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Abstract The objective of this article is the derivation of a
continuum model for mechanics of red blood cells via mul-
tiscale analysis. On the microscopic level, we consider real-
istic discrete models in terms of energy functionals defined
on networks/lattices. Using concepts of �-convergence, con-
vergence results as well as explicit homogenisation formulae
are derived. Based on a characterisation via energy func-
tionals, appropriate macroscopic stress–strain relationships
(constitutive equations) can be determined. Further, mechan-
ical moduli of the derived macroscopic continuum model
are directly related to microscopic moduli. As a test case
we consider optical tweezers experiments, one of the most
common experiments to study mechanical properties of cells.
Our simulations of the derived continuum model are based on
finite element methods and account explicitly for membrane
mechanics and its coupling with bulk mechanics. Since the
discretisation of the continuum model can be chosen freely,
rather than it is given by the topology of the microscopic cyto-
skeletal network, the approach allows a significant reduction
of computational efforts. Our approach is highly flexible and
can be generalised to many other cell models, also including
biochemical control.
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1 Introduction

Biological systems are among the most complicated ones
studied in the natural sciences. The investigation of mechan-
ical issues in biological systems has a long tradition dating
back to the seminal book On Growth and Form by Thompson
(1917).

From a mechanist’s point of view, cells are well charac-
terised by a continuum theory on a macroscopic level, e.g.
cells are often described by hyperelastic (or Green elastic)
materials. On a microscopic level, e.g. on the scale of the
cytoskeleton of a cell, continuous descriptions are often not
appropriate and discrete descriptions typically in terms of
energy functionals are preferable. At the same time, differ-
ent physical concepts like entropic forces have to be consid-
ered. On the one hand microscopic models allow an approach
considering as many details as possible. On the other hand,
often, biologically interesting length scales are not acces-
sible by microscopic models due to limited computational
capacities.

The aim of this article is the extension of multiscale
techniques to biomechanical applications. These techniques
allow the rigorous upscaling of appropriate basic microscopic
descriptions to macroscopic continuum models which inherit
the microscopic properties. Using concepts from �-conver-
gence (Dal Maso 1993; Braides 2002), the gap between those
two descriptions can be closed systematically: based on a
microscopic description, an explicit continuous macroscopic
description can be derived in terms of energy functionals.
From the latter, stress–strain relationships used in the frame-
work of hyperelasticity can be calculated, which allows a
description in terms of mass and linear momentum conser-
vation.

In this article, we generalise the approach of Alicandro and
Cicalese (2004) to more general energies, e.g. describing the
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2 D. Hartmann

mechanical properties of the membrane skeleton of red blood
cells. To our knowledge this is the first approach that system-
atically derives a continuum mechanical model for red blood
cells based on discrete molecular models. A simple heuristic
approach linking mechanical properties of a thin shell with
finite thickness with a discrete molecular model can be found
in Dao et al. (2006).

The continuum model derived in this article considers
the membrane as a hypersurface with mechanical properties
resisting bending and stretching. Membrane mechanics can
be coupled with the cytosol (a simple fluid) allowing the cal-
culation of energy minimising shapes (observed shapes), as
well as an extension to more complex setups where dynamics
play a crucial role. Our model is challenged by the quanti-
tative comparison of simulations of the derived macroscopic
model with microscopic simulations as well as optical twee-
zers experiments, one of the most common experiments in
biophysics. To do so, an appropriate finite element frame-
work is set up which is implemented in Gascoigne (Becker
et al. 2009). Simulations of the macroscopic continuum
model show a good qualitative and quantitative agreement
with the microscopic approach and experiments..

The model as well as the simulation approach can be
extended easily to include much more details, e.g. chemi-
cal processes controlling the membrane elasticity of the red
blood cell. Using the homogenisation approach allows a sig-
nificant reduction of computational complexity. Consider-
ing a realistic number of filaments in a discrete microscopic
model, the system is hardly solvable. However, using a con-
tinuum approach, finite element methods allow the choice
of relatively coarse discretisations speeding up simulations.
The efficiency of computations for continuum models can be
further increased by appropriate mesh refinement strategies.
Another significant advantage of continuum models is that
they can be easily coupled with reaction–diffusion equations,
which are typically used to model biochemical reaction net-
works in cells. This allows a straightforward approach inves-
tigating interactions between mechanics and biochemistry.
And last, but not least, continuum models are usually more
accessible to mathematical analysis than discrete models.

The structure of the article is as follows: First we review
in Sect. 1.1, biomechanics of red blood cells as well as opti-
cal tweezers experiments. In Sect. 2, we introduce a realistic
static microscopic model for optical tweezers experiments
based on existing microscopic approaches. A correspond-
ing static continuum model is then systematically derived in
Sect. 3. Using a variational approach allows us to determine
energy minimisers via relaxation. To do so a correspond-
ing continuum mechanical model in terms of mass and liner
momentum conservation is set up for optical tweezers experi-
ments (Sect. 4). Finally, we introduce in Sect. 5 an appropriate
numerical approach for solving the derived model and close
with a discussion of the results in Sect. 6.

1.1 Biology and mechanics of red blood cells

Red blood cells (RBC) have a simple structure and therefore
often serve as model systems for the development of theoret-
ical and experimental methods in biophysics. Under physio-
logical conditions, a normal human RBC in an unstressed
state assumes a biconcave discoid shape approximately 8µm
in diameter (Evans and Skalak 1980):

z = R
√

1 − (x2 + y2)/R2[c0 + c1(x2 + y2)/R2

+ c2(x2 + y2)2/R4], (1)

where R = 3.91 µm, c0 = 0.1035805, c1 = 1.001270, and
c2 = −0.561381. The nucleus and other organelles that are
present in RBCs during their development are expelled before
and shortly after the cells are released into the circulatory
system, leaving the mature cells with no internal structural
components other than the membrane-associated spectrin
cytoskeleton (Boal 2002), a quasi two-dimensional (2D) net-
work (Fig. 1). Basic building blocks of the spectrin network
are 200 nm long spectrin tetramers (edges) which crosslink
the junctional complexes of actin (vertexes). The average
length between two vertexes is 80 nm (Liu et al. 1987). Hence,
the end-to-end distance of spectrin tetramers is significantly
smaller than their contour length, which strongly underlines
that mechanics are due to entropic effects. According to Liu
et al. (1987), there are over 80% degree-6 vertexes in spec-
trin networks extracted from healthy human RBCs, which
suggest a relative regular hexagonal structure of the spectrin
network (c.f. Fig. 1). However, recent experiments indicate
that the network might be more disordered with a significant
lower average vertex degree (Li et al. 2005).

Functional actin complexes are affected by ATP, which is
usually present in RBCs, by inducing spectrin–actin dissoci-
ations (Gov and Safran 2005). Creation and motion of such
defects allows the network to rearrange constantly. There-
fore, it is postulated that the spectrin vertices of RBCs behave
like a liquid on large time scales. Thus dynamics would allow
a relaxation of the in-plane shear elastic energy (Li et al.
2005). However, for periods of around 30 min and tempera-
tures up to 37◦C large cytoskeletal deformations have shown
to be stable (Lee et al. 1999), i.e. during this timescale RBCs
can manifest large shear.

One of the most common experiments to study mechan-
ics of RBCs as well as other cell types are optical tweezers
experiments (Fig. 1) (Hénon et al. 1999; Mills et al. 2004).
Using focused laser beams, optical tweezers allow the appli-
cation of forces in the range of pico Newtons to dielectric
microbeads. Since forces applied to the optical tweezers can
be determined quite well, the experiments allow the estima-
tion of involved mechanical moduli. Usually, the deforma-
tion rate is faster than the relaxation rate of stresses, such that
relaxation can be neglected (Li et al. 2005).
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A multiscale model for red blood cell mechanics 3

A B

Fig. 1 a Spread membrane skeleton examined by negative-staining
electron microscopy. It clearly shows the RBC’s hexagonal lattice
of junctional complexes (reprinted from Liu et al. (1987), ©1987

Rockefeller University Press). b Schematic presentation of a red blood
cell between optical tweezers (according to Hansen et al. (1997), ©1997
Biophysical Society)

1.2 Models of red blood cells

Quite a variety of models for mechanics of RBCs are found in
the literature. These can be divided into two classes: micro-
scopic molecular based models (i.e. discrete models) (e.g.
Hansen et al. 1997; Discher et al. 1998; Li et al. 2005;
Noguchi and Gompper 2005), and macroscopic continuum
models (e.g. Evans and Skalak 1980; Lim et al. 2002; Mills
et al. 2004; Dao et al. 2003, 2006; Pozrikidis 2003a). Among
them, we can distinguish solely static models (Discher et al.
1998), i.e. models based on energy minimisation, or dynamic
models (Noguchi and Gompper 2005), mainly concerned
with RBCs embedded in fluid flow. Further, we can distin-
guish between models which treat the membrane as a 2D
hypersurface (Discher et al. 1998) and those which treat it
as a shell (Dao et al. 2003) with a small but finite thickness.
The list of references given here is by no means complete,
for a more detailed list we refer to Hartmann (2007).

The objective of this paper is to show how the differ-
ent models can be rigorously linked. Here, we restrict our-
selves to a slightly simplified variant of the molecular based
static model proposed by Boey et al. (1998) and Discher
et al. (1998). A corresponding continuum model is derived
in Sect. 3 using �-convergence. The static continuum model
can be linked to a dynamic continuum model using a varia-
tional approach, as shown in Sect. 4.

2 Static molecular based model

The major advantage of discrete models is their simplic-
ity, which allows straightforward numerical schemes, e.g.
Monte Carlo methods. Most microscopic models go back
to the work of Boey et al. (1998) and Discher et al. (1998)
considering a micropipette aspiration experiment. Their
approach has been also extended to optical tweezers exper-
iments (Li et al. 2005). Let us review the original model in

the case of an optical tweezers experiment using a slightly
different notation adopted to our setup:

Model 1 The stationary shape of the RBC in an optical twee-
zers minimises the discrete free energy

Fε({χn}) = Fε,tweezers + Fε,in-plane + Fε,bending

+ Fε,surface + Fε,volume.

Here ε is the typical length scale of the spectrin network. The
degrees of freedom of the model are the actin vertex coor-
dinates {χn = χ(Xn)}n∈1,...,N (see Fig. 1), where Xn is the
position of a network vertex in the reference configuration.
Its motion / deformation is thus given by the function

x = χ : R
3 � X �→ χ(X) ∈ R

3.

Since we are interested in mechanics, we will restrict our-
selves to deformations preserving the orientation.

Based on the observations of Liu et al. (1987), Discher and
co-workers propose to model the mechanics of RBCs using
a quasi-2D network with hexagonal symmetry (including 12
topological defects, which are needed to cover a sphere with
a hexagonal net). This approach has been generalised by Li
et al. (2005) to more general networks. In this section, we will
not rely on a special geometry; however in Sect. 3 we will
restrict ourselves to a purely hexagonal geometry in order
to derive a corresponding continuum model, which can be
explicitly specified.

All energies considered in Model 1 are non-negative, apart
from Fε,tweezers modelling the effect of optical tweezers. Let
us assume that Ntweezers actin vertex coordinates are bound to
the microbeads of the optical tweezers on both sides. There-
fore, they experience a force corresponding to the energy:

Fε,tweezers({χn})=−
∑

Xi bound

1

Ntweezers
(χ(Xi )−Xi )· ftweezers,

where ftweezers is the force applied by the optical tweezers.
The dominant term of the membrane energy in the context

of large deformations, e.g. in optical tweezers experiments,
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4 D. Hartmann

is the in-plane free energy Fε,in-plane of the membrane-bound
cytoskeleton:

Fε,in-plane({χn}) =
∑

edges

L2
(m,n)

√
3

2
ṼWLC

(
L2

(m,n)

L2
(m,n)

)

+
∑

faces

2A(l,m,n)

C

(A(l,m,n)/A(l,m,n))q + η
,

(2)

where L(l,m) = |χm − χl | is the length of the spectrin link /
edge connecting vertexes l, m and A(l,m,n) = |(χm − χl) ×
(χn − χl)|/2 is the area of the triangular face enclosed by
the spectrin links (l, m), (m, n), (n, l) in the deformed state.
L(l,m) = O(ε) and A(l,m,n) = O(ε2) are the edge lengths
and face areas in the reference coordinate system. The dif-
ferent terms in (2) are explained in detail below.

Let us rewrite the relative lengths L(l,m)/L(l,m) and areas
A(l,m,n)/A(l,m,n) used in formula (2) in terms of discrete

finite difference quotients Dξ
Lχ(X) ≡ (χ(Xl + Lξ) −

χ(X))/L (in direction of the vector ξ ), which will facilitate
our mathematical analysis in Sect. 3:

L(l,m)

L(l,m)

= |χ(Xl + L(l,m)ξ(l,m)) − χ(Xl)|
L(l,m)

= |Dξ(l,m)

L(l,m)
χ(Xl)|, (3)

A(l,m,n)

A(l,m,n)

= det
(

D
ξ(l,m)

L(l,m)
χ(Xl) ⊗ D

ξ(l,n)

L(l,n)
χ(Xl)

)

= J(l,m,n)(χ(Xl)), (4)

where ξ(l,m) = (Xm − Xl)/|Xm − Xl | is the unit vector
pointing from vertex Xl to the vertex Xm in the undeformed
coordinate system. J(l,m,n)(χ(Xl)) is the discrete Jacobian
corresponding to the triangle spanned by the vertexes l, m,
and n. Since we consider only orientation preserving defor-
mations J(l,m,n)(χ(Xl)) and equivalently A(l,m,n)/A(l,m,n)

are always positive.
The first term in (2) is the entropic energy stored in the

spectrin links. Discher and co-workers assume that the energy
is given by the worm-like chain model introduced by Marko
and Siggia (1995), which is based on experiments with DNA:

L2

√
3

2
VWLC

(L2

L2

)
= kB T

4pLmax

L2(2L−3Lmax)
(L−Lmax)

. (5)

Since limL→Lmax VWLC(L2/L2) = ∞, we consider here a
pth-order Taylor-expansion ṼWLC of VWLC around the rest
state L = L due to mathematical restrictions (as we will see
below). Hence, VWLC is a positive super-linearly growing
function with p-growth, i.e. it satisfies the following growth
condition

c1(|z|p − 1) ≤ ṼWLC(z2) ≤ c2(|z|p + 1) (6)

for constant c1, c2 ∈ R
+ 1 ≤ p < ∞. Dimensional analysis

reveals that ṼWLC(L2/L2) is an energy density, respectively
ṼWLC(L/L).

Considering only ṼWLC in (2), the minimum of Fε,in-plane

corresponds to a collapsed network. However, due to repul-
sive forces of steric interactions (i.e. entropic forces) the net-
work does not collapse: The end-to-end distance of spectrin
filaments is much smaller than their contour length. Hence,
spectrin fibres are polymer coils with a non-negligible width
leading to repulsion. Therefore, the second sum is intro-
duced into the model. It is of a phenomenological origin
and accounts for steric interactions (Discher et al. 1998).
C > 0 and q > 0 are constants, typically the case q = 1 is
adopted (Discher et al. 1998; Li et al. 2005). Due to mathe-
matical restrictions (see below) the constant η > 0 is intro-
duced to ensure that the contribution of the repulsive forces
is bounded. Dimensional analysis shows that C/[(A(l,m,n)/

A(l,m,n))
q + η] is an energy density.

The introduction of the regularisation of repulsive steric
interactions in (2), i.e. the introduction of η > 0, as well as
the restriction to Taylor expansions of VWLC is necessary to
obtain rigorous convergence results following the work of
Alicandro and Cicalese (2004). Without this regularisation
our approach yields only formal results which would still
needed to be verified by mathematical analysis.

Due to the fluid character of the lipid bilayer it cannot sus-
tain shear–stress; nevertheless, it possesses a bending stiff-
ness and a large compressional stiffness. Often, it is assumed
to be incompressible. Since the building blocks of the lipid
bilayer are much smaller than the spectrin links, the resis-
tance to bending of the lipid bilayer is well described by
continuum models, e.g. the Canham and Helfrich functional
(Canham 1970; Helfrich 1973):

FCanham–Helfrich = κ

2

∫

�

(H − H0)
2dµ + κg

∫

�

K dµ (7)

with cell membrane �, bending elasticity moduli κ , κg , mean
curvature H = C1 + C2, Gauss curvature K = C1C2, prin-
cipal curvatures C1, C2, and the constant H0, which repre-
sents the spontaneous curvature. The last term in (7) can be
neglected, since due to the Gauss–Bonnet theorem the inte-
gral is constant for a given topology (We allow only variations
over a fixed topology). The Canham–Helfrich functional is
well-established for intermediate surface curvatures based on
molecular dynamic simulations (den Otter and Briels 2003)
on the one hand as well as experiments (Steltenkamp et al.
2006) on the other hand. It is a sufficient approximation con-
sidering optical tweezers experiments, which exhibit relative
mild curvatures.

Therefore the microscopic models proposed by Discher
et al. (1998) and Li et al. (2005) rely on the Canham–Helf-
rich energy, although more complex approaches can be found
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A multiscale model for red blood cell mechanics 5

in the literature, e.g. considering non-local bending energies
(Seifert et al. 1991; Bozic et al. 1992; Miao et al. 1994;
Mukhopadhyay et al. 2002). To work with a fully discrete
approach, Discher and co-workers discretised the Canham–
Helfrich model (7) using network vertex-coordinates as
degrees of freedom yielding a discrete free energy
Fε,bending({χn}). For the discrete formulation we refer to the
original paper Discher et al. (1998). In the following we will
work directly with the continuum description (7), which is
possible since �-convergence is stable to continuous pertur-
bations (Braides 2001). Of course, also more complex models
for membrane mechanics, e.g. non-local bending energies,
can be included in our approach. Here, we however rely on
the somewhat simpler Canham–Helfrich energy to allow an
exact quantitative comparison between simulations of the
microscopic model and the upscaled macroscopic model.
Precise measurements of bilayer bending elasticity can be
found in the literature (Mohandas and Evans 1994; Heinrich
and Waugh 1996; Hwangand and Waugh 1997; Rawicz et al.
2000; Scheffer et al. 2001).

The non-physical energies Fε,volume and Fε,surface account
phenomenologically for the incompressibility of the cytosol
and of the lipid bilayer:

Fε,volume({χn}) = kvolume(|Vcell| − Vdesired)
2,

Fε,surface({χn}) = ksurface(|Acell| − Adesired)
2,

where the total area of the cell is given by Acell =∑
faces A(l,m,n) and the total volume by Vcell. The latter can

be directly related to the areas A(l,m,n), since the divergence
theorem |�| = 1

3

∫
∂�

(x ·n)dµ must hold. kvolume and ksurface

are constants.
According to the adopted hypothesis, the stationary shape

of the RBC, e.g. stretched by optical tweezers, minimises
the free energy. Boey et al. (1998); Discher et al. (1998) use
Monte Carlo schemes for energy minimisation and Li et al.
(2005) use coarsegrained molecular dynamics to determine
the energy minimum. Both start with a given reference shape
and let the energy relax until a minimum is reached. Using
these approaches, the experimentally observed shapes are
recovered.

The choice of an appropriate reference shape (initial or rest
shape) is however subtle, since the computed shapes depend
usually on the chosen reference shape (Li et al. 2005). Li et al.
(2005) have invoked the physical hypothesis that the spectrin
network undergoes constant remodelling to always relax the
in-plane shear elastic energy to zero at some slow charac-
teristic time scale. Therefore they suggest to use an initial
shape which minimises the energy Fε,bending + Fε,surface +
Fε,volume (in-plane energy is neglected). Using this approach
the biconcave shape (1) is recovered (Li et al. 2005) (see also
Sect. 5.3.1).

Starting from this reference shape the energy minimum of
the full Model 1 is determined (see Fig. 7). For computations
as well as a more detail we refer to the original paper (Li
et al. 2005).

3 From molecular based to continuum models

Different static continuum models in terms of energy func-
tionals for mechanics of RBCs can be found in the litera-
ture (Mukhopadhyay et al. 2002; Kuzman et al. 2004; Lim
et al. 2002). These have the same structure as the microscopic
model considered above, but they are however generally of
a heuristic type.

In the following, we derive systematically a continuous
energy functional F for the mechanics of RBCs based on
the microscopic model Fε given in Model 1. Because we are
generally interested in deformations with minimal energies,
�-convergence is an appropriate framework.

In the following we will concentrate on the energies
Fε,bending + Fε,in-plane, since Fε,surface, Fε,volume are of a non-
physical type and Fε,tweezers has an obvious continuous coun-
terpart. Further, we replace Fε,bending with FCanham–Helfrich,
i.e. expression (7). Since�-convergence is stable with respect
to continuous perturbations (Braides 2002), it is sufficient to
restrict ourselves to Fε,in-plane, which represents the energy
contribution of the discrete spectrin cytoskeleton / membrane
skeleton.

The free energy Fε,in-plane is independent of deforma-
tions perpendicular to the membrane. Therefore we consider
only the 2D tangent space of the membrane for the sake
of simplicity. Further, we restrict our analysis to 2D net-
works with hexagonal symmetry (Fig. 2) in order to find an
explicit expression for the continuum functional and not only
abstract convergence results. Let us introduce the considered
networks

εG ∩ �

with

G = {X ∈ R
2 : X = µ1 g1 + µ2 g2 with µi ∈ Z}, (8)

g1 = (1, 0), g2 = (1/2,
√

3/4), and � ⊂ R
2 open and

bounded. Here, ε is the typical length scale of the network.
The basic building block of the network is a unit cell as illus-
trated in Fig. 2 with links Gξ = {ξi } and triangles G = {i }.
Since we restrict ourselves to the tangent space, the defor-
mation of network vertexes X ∈ εG ∩ � is given by

x = χ : εG ∩ � � X �→ χ(X) ∈ R
2,

which should be orientation preserving, as discussed above.
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6 D. Hartmann

Fig. 2 Abstraction of the 2D
membrane skeleton of a red
blood cell spread on a flat 2D
domain � shown in Fig. 1

ε
1

2

g

Ω

2

g

1ξ

2ξ

3ξ

4ξ

5ξ 6ξ

∆1

∆6

∆5

∆4

∆3

∆

Let us rewrite (2) as follows:

Fε,in-plane(χ ,�)

=
∑

X∈ vertexes
in�

⎡
⎢⎢⎣

1

2

∑

ξ∈ edges in �
connected to X

ε2

√
3

2
ṼWLC

((
Dξ

ε χ(X)
)2

)

+ 1

3

∑

 ∈ faces in �
connectedto X

ε2

√
3

2

C

(Jε(χ(X)))q + η

⎤
⎥⎥⎦ , (9)

where Dξ
εχ(X) is the discrete finite difference quotient (3),

i.e. the relative length change of the edge in the deformed con-
figuration, and Jε(χ(X)) is the discrete Jacobian (4), i.e.
the relative face area change in the deformed configuration.
The factor 1/2 in front of the pair interactions accounts for
the fact that each interaction is counted twice. Similarly a fac-
tor 1/3 accounts for the multiple counting of steric interac-
tions. The scaling ε2

√
3/2 is the natural geometrical scaling.

Neglecting steric interaction, i.e. choosing C = 0 and
thus considering only pair-interactions, Fε,in-plane is a spe-
cial case of free energies describing atomistic interactions in
crystal lattices. Such energies have been studied in several
works (Alicandro and Cicalese 2004; Braides 2001) using
�-convergence as well as other techniques (Berezhnyy and
Berlyand 2006; Schmidt 2008).

A constructive proof based on the concept of �-conver-
gence, calculating the lim inf and lim sup inequalities directly,
is relatively straightforward in 1D (Braides 2001). In higher
dimensions, the direct calculation of the lim inf inequality
is, however, highly non-trivial, unless the problem can be
reduced to several 1D problems, e.g. in the direction of the
coordinate axes. Due to the steric interaction energies, involv-
ing multiple dimensions, such a reduction is not possible in
our setup.

Considering crystal lattices Alicandro and Cicalese (2004)
use a more abstract approach based on �-convergence results
from the theory of homogenisation of integrals (Braides and
Defranceschi 1998). This abstract approach allows to prove

the existence of appropriate continuum limit energy function-
als. Considering periodic microscopic geometries, the con-
tinuum functionals can be characterised indirectly as a limit
of discrete functionals on simple rectangular domains.

Since the steric interaction energies in (2) are positive and
bounded the proof of Alicandro and Cicalese (2004) needs
basically no modification. Therefore, we review here only
the corresponding results. Using convexity of the functional,
we then derive an appropriate cell problem, i.e. a homogeni-
sation formula.

3.1 Existence

To consider possible minimisers χ of (9) for arbitrary ε

within one function space, we identify the discrete maps
χ : εG ∩ � → R

2 with maps χ :� → R
2 constant on each

cell of the lattice. Therefore, let us introduce the following
function spaces:

Fε(�) ≡
{

u : �→R
2 : for any X ∈εG, u is constant on

{Y ∈ R2 : Y = X + µ1 g1 + µ2 g2, 0 ≤ µi < ε}
}
,

Fε,φ(�) ≡ {u ∈ Fε(�) : u(X) = φ(X) if d(X, ∂�) < 1}.

Of course other embeddings, e.g. assuming piecewise linear
functions, can be considered equivalently.

Theorem 1 For every sequence (ε j ) of positive real num-
bers converging to 0, there exists a sub-sequence (ε jk ) and
a continuous quasi-convex function � : R

2×2 → [0,∞)

satisfying

c(|M|p − 1) ≤ �(M) ≤ C(|M|p + 1)

with 0 < c < C, such that (Fε jk ,in-plane(·, ·)) given in (9)

�-converges with respect to the L p(�; R
2)-topology to

Fin-plane : L p(�; R
2) × {A ⊂ � : A open } → [0,∞]

defined as
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A multiscale model for red blood cell mechanics 7

Fin-plane(χ , A) =
{∫

A �(∇Xχ)dµ if χ ∈ W 1,p(A; R
2)

∞ otherwise.

Here, W 1,p(A; R
2) are standard Sobolev spaces (Alt 2002).

As already mentioned Alicandro and Cicalese (2004) con-
sider energies of the type (9) without steric interactions, i.e.
C ≡ 0. They show that the upper and lower �-limits of these
functionals defined on pairs function-set are inner-regular
increasing set functions. This allows the use of a correspond-
ing compactness and integral representation result (Braides
and Defranceschi 1998). Considering the case C �= 0 the
arguments can be repeated. The pair interactions in (9) fulfil
the required growth conditions, c.f. growth condition (6), and
the repulsive energy of steric interactions in (9) is bounded,
such that the proof of Theorem 1 goes along the lines of the
original proof.

The embedding of W 1,p(�; R
2) to L p(�; R

2) is compact
using the standard definition of L p spaces (Alt 2002). Hence,
Theorem 1 implies also the convergence of minimisers to a
minimiser of the limit functional. Theorem 1 considers an
unconstrained �-limit.

However, often one is interested in problems with pre-
scribed boundary conditions. Corresponding convergence
results with restrictions to χ ∈ Fε,φ , and accordingly χ−φ ∈
W 1,p

0 (�; R
2), can be proven. Here, we use the standard def-

inition for W 1,p
0 (�; R

2), i.e. Sobolev functions of the space
W 1,p(�; R

2) with a vanishing trace on the boundary of �

(Alt 2002). Similar results hold also for periodic bound-
ary conditions. For more details, we refer to the work of
Alicandro and Cicalese (2004).

3.2 Homogenisation

Let us first define a rhombus which is spanned by N times
the vector g1 and N times the vector g2, c.f. definition (8):

QN = {X : X = µ1 g1 + µ2 g2 with0 ≤ µi < N , i = 1, 2}.

Minor modifications of the approach of Alicandro and
Cicalese (2004), yield the following homogenisation result:

Theorem 2 For every sequence (ε j ) of positive real num-
bers converging to 0, the sequence (Fε j ,in-plane) given in
(9) �-converges with respect to the L p(�; R

2)-topology to
Fin-plane : L p(�; R

2) × {A ⊂ � : A open } → [0,∞]
defined as

Fin-plane(χ , A) ≡
{∫

A �hom(∇Xχ)dµ if χ ∈ W 1,p(A; R
2)

∞ otherwise,

where the integrand � : R
2×2 → [0,∞) satisfies the

rescaled homogenisation formula

�hom(M) ≡ lim
N→∞

1

N 2 min
{

F1,in-plane(χ , QN ) : χ = M · X + u

with (N − 2)-periodic u ∈ F1(QN )
}

(10)

with F1,in-plane defined in (9).

An analogous result holds also in the case of Dirichlet or
periodic boundary conditions with the same characterisation
of �hom. Above, (N − 2)-periodic functions u, i.e. u(X +
(N − 2)g1) = u(X) as well as u(X + (N − 2)g2) = u(X),
are considered to ensure that the discrete derivative of the
perturbation on the boundary is zero.

3.3 Cell problem

The homogenisation formula (10) in Theorem 2 is given
as a minimisation problem over a growing rectangle QN

(N → ∞). Since the contribution from pair as well as steric
interactions are convex the homogenisation formula can be
reduced to a cell problem, i.e. a homogenisation formula:

Theorem 3 For every sequence (ε j ) of positive real num-
bers converging to 0, the sequence (Fε j ,in-plane) given in
(9) �-converges with respect to the L p(�; R

2)-topology to
Fin-plane : L p(�; R

2) × {A ⊂ � : A open } → [0,∞]
defined as

Fin-plane(χ , A) ≡
{∫

A �(∇Xχ)dµ if χ ∈ W 1,p(A; R
2)

∞ otherwise,

where the integrand � : R2×2 → [0,∞) is given by the
following problem on a unit-cell

� ≡ 1

2

∑

i=1,...,6

ṼWLC

(
ξ T · (∇Xχ)T · (∇Xχ) · ξ

)

+ 2
C

(det(∇Xχ)q + η)
(11)

with vectors ξi ∈ Gξ (|ξi | = 1) corresponding to the spectrin
edges in the undeformed unit cell (c.f. Fig.2).

Proof For simplicity, we split the proof into two parts: (a)
the case C ≡ 0 and (b) ṼWLC ≡ 0. For all N , we show that
in both cases, χ = M · X is a minimiser of (10). Since the
energy Fε,in-plane is non-negative, the minimum in the general
case, C �= 0 and ṼWLC �= 0, is also realised by χ = M · X ,
i.e. formula (11) holds.

Case (a)

Set C ≡ 0 and let us show that χmin = M · X + umin, with
umin constant, is a solution of the minimisation problem (10)
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8 D. Hartmann

independent of N . That is, among all (N − 2)-periodic func-
tions u ∈ F1(QN ) the energy

E1(M · X + u, QN )

≡
∑

X∈vertexes
in QN

1

2

∑

ξ∈edges in �
connected to X

√
3

2
ṼWLC

((
Dξ

1 (M · X + u(X))
)2

)

(12)

is minimised by umin constant. Let us choose an arbitrary
minimiser ũmin ∈ F1(QN ) of E1 given by (12). By defi-
nition, the minimiser is at least N − 2 periodic. Hence, the
function ũ(X) ∈ F1(QN ) defined by

ũ(X) = 1

(N − 2)2

∑

i, j∈[0,N−2]
ũmin(X + i g1 + j g2)

with g1 and g2 defined in (8) is one periodic and thus constant
by construction of F1(QN ). By strict convexity of ṼWLC and
hence strict convexity of E1, given by (12), the function ũ
satisfies the inequality

E1(M · X + ũ, QN ) <
1

(N − 2)2

∑

i, j∈[0,N−2]
E1 (M · X + ũmin (X + i g1 + j g2) , QN ).

Since E1 depends only on the gradient of χ , it is invariant
under a shift, e.g. under the shift X + i g1 + j g2. Hence, we
can conclude

E1(M · X + ũ, QN ) <
1

(N − 2)2

∑

i, j∈[0,N−2]
E1 (M · X + ũmin (X) , QN ).

Therefore also ũ(X) is a minimiser of E1, and accordingly
χmin(X) = M · X + ũ(X). Since ũ(X) is an arbitrary con-
stant and E1(χ , QN ) depends only on the discrete gradient
of χ , we can choose χmin(X) = M · X . The inequalities are
strict, thus uniqueness of the minimiser (up to a constant) is
guaranteed.

Case (b)

Choose ṼWLC ≡ 0 and let us prove that χmin = M · X is also
a solution of the minimisation problem (10) for all N . That
is, it minimises

E1(χ , QN )≡
∑

X∈vertexes
in QN

1

3

∑

ξ∈edges in QN
connected to X

√
3

2

C(
J (χ (X))

)q + η

(13)

among all χ ∈ F1,M·X (QN ).
Let us fix N . For all deformations χ ∈ F1,M · X (QN ) the

total area of QN after the deformation equals N 2
√

3/2 det M,

since |QN | = N 2
√

3/2 and the total area depends only on
the value of χ on ∂ QN . Hence, it follows

N 2

√
3

2
det M =

∑

X∈vertexes
in QN

∑

∈faces in QN
connected to X

√
3

4
J (χ (X)) (14)

for all χ ∈ F1,M·X (QN ). Thus energy E1(χ , QN ) given by
(13) can be minimised only by a variation of the triangular

face areas
√

3
4 J (χ (X)) under the constraint that the sum

(total area) is constant. Using J (M · X) = det M and (14),
we obtain for arbitrary χ ∈ F1,M·X (QN )

2
√

3E1(M · X, QN ) = 2N 2 C

(det M)q + η

= 2N 2 C(
1

2N 2

∑
X∈vertexes

in QN

∑
∈faces inQN
connected to X

J (χ (X))

)q

+ η

.

By convexity, we have

∑

X∈vertexes
in QN

∑

∈faces inQN
connected to X

C(
J (M · X)

)q + η

<
∑

X∈vertexes
in QN

∑

∈faces inQN
connected to X

√
3

2

C(
J (χ (X))

)q +η

for any χ ∈ F1,M·X (QN ). The energy of the deformation
χ = M · X is smaller than the energy of any other deforma-
tion χ , which shows χmin = M · X and thus completes the
proof. Strict convexity implies the uniqueness of the mini-
miser. ��

So far we have restricted us to 2D deformations on a
bounded 2D domain. In the fully 3D situation, i.e.

χ ∈ W 1,p(�X ; R
3) with det ∇Xχ > 0

with �X being the surface of the RBC in the undeformed
state, i.e. reference configuration, we find

Fin-plane(χ) =
∫

�X

1

2

∑

i=1,...,6

ṼWLC(ξ T · F�T · F� · ξ)

+ 2
C

(J�q + η)
dµ, (15)

where F� ≡ (∇Xχ) · PX = P · (∇Xχ) · PX ∈ R3×3 is the
3D surface deformation tensor, PX = nX ⊗ nX the surface
projection operator with respect to the reference configura-
tion (indicated by the subscript X ), P = n ⊗ n the one with
respect to the current configuration (nX and n are outer unit
normals of the surface), and the surface Jacobian J� . The
latter is given by J� = √

det g with the metric tensor g of
the surface, defined as

(g)i j = (F� · ti )T · (F� · t j ) with i, j ∈ {1, 2}
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A multiscale model for red blood cell mechanics 9

where t1 and t2 are two orthogonal vectors in the tangent
space of the surface.

3.4 Characterisation of Fin-plane using invariants of F�

For simplicity, let us first restrict to Taylor expansions ṼWLC

of VWLC around 1 up to order 2, i.e. p = 2. We thus find the
following energy density �:

� = 1

2

∑

i=1,...,6

(
VWLC (1) + V ′

WLC (1)

× (ξ T · F�T · F� · ξ − 1)

+ 1

2
V ′′

WLC (1) (ξ T · F�T · F� · ξ − 1)2
)

+ 2
C

J�q + η
(16)

with VWLC defined in (5).
The energy (16) is isotropic, which is a well-known result.

(In the general case p > 2 the energy density (15) is not iso-
tropic and has a hexagonal symmetry!) This allows us to
rewrite the energy density in terms of invariants of the defor-
mation tensor, a standard approach in non-linear elasticity.
Throughout the literature different invariants are used in the
context of hyperelastic materials. Here, we work with the
following invariants (Skalak et al. 1973):

I1 ≡ J� − 1 = λ1λ2 − 1,
(17)

I2 ≡ tr(F� · (F�)T) − 2 = λ2
1 + λ2

2 − 2,

where λ1 and λ2 are the principal stretches of the surface
deformation tensor F�: Using the relation between interac-
tion link lengths and invariants (c.f Appendix) as well as
dropping constant terms, we find:

� = 3

2
V ′

WLC(1)I2 + 3

16
V ′′

WLC(1)(4I2 − 8I1 + 3I 2
2 − 4I 2

1 )

+ 2
C

(I q
1 + η)

.

For the rest of this section let us assume that the mem-
brane skeleton is initially not stressed. This assumption might
not hold true in all cases. Pre-stress is an important concept
in biology (Boey et al. 1998; Ingber 2003). However, our
assumptions allow us the explicit specification of the con-
stant C . Considering deformations consisting only of com-
pression, or alternatively dilatation, i.e. I2 = 2I1, we obtain
the following expansion

� = 2C + (3V ′
WLC(1) − 2Cq

(1 + η)2 )I1 + O(I 2
1 ).

Assuming that the network is initially unstressed, the energy
should be at a minimum and hence all linear terms should
vanish. We therefore find

force

laser

Fig. 3 Illustration of a typical optical tweezers experiment

C = 3(1 + η)2V ′
WLC(1)

2q

and thus are left with one constant less, allowing a better
comparison with experiments. A direct relation of the micro-
scopic parameters with macroscopic moduli is possible and
is considered in Sect. 4.3.

Of course the same approach can be applied in the case
p > 2. For p > 2, however, the hexagonal symmetry is
reflected in (16). Whether a stress tensor with a hexagonal
symmetry is biologically realistic or not is unclear. On one
hand it is not clear in which direction the symmetry axis
would be pointing, on the other hand the spectrin network is
not perfectly symmetric, it only shows largely a hexagonal
symmetry (over 80% degree-6 vertexes). Further, it is not
clear how a hexagonal symmetry could be identified from an
experimental point of view. For simplicity, we average over
all possible directions of symmetry axis in the case p > 2:
�̄ = ∫ 2π

0 �dφ, c.f. Appendix. The assumption of a hex-
agonal symmetry is, however, necessary for the sake of the
derivation of a homogenisation formula. Only this homogeni-
sation formula allows the direct linkage between microscopic
and macroscopic models and corresponding parameters.

4 A relaxation approach

The models considered above are based on a static descrip-
tion in terms of energy functionals, i.e. shapes of RBCs
are determined by energy minimisation. The corresponding
energy minima are typically calculated using the correspond-
ing Euler–Lagrange equations (Dacorogna 2004). Physically
speaking, the corresponding forces of the energies are deter-
mined and one looks for a shape where all forces equilibrate.

Instead of using the Euler–Lagrange equations, we con-
sider a relaxation approach based on a dynamic formulation
in the framework of conservation of mass and linear momen-
tum for the simulation of optical tweezers experiments (illus-
trated in Fig. 3). Such an approach is of course somewhat
more complex, but has several advantages. On one hand it
can be easily extended to situations, where dynamics play
a role, as well as it can be easily compared with existing
dynamic models (Pozrikidis 2003a,b). On the other hand it
can be encoded directly in the FEM-framework Gascoigne
(Becker et al. 2009).
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10 D. Hartmann

We adopt the same assumption as in Sect. 1.2: the time
scale of the experiment (order of seconds) is fast compared
to relaxation (at least order of several minutes), thus that we
consider the regime of membrane elasticity. Additionally, we
assume that the cytosol is locally incompressible as well as
a globally constant surface area, rather than choosing very
large kvolume and kvolume in Model 1. Moreover, we neglect
inertial effects of the membrane, since its mass is relatively
small.

Model 2 The mechanics of a RBC clamped into an optical
tweezers (schematically shown in Fig. 3) are determined by
the following model (for some fixed time T > 0):

du
dt

= v in �cell(t) × [0, T ),

ρ
dv

dt
= −∇ p + ∇ · σcytosol in �cell(t) × [0, T ),

0 = ∇ · v in �cell(t) × [0, T ),

(σcytosol + pout1) · n on ∂�cell(t) × [0, T ),

= Ftweezers − ∇�qsurf. + Fmembrane

|∂�cell(t)| = |∂�cell(0)| for [0, T ).

The evolution of �cell(t) is given by the speed v on the
boundary.

As usual ρ is the local material density, v the local material
speed, u is the local material displacement, i.e. the
current position of a particle originating position X in the
reference configuration is given by x = X + u(X) and p
is the local volume pressure, accounting for incompressibil-
ity of the cytosol. The global surface pressure qsurf. is con-
stant on the surface since the single constraint |∂�cell(t)| =
|∂�cell(0)| requires only one Lagrange multiplier. ∇ = ∇x is
the gradient with respect to the laboratory coordinate system
and ∇� = P · ∇ is the surface gradient, where P is the sur-
face projection operator. Here, we have assumed that σcytosol

is given by the Stokes stress tensor, i.e.

σcytosol = η
(
∇v + (∇v)T

)
,

and Ftweezers is the force density due to the optical tweezers,
i.e.

Ftweezers = χtweezers ftweezers

with the characteristic function of the microbeads χtweezers

and the constant force density due to optical tweezers
ftweezers. The boundary force density Fmembrane describes
the resistance to stretching and bending of the membrane
and will be discussed in detail below. Relation ∇ · v = 0
in �cell(t) × [0, T ) ensures incompressibility of the volume
(cytosol) and |∂�cell(t)| = |∂�cell(0)| ensures incompress-
ibility of the membrane.

So far we have not specified the force density Fmembrane

due to surface mechanics. Using a variational approach we
can relate the energies derived in Sect. 3 with correspond-
ing forces, i.e. forces are given by the steepest decent of the

L2-gradient of the free energy. Since this approach corre-
sponds to the derivation of the Euler–Lagrange equations,
stationary states of Model 2 are minimisers of the continuum
version of Model 1, as derived in Sect. 3.

Considering static microscopic (Sect. 2) and macroscopic
(Sect. 3) descriptions of RBCs in terms of energy functionals,
the energies corresponding to bending and in-plane mechan-
ics are not coupled. Therefore, also the corresponding forces
are not coupled and we can split up Fmembrane into two terms:

Fmembrane = T + N,

where N is the force due to resistance to bending, and T the
force due to in-plane stresses. Both membrane forces N and
T are determined by the steepest decent of the L2- gradient
of the corresponding membrane energies.

4.1 Resistance to in-plane deformations: T

The energy corresponding to the resistance to in-plane defor-
mations is given by (15) with the initial shape �X of the
membrane. Let us consider small variations Xε = X + εφ,
where φ is an arbitrary test function which is infinitely often
differentiable, i.e. φ ∈ C∞(�; R

3). Using Jacobi’s formula,
i.e. ∂

∂ε
J� = J�tr((F�)−1 · ∂

∂ε
F�) and d

dε
F�|ε=0 = ∇�

X φ =(∇�φ
) · F� , we find

d

dε
Fin-plane

∣∣∣∣
ε=0

=
∫

�X

⎡
⎣1

2

∑

i=1,...,6

Ṽ ′
WLC(|ξ1|2)ξ̂i · (

(∇�φ)

+ (∇�φ)T ) · ξ̂i − 2Cq J�q−1

(J�q + η)2
J�tr(∇�φ)

]
dµX ,

where ξ̂i = F� · ξi is the vector of the i th link after the defor-

mation F� . Using
∫
�

T ·φdµ=
〈
F ′

in-plane,φ
〉
= d

dε
Fin-plane|ε=0

with force density T yields after integration by parts:

T = ∇� · τ

with the so-called surface stress tensor

τ = 1

2J�

∑

i=1,...,6

1

Li

∂ ṼWLC(Li )

∂Li
ξ̂i ⊗ ξ̂i − 2q

C

J�q+1 1. (18)

Boundary terms do not need to be considered since �X , and
accordingly �, is a closed surface.

The stress tensor τ defined above generally reflects the
hexagonal symmetry of the underlying network. Consider-
ing the case p = 2 or working with averaged energies F̄ =∫ 2π

0 Fdφ with respect to the symmetry axis (c.f. Sect. 3.4)
the considered energies are isotropic and thus can be char-
acterised by the invariants of the surface deformation tensor
F� alone. The variational approach yields

τ = 2

1 + I1

∂�(I1, I2)

∂ I2
F� · F�T + ∂�(I1, I2)

∂ I1
P.
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A multiscale model for red blood cell mechanics 11

A direct relation of macroscopic moduli with microscopic
moduli is given further below in Sect. 4.3.

4.2 Resistance to bending: N

Normal forces N are uniquely due to the resistance of the
membrane to bending. Let the bending energy of the mem-
brane be given by the Canham–Helfrich energy. In the fol-
lowing, we consider small variations Xε = X + εnφ, where
n is the outer unit normal of the surface � and φ ∈ C∞(�; R)

is an arbitrary test function. It is sufficient to consider only
variations εnφ, since a variation in the normal direction com-
pletely describes the evolution of the interface.

Following Willmore (1993) (Attention, Willmore uses a
different definition of mean curvature, i.e. HWillmore =
−H/2), the variation of the mean curvature is given by

d

dε
Hε

∣∣∣∣
ε=0

= −��φ − φ|∇�n|2

= −��φ − φ(H2 − 2K )

and the variation of the integration measure is given by

d

dε
dµε

∣∣∣∣
ε=0

= φHdµ.

Here,�� is the Laplace–Beltrami operator (surface Laplace).
Hence, we find

d

dε

κ

2

∫

�ε

(Hε − H0)
2dµε

∣∣∣∣
ε=0

= − κ

2

∫

�

[2(H − H0)(�
�φ + φ(H2 − 2K ))

− (H − H0)
2φH ]dµ.

Under the assumption that N is determined by the steepest
decent of FCanham–Helfrich, defined in (7), i.e.

∫
�

N ·(nφ)dµ =
−

〈
F ′

bending, φ
〉
= − d

dε
κ
2

∫
�ε

(Hε − H0)
2dµε|ε=0, we find

N = κ

(
�� H + (H − H0)(H2 − 2K ) − 1

2
(H − H0)

2 H

)
n,

where we have used the product rule and Green’s theorem for
surfaces. Setting the material speed v proportional to N and
considering the case H0 = 0, the so-called Willmore flow is
obtained (Willmore 1993).

4.3 Linear elasticity

The mechanical properties of the membrane within the con-
tinuum mechanical Model 2 are determined by the under-
lying continuum energies, which are directly related to the
properties the discrete network. Thus we can relate the mod-
ulus of rigidity µ and modulus hydrostatic compression K ,
used in linear elasticity, directly with the properties of the

Table 1 Parameters proposed of the worm-like chain model VWLC (Li
et al. 2005)

L = 75.00 nm Lmax = 237.75 nm

p = 7.50 nm T = 300.00 K

discrete atomistic model. Considering small deformations
and restricting ourselves to linear elasticity, i.e. performing
a Taylor extension considering only linear terms, we recover
from (18)

µ = 3V ′
WLC(1) + 3

2
V ′′

WLC(1),

K = 3(1 + η + q − qη)

1 + η
V ′

WLC(1) + 3V ′′
WLC(1),

respectively

µ =
√

3kB T (−16L3 + 51L2Lmax−57LL2
max + 24L3

max)

16(pLmax(−L + Lmax)3 ,

K = 3(1 + η + q − qη)

1 + η

√
3kB T (4L2 − 9LLmax + 6L2

max

12pLmax(−L + Lmax)2

+
√

3kB T L(−L + 3Lmax)

8p(−L + Lmax)3 .

Postulated parameters of Li et al. (2005) for the worm-like
chain model VWLC are summarised in Table 1. Using further
kB = 1.38 × 10−23 J

K , choosing q = 1 and η = 0.005, we
find

µ = 8.3 × 10−6 N

m
,

K = 16.6 × 10−6 N

m
,

which agrees with experimental results (Mohandas and Evans
1994; Lenormand et al. 2001).

5 Simulations

In Model 2, the bulk mechanics are given by the incom-
pressible Navier–Stokes equation. These are second-order
equations which are quite well studied from an analytical as
well as numerical point of view. The tangential component
of the surface mechanics is a typical example of a hyper-
elastic material. It is also a second-order equation. On the
other hand, the normal mechanics of the lipid bilayer involve
fourth-order derivatives and the structure is nearly identical
to the so-called Willmore flow as discussed above. The cou-
pling of the different models, especially the coupling of sur-
face (2D models on a hypersurface) with bulk mechanics (3D
models), makes analytical and computational investigations
of Model 2 quite challenging. Here, we restrict ourselves to an
investigation of the fluid(3D)-structure(2D)-interaction from
a numerical point of view.
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12 D. Hartmann

Since we are only interested in stationary shapes, we sim-
plify Model 2 further by considering stationary Stokes flow
instead of the full Navier–Stokes equations. However, an
approach considering the full Navier–Stokes equations is as
well as feasible. We would like to work with a discretisation
via the standard Galerkin procedure, i.e. using the same type
of ansatz functions for all variables. Thus we need to con-
sider a stabilised Stokes approach guaranteeing the Babuska–
Brezzi condition (Rannacher 2006):

0 = ∇ · σcytosol in �cell(t) × [0, T ),

0 = ∇ · (v + εstab,1∇ p) in �cell(t) × [0, T )
(19)

with an additional natural boundary condition for p, i.e.

n · ∇ p = 0 on ∂�cell(t) × [0, T ),

where εstab,1 is the stabilisation parameter (typically

εstab,1 ≈ δx2

η
with spatial discretisation size δx ). Generally,

the solutions depend only weakly on the exact value of εstab,1.
The global pressure qsurf. is realised via the Chorin–Uzawa
scheme (Rannacher 2006), i.e. through the introduction of
artificial compressibility:

εstab,2
dqsurf

dt
= |∂�cell(0)| − |∂�cell(t)| for [0, T ), (20)

where εstab,2 is again a small constant.

5.1 Weak formulation and discretisation

With respect to the finite element method, appropriate weak
formulations need to be derived. Apart from the bending
forces N of the membrane mechanics the derivation is
straightforward. A derivation of an appropriate weak for-
mulation for the Willmore flow can be found in Rusu (2005).
Slight modifications of the approach yield a weak formula-
tion of the membrane mechanics considered here (Hartmann
2007).

The weak formulation of model (2) with stabilisations (19)
and (20) is given by:

∫

�(t)

φ
du
dt

dµ =
∫

�(t)

φvdµ,

0 =
∫

�(t)

σcytosol · ∇φdµ,

0 =
∫

�(t)

φ∇ · v − εstab,1∇ p · ∇φdµ,

and
∫

∂�(t)

φ�(σcytosol + pout1) · ndµ = −
∫

∂�(t)

τ · (∇�φ�)dµ

− κ

∫

∂�(t)

1

2
|Y |2(∇� x) · (∇�φ�) − (∇�Y) · (∇�φ�)

+ 2n ⊗ n · (∇�Y) · (∇�φ�)dµ +
∫

∂�(t)

φ� Ftweezersdµ,

εstab,2
dqsurf

dt
= |∂�cell(0)| − |∂�cell(t)|,

∫

∂�(t)

φ�Ydµ =
∫

∂�(t)

(∇� x) · (∇�φ�) − φH0ndµ,

where φ ∈ C∞
0 (�(t); R) and φ� ∈ C∞(∂�(t); R) are

arbitrary test functions.
The strong and weak formulations of the surface evolu-

tion given above are all based on the Eulerian description.
A Lagrangian description is, however, more appropriate with
respect to an implementation using standard finite element
packages. The weak formulation of Model 2 given above
has been transformed accordingly to a Lagrangian (fixed)
coordinate system (for more details see Hartmann (2007))
and implemented using the finite element library Gascoig-
ne (Becker et al. 2009).

The software package Gascoigne does not allow the dif-
ferentiation between surface and bulk variables using one
implicitly time-stepping scheme for membrane and bulk pro-
cesses. (Since membrane mechanics involve spatial deriva-
tives of fourth order, explicit time-stepping schemes would
imply very small time steps; Clarenz et al. 2004). Hence,
variables defined only on the boundary have to be extended
appropriately. Here, we have chosen an extension by
Laplace’s equation. The surface speed v� and the bulk speed
v are considered as one variable, which allows a direct
implicit coupling. Since the weak formulation of Model 2
involves only first-order derivatives, we use tri-linear finite
elements in the bulk part and accordingly bi-linear finite ele-
ments on the surface. The evolution in time is discretised
with a fractional-theta scheme. Using Newton’s method, the
resulting non-linear systems are solved. Corresponding lin-
earisations are solved with a GMRES preconditioner and a
multigrid method. The scheme has been thoroughly tested
and shows a reasonable order of convergence larger than
1.5, which is in good agreement with the results for Willmore
flows reported by Clarenz et al. (2004).

Taking advantage of reflection symmetries with respect to
the coordinate planes, we can reduce the computational effort
by considering only one-eighth of the object. Moreover, the
finite element toolkit Gascoigne offers the possibility of
local mesh refinement, which allows a further reduction of
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Fig. 4 Typical discretisations:
a initial discretisation;
b discretisation after grid
refinement (2,048 surface
quadrilaterals)

computational effort. Since the dynamics of Model 2 are
driven by membrane mechanics, we have chosen an adap-
tive discretisation refined in the vicinity of the surface (see
Fig. 4).

5.2 Initial shapes of RBCs

A quantitative characterisation of the rest shape of RBCs
has been given by Evans and Skalak (1980), c.f. formula
(1), and could be used as an initial condition. On the other
hand it has been postulated by Li et al. (2005) that the rest
shape is an energy minimiser of the Canham–Helfrich energy
FCanham–Helfrich.

Independent of the chosen initial shape we follow (Li et al.
2005) and assume that the attachment of the microbead to the
RBC does not alter the initial shape of the RBC. This is of
course a quite crude assumption, but it should not influence
the results quantitatively on the order of experimental accu-
racy. Let the contact area of the microbead with respect to
the reference configuration be given by

∂�tweezers,0 = {x = (x, y, z)∈ ∂�cell,0 : x2 + z2≤R2
tweezers},

where Rtweezers = 1.3 µm. This corresponds to an area of
contact of approximately 6.7 µm2 per bead, i.e. the force due
to the two optical tweezers is applied to 10% of the surface
area as proposed by Li et al. (2005).

5.3 Simulation results

Here we use the same parameters of the microscopic model
as Li et al. (2005), summarised in Table 1, to which we would
like to compare our continuum approach. Other parameters of

Model 2 according to the literature are summarised in Table 2.
The spontaneous membrane curvature can be “guessed” only
roughly: According to Evans and Skalak (1980) the volume
of the RBC equals V = 1.57R3

0 = 94.10 µm3, which cor-
responds to a ball of radius R = 2.82 µm. We therefore
expect the spontaneous membrane curvature in the range
from H0 = 0 to H0 = 1

2.82 × 106 m−1.

5.3.1 Relaxation experiments

Li et al. (2005) have proposed that rest shapes of RBCs min-
imise the Canham–Helfrich energy (7), since the membrane-
bound cytoskeleton is constantly rearranging and thus allows
relaxation of any stresses on long time scales. The mini-
mal energy configuration of the Canham–Helfrich energy
depends solely on the volume/area ratio and the spontane-
ous curvature H0 (Seifert et al. 1991). The rest shape given
by formula (1) is based on an experimental characterisation
of RBCs by Evans and Skalak (1980). Hence, it might not
necessarily be a minimal energy configuration with respect
to the Canham–Helfrich energy.

Let us neglect the mechanics of the membrane-associ-
ated cytoskeleton for the moment. Simulations with an initial
shape given by formula (1) with R = 3.91 µm are shown in
Fig. 5. The shape has been allowed to relax over 3 s (104 time
steps), after which the velocity is virtually zero. Since the
shape has relaxed only slightly, we can conclude that the min-
imal energy configuration of the Canham–Helfrich energy
with H0 = 0.1×10−6 m−1 is indeed close to the experimen-
tally observed rest shapes. A variation of H0 within the range
0–0.2 × 10−6 m−1 does not change the results qualitatively.

Table 2 Experimentally
determined parameters Bending elasticity κ 2 × 10−19 J see Scheffer et al. (2001) and

Mohandas and Evans (1994)

Cytosol viscosity η 6.0cp = 6.0 × 10−3 Pa s see Pozrikidis (2003a)

Spont. membrane curvature H0 0 − 0.35 × 106 m−1 see text
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Fig. 5 Relaxation of the initial shape of a red blood cell given by
Evans and Skalak (1980), i.e. formula (1), with R = 3.91 µm. Here,
we have used an implicit Euler time stepping scheme with time step
size δt = 0.0003 s and parameters given in Table 2. a Shows the initial

shape given by formula (1). b, c Show the relaxed shape after 3 s. In b
the deformation in the radial direction and in c the deformation in the
z-direction is shown

5.3.2 Force experiments

Typical experiments consider microbeads subject to a
constant force. The objective of such force experiments is
to measure the longitudinal and transversal radii as a func-
tion of the applied stretching force (Hénon et al. 1999; Li
et al. 2005). Here, we consider the same experiments in sil-
ico using Model 2 with the initial shape determined above
(Sect. 5.3.1). The evolution of a RBC subject to a constant
force applied via optical tweezers is shown in Fig. 6. After
some time the RBC converges to a fixed shape. The elastic
energy stored in the membrane is relaxed and has reached

an energy minimum. The relaxed shape agrees qualitatively
with the discrete model of Li et al. (2005) as well as with the
shapes observed by Hénon et al. (1999).

The relation between applied forces and axial as well
as transversal diameters obtained from several simulations
(Fig. 7) agrees within experimental accuracies quantitatively
well with experimental results reported in the literature
(Hénon et al. 1999; Li et al. 2005). Especially, considering
experiments up to forces of 200 pN Model 2 based on a Taylor
expansion of the potential VWLC up to second order, i.e. p =
2, approximates the proposed microscopic model (Li et al.
2005) extremely well (with significantly less computational

Fig. 6 Evolution of a red blood
cell (Model 2). Parameters of the
model are summarised in
Tables 1 and 2. The results have
been obtained using an implicit
Euler scheme with time step size
δt = 1.0 × 10−3 s
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Fig. 7 Diameters of stretched red blood cell for different prescribed
forces, which have been determined using finite element simulations
of Model 2. Parameters of the model are summarised in Tables 1 and
2. Here we have used an implicit Euler scheme with time step size
δt = 0.06 s. For p > 2, the Model 2 is based on the averaging scheme
outlined in Appendix, i.e. the membrane is isotropic. The results are
compared with experimental results and simulations of the microscopic
model according to Li et al. (2005) (©2005 Biophysical Society)

effort). Only for forces larger than 200 pN the full non-linear
model would be necessary.

6 Discussion

In this article we have shown how concepts from �-conver-
gence, introduced for the derivation of continuum macro-
scopic models from atomistic interactions in crystal lattices
(Alicandro and Cicalese 2004), can be generalised to biome-
chanical problems. As a test case we have considered RBCs.
From a well-studied discrete microscopic model in terms of
energy functionals we have first derived a corresponding con-
tinuum energy functional for the membrane-bound cytoskel-
eton. Corresponding energy minimising shapes (observed
shapes) have been determined using a relaxation approach.
At the same time, an easily extendable continuum mechani-
cal model for RBCs has been derived.

Our multiscale model considers the membrane as a 2D
hypersurface, whose mechanical properties are determined
by the lipid bilayer and the membrane-bound spectrin net-
work. The latter explicitly includes molecular details inher-
ited by multiscale analysis. Only very few models consider
the mechanics of RBCs in a similar realistic setting. Often
the membrane is assumed to be a 3D solid with small but
finite thickness (Dao et al. 2003; Mills et al. 2004) or the
bending-resistance of the lipid bilayer is given by quite heu-
ristic models (Pozrikidis 2003a). The multiscale nature of
the continuum model derived in this work allows to benefit
from advantages of continuum models like efficient numeri-
cal schemes based on adaptive discretisation techniques (the

discretisation can be chosen independent of the microscopic
geometry) without neglecting important microscopic details.
All microscopic parameters can be directly related to mac-
roscopic parameters in a quantitative way.

Our approach required the assumption of a hexagonal
symmetry for the sake of a homogenisation formula. This
implies that in the general case the hexagonal symmetry
is reflected in the continuum mechanical equations, which
might not be realistic from a biological point of view. The
spectrin network shows only roughly hexagonal symmetry
(over 80% degree-6 vertexes). Further, it is not clear in which
direction the symmetry axis would be pointing as well as how
the hexagonal symmetry could be investigated form an exper-
imental point of view. Therefore, we have considered aver-
aged energies and stress tensors obliterating the hexagonal
symmetry. In the future less heuristic averaging approaches,
e.g. including stochasticity, should be considered.

Further, we had to introduce a small regularisation param-
eter η to guarantee boundness of steric interaction energies,
as well consider Taylor-expansions of pair-interaction ener-
gies, which otherwise could “explode” at finite interaction
lengths. These regularisations are necessary to follow the
rigorous approach of Alicandro and Cicalese (2004) proving
convergence of the microscopic model to the macroscopic
model. Disregarding these regularisations the approach is
only a formal one. It yields a macroscopic model based on a
microscopic model, but it cannot be guaranteed that minimis-
ers of the microscopic model indeed converge to minimisers
of the macroscopic model, which is non-trivial (Friesecke
and Theil 2002). Our approach should be generalised in the
future, such that these regularisations could be lifted.

The derived model has been challenged by a quantita-
tive comparison with a typical biophysical experiment: an
optical tweezers experiment. To perform an optical tweezers
experiment in silico, we have developed an appropriate finite
element scheme, which can handle mechanics on a hyper-
surface and bulk mechanics including their coupling within
one scheme. Simulation results show a good qualitative and
quantitative agreement with experiments (Hénon et al. 1999)
and simulations of the microscopic model (Li et al. 2005) (see
Fig. 7). The developed numerical approach based on the tool-
box Gascoigne (Becker et al. 2009) is much more flexible
than many schemes available, e.g. boundary element methods
(Pozrikidis 2003a). It can be easily extended to more compli-
cated models, e.g. models considering interactions between
mechanics and biochemistry in the cytosol and membrane at
the same time, making it a powerful tool for the theoretical
investigation of the mechanobiology of single cells.

Since we have found a good qualitative and quantitative
agreement between microscopic simulations and the derived
macroscopic continuum model, our approach could be used
for parameter estimation in the near future. Parameter esti-
mation together with the multiscale approach, allowing a

123



16 D. Hartmann

significant speedup of simulations, would enable us to esti-
mate microscopic mechanical parameters through upscaling.
Thus the microscopic model of spectrin relying on the worm-
like chain model originally introduced for DNA could be
improved. Hence the experimental results could be better
approximated by the microscopic model and therefore also by
the derived macroscopic continuum model, which is approx-
imating the microscopic one.

The extension of mathematical multiscale techniques and
the development of a highly flexible computational frame-
work for single cell mechanics offers the possibility to tackle
many unsolved questions in the field of mechanobiology in
the near future. We believe that these techniques will have
a significant impact on modelling in mechanobiology, as
underlined by the test cases of RBC mechanics.
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Appendix: Interaction lengths and invariants

The tensor (F�)T · F� considered in Sect. 3.4 is symmetric
and positive definite, hence it can be diagonalised:

(F�)T · F� = �T · � · �

with

� = diag

(
1 + I2+

√
I 2
2 +4I2−4I 2

1 −8I1

2 , 1 + I2−
√

I 2
2 +4I2−4I 2

1 −8I1

2 , 0

)

and an appropriate transformation �, i.e. a rotation with an
angle φ. I1 and I2 are the invariants given in (17). Hence, we
obtain

ξ T
i · FT · F · ξi − 1 = (� · ξi )

T · (� − 1) · (� · ξi ),

and thus, c.f. Taylor expansion (16):
∑

i=1,...,6

(
ξT

i · FT · F · ξi − 1
)

= 3I2,

∑

i=1,...,6

(
ξT

i · FT · F · ξi − 1
)2 = 3

4
(4I2 − 8I1 + 3I 2

2 − 4I 2
1 ),

∑

i=1,...,6

(
ξT

i · FT · F · ξi − 1
)3 = 3

8
I2(12I2 + 5I 2

2 − 12I 2
1 − 24I1)

+ 3

16
(I 2

2 + 4I2 − 4I 2
1 − 8I1)

3/2 cos(6φ),

i.e. the hexagonal structure of the network is reflected in the
terms (ξ T

i · FT · F · ξi − 1) j with j <= 2, since these terms
depend only on the invariants I1 and I2.

Since the direction of a symmetry axis is not distinguished,
we consider the following averaged and thus isotropic terms
for p > 2:

2π∫

0

∑

i=1,...,6

(
ξ T

i · FT · F · ξi − 1
)3

dφ

= 3

8
I2(12I2 + 5I 2

2 − 12I 2
1 − 24I1),

2π∫

0

∑

i=1,...,6

(
ξ T

i · FT · F · ξi − 1
)4

dφ

= 3

64
(192I 3

1 + 48I 4
1 − 240I 2

2 I1 − 120I 2
2 I 2

1 + 35I 4
2

+ 192I 2
1 + 48I 2

2 − 192I2 I1 − 96I2 I 2
1 + 120I 3

2 ).
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