform loading is combined with spatially varying wall
curvature and non-uniform wall thickness.

Second, it was assumed that the wall pressure varied only
in the stream-wise direction, and was uniformly distributed
circumferentially around the lesion wall. Third, although
aneurysmal lesions present significantly anisotropic material
properties in vivo, here an average of the axial and circumfer-
ential stress–stress data reported by Vande Geest et al. (2005)
and Vande Geest et al. (2008) was used to represent a sin-
gle isotropic behavior. In addition, the wall was assumed to
be homogeneous with constant thickness. In fact, AAAs in
vivo show localized calcification deposits that create mate-
rial inhomogeneities, and generally have spatially varying,
non-uniform wall thickness. Each of these simplifications
would be expected to minimize wall stress non-uniformity
and possibly limit maximum wall stress development in the
calculation. Finally flow-induced wall shear stresses, which
were found to be five to six orders of magnitude less than
wall normal stress by direct measurements (Edgar 2008),
were neglected in computing wall internal stress. All of these
assumptions can be improved in future studies. We are cur-
rently in the process of developing non-axially symmetric
pressure measurements that will be used as part of a forth-
coming analysis. We also plan studies under pulsatile flow
conditions emulating unsteady in vivo waveforms in both rest
and exercise, with more anatomically realistic models incor-
porating major aortic branch vessels, and we plan to introduce
anisotropic material properties and non-uniform wall thick-
ness to our analysis. However, our goal at this initial stage of
the project was primarily to develop the methodology.

As best we can determine, the only experimental measure-
ments of wall pressure distribution in patient-based phantoms
reported to date are the data presented here. At high Reynolds
numbers, flow field turbulence produced strong fluctuations
of the wall pressure signal, with instantaneous bursts an order
of magnitude greater than the pressure signal standard devi-
ation. Since those brief bursts can significantly amplify wall
pressure spatial gradients while they are present, they would
be expected to strongly increase the flow-induced wall stress
magnitude. Accordingly, it would be of interest to investigate
the relations between turbulence, wall pressure fluctuations
and patient lesion geometry. Comparison of our results with
those of such a study would allow rigorous evaluation of
the generality of turbulence effects on wall pressure and the
importance of turbulence in wall stress development.

The values of maximum principal stress reported here are
of the same order as corresponding stresses reported by other
authors studying wall stress under the assumption of uni-
form wall pressure (Vorp 2007). However, our analysis pro-
duced a notably greater maximum stress magnitude. Stresses
in straight tube test cases reported in Raghavan et al. (2000)
and Vorp (2007) were similar to those found here, suggesting
that the different computational approaches used here and by
those authors would lead to comparable results when applied
to similar geometries. However, Raghavan et al. (2000) show
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the magnitude of the highest principal stress in their patient-
based study to vary from 290 to 450 kPa depending on the
geometric layout and dimensions of the model. Wang et
al. (2002) found maximum von Mises stress values in the
same range. In contrast, the maximum principal stress in
the patient-based model in our analysis was 660 kPa. This
is an interesting and potentially significant difference, since
Raghavan et al. (2000) reported failure strength of patient-
specific wall tissue samples to decrease from 1,210 kPa in
a non-aneurysmal aorta to 650 kPa in an aneurysmal ves-
sel. Thus the effect of non-uniform loading on maximum
wall stress development may be a clinically important issue.
Future analyses will address the effects of wall pressure and
wall material non-uniformities on AAA stress development.

8 Concluding remarks

In summary, maximum principal stress distribution in a finite
element model of a patient aortic aneurysm has been eval-
uated. A physiologically based method for calculating wall
stress using experimentally measured pressure data from a
corresponding phantom as loading has been developed and
successfully implemented. The method predicts a complex
distribution of wall stress, with maximum magnitude on the
posterior surface of aneurysmal bulge, a position that has
been suggested to be a common site of rupture. The analysis
also predicts a similar order of magnitude for maximum stress
as reported by other authors under the assumption of uni-
form internal loading. However, a significantly larger maxi-
mum principal stress is predicted, 660 versus 400–450 kPa.
This is potentially very significant, since measurements of
aneurysmal tensile strength reported by other authors were
650 kPa. Future studies will address the limitations of the
model described above.
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