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Abstract The lack of practicable nonlinear elastic contact
models frequently compels the inappropriate use of Hertzian
models in analyzing indentation data and likely contributes to
inconsistencies associated with the results of biological ato-
mic force microscopy measurements. We derived and valida-
ted with the aid of the finite element method force-indentation
relations based on a number of hyperelastic strain energy
functions. The models were applied to existing data from
indentation, using microspheres as indenters, of synthetic
rubber-like gels, native mouse cartilage tissue, and engi-
neered cartilage. For the biological tissues, the Fung and
single-term Ogden models achieved the best fits of the data
while all tested hyperelastic models produced good fits for
the synthetic gels. The Hertz model proved to be acceptable
for the synthetic gels at small deformations (strain < 0.05
for the samples tested), but not for the biological tissues.
Although this finding supports the generally accepted view
that many soft materials can be assumed to be linear elastic at
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small deformations, the nonlinear models facilitate analysis
of intrinsically nonlinear tissues and large-strain indentation
behavior.
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1 Introduction

In numerical simulations or uniaxial and biaxial tests, the
mechanical response of polymer gels and biological tissues
are often described successfully using linear elasticity theory
at small strains and rubber elasticity theory at both small
and large strains. For polymer gels subjected to conventional
mechanical modes of loading (e.g., uniaxial and equibiaxial
tests), various models have been developed and applied—see,
e.g., review by Horkay and McKenna (2007). For measure-
ment of elasticity at micron and submicron length scales, the
prevalence of atomic force microscopy in materials research
has established micro- and nanoindentation as two of the
leading techniques. In particular, the unique capabilities of
the AFM (e.g., concurrently imaging and probing samples
of minute size submerged in liquid) have made it an indis-
pensable tool in the study of biological materials. Howe-
ver, despite advancements in instrumentation and analysis
methods, its application to soft matter is still complicated
by tip-sample interactions and the lack of practical nonlinear
contact mechanics models. It is common practice to rely on
models based on the classical Hertz theory, with its assump-
tions of linear elasticity and infinitesimal strains, to analyze
force curves. Consequently, errors are frequently incurred by
applying these representations beyond their validity range or
at the small-strain range where the indentation process is
most prone to noise.
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346 D. C. Lin et al.

Lin et al. (2007b) had previously developed an approxi-
mate relation for the spherical indentation of rubber-like,
Neo-Hookean and Mooney-Rivlin materials. Assuming that
the contact radius varies in the Hertzian manner with indenta-
tion depth, a force–indentation relationship was formulated
and validated for the AFM microindentation of poly(vinyl
alcohol) (PVA) gels. In this work, we refine the approach and
extend it to other non-Hookean constitutive laws including
the two-term reduced polynomial (Mooney 1940), single-
term Ogden (1972), Fung (Fung 1967; Fung et al. 1979),
Gaylord and Douglas (1987, 1990), Tschoegl–Gurer (Gurer
and Tschoegl 1985; Tschoegl and Gurer 1985), and van der
Waals (Kilian 1985) models. We begin by introducing the
various hyperelastic strain-energy potential functions and
describing the theoretical framework for deriving contact
mechanics equations based upon them. Next, the use of finite
element analysis (FEA) to validate and further improve the
closed-form force–indentation relationships is discussed. We
then reanalyze literature data obtained from the large-strain
AFM indentation of swollen PVA gels and cartilage samples
in terms of each model. Strategies developed previously (Lin
et al. 2007a) were utilized in the automated analysis and
evaluation of the performance of the different theoretical
approaches. The models found to be most suitable for rubber-
like gels and biological extracellular matrices and cells are
identified. We propose the use of these models when analy-
zing data from the AFM indentation of soft materials at large
strains.

2 Theory

2.1 Contact mechanics

Hertz’s seminal treatise on the contact of ellipsoidal bodies
remains the analytical basis for the majority of indentation
experiments. In spherical indentation, the Hertzian relation-
ship between the applied force (F) and the resulting inden-
tation (δ) is (Johnson 1985)

F = 4E R1/2δ3/2

3(1 − ν2)
(1)

where E and ν are Young’s modulus and Poisson’s ratio of
the indented material, respectively, and R is the radius of the
rigid indenter. The contact radius (a) varies with δ according
to

a = R1/2δ1/2 (2)

Because the Hertz formalism is based on the theory of linear
elasticity, it must be possible to define measures of stress
and strain that satisfy a Hookean relationship. The concept
of an analogy between uniaxial compression and spherical
indentation was first explored by Tabor (1948, 1951) for

the elastic-plastic indentation of metals and has since been
extended to other classes of materials (Briscoe et al. 1998;
Fischer-Cripps and Lawn 1996; Hochstetter et al. 2003; Iwa-
shita et al. 2001; Swain and Hagan 1976). Widely accepted
definitions of indentation stress (or mean pressure, σ ∗) and
strain (ε∗) are given by

σ ∗ = F

πa2

ε∗ = 0.2
a

R

(3)

The strain prefactor of 0.2 was empirically determined by
Tabor (1951) and has since been verified by other investiga-
tors (Field and Swain 1995; Herbert et al. 2001; Taljat et al.
1998). Thus defined, indentation stress and strain are similar
to their counterparts in uniaxial loading. In fact, indentation
is essentially a compressive process since only the edge of the
contact region experiences tension (Johnson 1985). Dividing
stress by strain and substituting Eqs. (1) and (2) for Hertzian
indentation, the following linear (i.e., Hookean) relationship
is obtained:

σ ∗ = 20E

3π(1 − ν2)
ε∗ (4)

From the parallels between indentation and uniaxial com-
pression, it stands to reason that non-Hookean, uniaxial
stress–strain relations can be extended to non-Hertzian
contact. Table 1 lists the hyperelastic strain energy functions
and corresponding uniaxial stress (σ )–stretch (λ) equations
used in this study and described in more detail in the next
section. By substituting the definitions of σ ∗ and ε∗ given in
Eq. (3) for stress and strain, respectively, the uniaxial rela-
tions are transformed into contact equations in terms of force
and contact radius. In most instrumented indentation tests,
however, the contact radius is not a measurable quantity.
Instead, the variation of indentation depth with increasing
magnitude of the applied force is monitored directly or indi-
rectly; an expression such as Eq. (2) relating a and δ is the-
refore necessary. Assuming material incompressibility and
that the contact radius varies with indentation depth accor-
ding to Eq. (2), Lin et al. applied an alternative definition
of strain, ε∗ = a/R (Briscoe et al. 1998; Hochstetter et al.
2003; Iwashita et al. 2001; Mesarovic and Fleck 1999; Swain
and Hagan 1976), to the Mooney-Rivlin Lagrangian uniaxial
engineering stress–stretch equation to arrive at the contact
relation (Lin et al. 2007b)

F = π B1

(
a5 − 3Ra4 + 3R2a3

Ra2 − 2R2a + R3

)

+π B2

(
a5 − 3Ra4 + 3R2a3

−a3 + 3Ra2 − 3R2a + R3

)
(5)
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Spherical indentation of soft matter beyond the Hertzian regime 347

Table 1 Hyperelastic strain energy functions and corresponding uniaxial stress–strain equations

Name Strain energy potential (W) Uniaxial stress (σ)−stretch (λ)
equation Initial shear modulus (G0)

Mooney-Rivlin, Neo-Hookean (Mooney 1940; Treloar 1975) W = C1 (I1 − 3) + C2 (I2 − 3) ; C2 = 0 for Neo-Hookean model

σ = 2C1
(
λ − λ−2

) + 2C2
(
1 − λ−3

)
G0 = 2 (C1 + C2) ; Fitting parameters: C1, C2

Reduced polynomial (Mooney 1940) W = ∑N
i=1 Ci (I1 − 3)i

σ = 2
(
λ − λ−2

) ∑N
i=1 iCi

(
λ2 + 2λ−1 − 3

)i−1

G0 = 2C1; Fitting parameters: Ci

Ogden (1972) W = ∑N
i=1

2Ci
α2

i

(
λ

αi
x + λ

αi
y + λ

αi
z − 3

)
σ = ∑N

i=1
2Ci
αi

(
λαi −1 − λ−αi /2−1

)
G0 = ∑N

i=1 Ci ; Fitting parameters: Ci , αi

Fung (Fung 1967; Fung et al. 1979) W = C
2b {exp [b (I1 − 3)] − 1}

σ = C
(
λ − λ−2

)
exp [b (I1 − 3)]

G0 = C; Fitting parameters: C, b

Van der Waals (Kilian) (Kilian 1985) W = C
{
− (I1m − 3)

[
ln

(
1 −

√
I1−3

I1m−3

)
+

√
I1−3

I1m−3

]
− 2

3 b
(

I1−3
2

)3/2
}

σ = C
(
λ − λ−2

) [(
1 −

√
λ2+2λ−1−3
λ2

m+2λ−1
m −3

)−1

− b
√

λ2+2λ−1−3
2

]

G0 = C; Fitting parameters: C, b

λm is the limiting tensile stretch; I1m is the corresponding first invariant

Gaylord–Douglas (1987,1990), Tschoegl–Gurer (Gurer and Tschoegl W = (C1/2) (I1 − 3) + (
2C2/b2

) (
λb

x + λb
y + λb

z − 3
)

1985; Tschoegl and Gurer 1985) σ = C1
(
λ − λ−2

) + (2C2/b)
[
λb − λ−b/2

]
G0 = C1 + C2; Fitting parameters: C1, C2

Gaylord–Douglas: b = 1 Tschoegl–Gurer: b = 0.34

Assuming material incompressibility, in uniaxial loading in the x-direction, I1: first strain invariant = λ2
x + λ2

y + λ2
z ; I2: second invariant =

λ−2
x + λ−2

y + λ−2
z , σ = λ (∂W/∂λ) , λx = λ, λy = λz = λ−1/2 and strain ε = λ − 1

where B1 and B2 are fitting parameters related by

B1 + B2 = 4E0

9π(1 − ν2)
(6)

in which E0 denotes the initial or infinitesimal Young’s modu-
lus. Here, we apply Tabor’s definition of strain given in equa-
tions (3) and implement the following approach:

1. The general form of the uniaxial stress–stretch relations
shown in Table 1 can be expressed as

σ = f (Ci , λ); i = 1, 2, 3, . . . (7)

where the stress σ is some function f of the fitting coef-
ficients Ci and the stretch ratio λ, which is related to
uniaxial strain ε by λ = 1 + ε.

2. It is necessary at this point to resolve differences in
sign convention between the standard engineering nota-
tion employed by Eq. (7) and that commonly used in
indentation. In engineering notation, stresses and strains
are positive in tension and negative in compression.

However, in general force-indentation equations, both
force and indentation are taken to be positive. As a result,
both σ* and ε* are also positive despite being essentially
compressive in nature. In transforming equation (7) into
a relation between σ* and ε*, we therefore redefine the
stretch ratio as

λ = 1 − ε∗ (8)

and replace σ with −σ*. Equation (7) becomes

σ ∗ = − f (Bi , 1 − ε∗) (9)

where Ci has been replaced with Bi .
3. Dividing Eq. (9) by ε*, we obtain

σ ∗

ε∗ = − f (Bi , 1 − ε∗)
ε∗ (10)

4. As its name implies, the initial or infinitesimal
shear modulus G0 (equal to 1/3 of the initial Young’s
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348 D. C. Lin et al.

modulus E0 for incompressible materials) found in
Table 1 is equivalent to the modulus in the linear elastic
regime (i.e., as ε → 0 or λ → 1). Hence, if we take the
limit as ε* → 0 in Eq. (10), the left-hand side is equal
to the proportionality constant in Eq. (4) while the right-
hand side tends toward some value Biβi , where βi are
constants:

20E0

3π(1 − ν2)
= Biβi (11)

5. Applying the definitions of σ* and ε* given by Eqs. (3)
to Eq. (9) yields

F

πa2 = − f (Bi , 1 − 0.2a/R) (12)

6. A relationship between a and the indentation δ is neces-
sary to complete the derivation. Equation (2) applies in
the case of Hertzian contact, but it is not known whether
it applies to hyperelastic contact. For the general case,
we search for a function of the form

a = Rx−δyδz (13)

where x, y, and z are constants. As will be shown, the
finite element method is a powerful tool for determining
this relationship.

Using the above procedure, the resulting force-contact
radius relations corresponding to the strain energy functions
from Table 1 are listed in Table 2. Note the similarity
between the Mooney-Rivlin equation (5) and that shown in
Table 2.

2.2 Hyperelastic models

Following the pioneering works of Treloar, Rivlin, and
Mooney that resulted in the Neo-Hookean, Mooney-Rivlin,
and polynomial mathematical descriptions of material beha-
vior, a number of other hyperelastic models have been deve-
loped. Each is based on a strain energy density function that
relates the energy stored in a material to the deformation, and
can be categorized as being molecular or phenomenological
in nature according to the basis for its formulation (Aklonis
and MacKnight 1983; Treloar 1975). In this study, we com-
pare a subset of models representing different approaches.

Molecular models are generally premised on the statistical
thermodynamics of the underlying macromolecular structure
of the network. These models consider the discrete struc-
ture of the material by focusing on a characteristic unit cell
with a certain number of constituent chains. The chains are
randomly oriented and connected at junction points, which

in networks are the covalent cross-links between the mole-
cules. The Neo-Hookean form is the most well known and
mathematically simple of all the hyperelastic models.
Treloar (1947) presented a summary of its derivation, which
assumes the network to be consisted of freely jointed chains
that obey Gaussian statistics. Non-Gaussian statistics were
applied subsequently to account for the finite extensibility
of the polymer molecules. Treloar (1975) derived the
free energy of chains using Langevin statistics, which
incorporates the finite extensibility effects of network defor-
mation. A historical overview of the theoretical framework
established by Flory, James, Guth, Kuhn, Mark, Treloar,
Wall, and others can be found in texts that cover the sub-
ject (Aklonis and MacKnight 1983; Sperling 2001; Treloar
1975). Although the Neo-Hookean stored energy function
appears to be a special case of the Mooney-Rivlin equation,
the latter was derived from different principles.

Efforts to include a more rigorous molecular represen-
tation of polymer gels have yielded many functions more
advanced than the Neo-Hookean form. Concepts from the
field of rheology have been adopted to develop new models
based on the force equilibration principle of viscoelastic
deformation. Different models (tube models, constraint junc-
tion fluctuation model, slip-link model, etc.) employ different
treatments of entanglement effects (Horkay and McKenna
2007). Here we consider the Gaylord–Douglas tube model
(1987,1990), which incorporates contributions to the net-
work free energy change of deformation from the chain
connectivity of the polymer segments and the restrictions on
chain configurations due to entanglements. As pointed out by
Gaylord and Douglas, their model is consistent with the conti-
nuum mechanics approach used in deriving the Tschoegl–
Gurer equation. Other molecular formulations include the
Arruda–Boyce non-Gaussian, eight-chain model (Arruda and
Boyce 1993).

Deformations of soft tissues as well as synthetic poly-
mers involve complex mechanisms that are not fully unders-
tood. On the basis of macroscopic experimental observations
“phenomenological” models have been developed with the
objective of describing the elastic response of the materials.
These models are generally based on continuum theories.
Mooney (1940) first proposed that a general strain energy
function could be obtained by an infinite series expansion in
terms of the first and second strain invariants. The polynomial
and reduced polynomial models are therefore generalizations
of a number of other functions. The Mooney-Rivlin model
was introduced as one specific case of the polynomial form
(Mooney 1940); it was also studied by Rivlin in a series of
papers on large elastic deformations (Rivlin and Saunders
1951) and is widely used in fitting experimental data. Howe-
ver, an important limitation of the Mooney-Rivlin model is
that it is not able to predict large strain behavior (Han et al.
1999). Moreover, the Mooney-Rivlin constants determined
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Spherical indentation of soft matter beyond the Hertzian regime 349

Table 2 Force-indentation relations for the hyperelastic strain energy functions

Name Force (F)−indentation (δ) equations

Mooney-Rivlin, Neo-Hookean F = B1π
(

a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

)
+ B2π

(
a5−15Ra4+75R2a3

−a3+15Ra2−75R2a+125R3

)
B1 + B2 = 20E0

9π(1−ν2)
; B2 = 0 for Neo-Hookean model

2-term reduced polynomial F = B1π
(

a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

)
+ B2π

(
a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

) (
a3−15Ra2

25R2a−125R3

)
B1 = 20E0

9π(1−ν2)

Ogden F = Bπa2

α

[(
1 − 0.2 a

R

)−α/2−1 − (
1 − 0.2 a

R

)α−1
]

B = 40E0
9π(1−ν2)

Fung F = Bπ
(

a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

)
exp

[
b

(
a3−15Ra2

25R2a−125R3

)]
B = 20E0

9π(1−ν2)

Van der Waals (Kilian)
F = Bπ

(
a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

) [(
1 −

√
a3−15Ra2

25R2a−125R3 · εm−1
ε3

m−3ε2
m

)−1

− b
√

a3−15Ra2

50R2a−250R3

]
B = 20E0

9π(1−ν2)
;εm is the limiting tensile strain

Gaylord–Douglas, Tschoegl–Gurer F = B1π
(

a5−15Ra4+75R2a3

5Ra2−50R2a+125R3

)
+ B2πa2

b

[(
1 − 0.2 a

R

)−b/2−1 − (
1 − 0.2 a

R

)b−1
]

2B1 + B2 = 40E0
9π(1−ν2)

Gaylord–Douglas: b = 1 Tschoegl–Gurer: b = 0.34

E0 is the initial Young’s modulus and R is the radius of the indenter
a is the contact radius and is a function of indentation, e.g., Eq. (2)

from one deformation type have limited value for predicting
behavior in other deformation types. It should be noted that
the Neo-Hookean model has similar limitations.

Although biological tissues and synthetic polymer net-
works exhibit several common features (in both cases the pri-
mary building blocks are long polymer chains held together
by chemical or physical cross-links, van der Waals bonds,
etc.), in general, biopolymers are much stiffer than synthe-
tic polymers. One of the most successful phenomenological
models that has been applied to soft tissues is that of Fung
(Fung 1967; Fung et al. 1979). It describes the strain stif-
fening behavior as an exponential relation in terms of the
first strain invariant. Another widely used constitutive model
developed by Ogden (1972) also predicts large strain beha-
vior well. The Ogden general strain energy formulation is
a linear combination of an algebraic power dependence of
strain invariants. Like the polynomial models, fitting of expe-
rimental data is usually performed by retaining up to several
terms in the summation. The Tschoegl–Gurer model (Gurer
and Tschoegl 1985; Tschoegl and Gurer 1985) combines the
Neo-Hookean strain energy function with one based on alge-
braic power dependence similar to the single-term Ogden
function (Blatz et al. 1974).

Several attempts were made to combine molecular and
phenomenological approaches by developing so-called
“hybrid” models. We mention the van der Waals strain energy

function proposed by Kilian (1985) that accounts for finite
chain extensibility and draws on the analogy between the
phenomenological van der Waals equation of state for ideal
gases and the equation of state of rubber elasticity. In the
Gent model (1996), the strain energy density is a logarithmic
function of the first strain invariant and involves two material
parameters: the shear modulus and a constant defined by the
limiting chain extensibility.

3 Materials and methods

3.1 Finite element modeling

The indentation was simulated as contact between a rigid
sphere (R = 5 mm) and an elastic slab (1 mm diameter,
0.25 mm thick) in an axisymmetric model using a commercial
FEA package (Abaqus, Dassault Systèmes). Models were
executed for either 1mm (small displacement) or 5mm (large
displacement) of indentation in 250 ms. Although no vis-
coelastic effects were assumed, this displacement rate was
chosen to be comparable to that from the AFM experiments
(see below). The mesh size was graded to be more refined in
the vicinity of the sphere and coarse at the model extremes
(see Fig. 1). The bottom and side of the slab were fixed in
space, and both the rigid sphere and axis of symmetry for
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Fig. 1 Finite element displacement magnitude map at the maximum
displacement of 5 mm. The radius of the sphere is also 5 mm. The grada-
tion of mesh size and the point at which the contact radius is measured
are clearly seen

the slab were only permitted to move in the vertical direc-
tion. Contact between the sphere and slab was assumed to
be frictionless. Three material models were simulated, each
with an effective shear modulus of 10.2 kPa and Poisson’s
ratio of 0.499: a linear elastic model (properties as above),
a Mooney-Rivlin hyperelastic model (C1 = 4.702 kPa, and
C2 = 0.47 kPa), and an Ogden hyperelastic model (G0 =
10.2 kPa, α = 0.81). From the simulations, the relationship
between contact radius and indentation depth was extracted.

3.2 Synthetic gels

We cast PVA gel cylinders (1 cm diameter, 1 cm height) and
films (>2 mm thick) for macroscopic displacement-
controlled compression and AFM nanoindentation, respecti-
vely (Lin et al. 2007a). The polymer concentration was ∼6%
by weight. Aqueous PVA solutions (MW 70,000–100,000)
were crosslinked with glutaraldehyde at pH ∼1.5, with an
appropriate amount of crosslinker (one unit per 100 monomer
units) to ensure that all polymer chains were attached to a
continuous network structure. All samples were equilibrated
with water prior to testing. The Young’s modulus of these
gels is approximately 20 kPa, which is within the range of
many biological soft tissues.

A bench top materials testing system (Stable Micro Sys-
tems, UK) was used to perform displacement-controlled com-
pression of the cylinders at a ramp speed of 1 mm/s. Volume
change and barreling were visually monitored and found to
be negligible during the test. The shear modulus was deter-
mined by fitting the engineering stress–stretch data with the
uniaxial hyperelastic equations given in Table 1. Assuming

material incompressibility, the infinitesimal Young’s modu-
lus was then calculated by multiplying the shear modulus by
a factor of three. Triplicate samples, each tested three times
to ascertain elasticity, were used.

3.3 Mouse articular cartilage

Sixty-micrometer thick cartilage samples were transversely
sectioned from the femoral heads of one-day old wild-type
mice using a microtome. Samples were lightly fixed in 3%
formaldehyde, rinsed thoroughly in PBS, and frozen in
embedding medium prior to sectioning. Slices were imme-
diately transferred to glass slides, where the embedding
medium was allowed to dry and bond the tissue samples
to the glass surface. The samples were then rinsed several
times with a buffer solution (10 mM HEPES, 2 mM CaCl2,
150 mM NaCl; pH 7.5) and equilibrated to room tempera-
ture. AFM imaging and microindentation were performed
with the samples submerged in the buffer.

3.4 Tissue-engineered cartilage

Preparation of the tissue-engineered constructs have been
detailed elsewhere (Horkay et al. 2005). In brief, chondro-
cytes harvested from chick embryo sternum were statically
seeded on PVA hydrogel disks and cultured under static
conditions for up to five weeks. The samples used for the
measurements presented here were removed from the sur-
face of the gel scaffold after 19 days, sectioned to a thickness
of approximately 1 mm, glued to a glass slide using a small
amount of cyanoacrylate adhesive, rinsed and immersed in
PBS, and frozen until testing.

3.5 AFM microindentation

For the synthetic gels, general-purpose silicon nitride tips
with 5.5 mm glass or 9.6 mm polystyrene beads attached
were used for the AFM measurements, performed using a
commercial AFM (Bioscope I with Nanoscope IV control-
ler, Veeco). Polystyrene beads of 5 and 9.6 mm were used
for the native and engineered cartilage, respectively. The
spring constants of the cantilevers were measured by the
thermal tune method while bead diameters were measured
from images acquired during the attachment process. A raster
scanning approach (“force-volume”) was applied to automa-
tically perform indentations over an area of ∼20×20 mm,
at a resolution of 16×16 (256 total indentations) for the
PVA gels and over an area of ∼30×30 mm at a resolution
of 32×32 (1,024 indentations) for the native cartilage. In all
measurements, a tip velocity of approximately 814 nm/s was
applied. For the mouse cartilage, surface topography images
were used to determine whether each measurement location
corresponded to the extracellular matrix or to the cells. In
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Spherical indentation of soft matter beyond the Hertzian regime 351

Fig. 2 FEA results for the Mooney-Rivlin and Ogden hyperelastic
materials. a Theoretical equation (2) and FEA-derived, Mooney-Rivlin
contact radii as functions of the indentation. Both contact radius and
indentation are normalized by the radius of the sphere. The least squares
fit of the large displacement FEA data was performed using Eq. (13);
the unit of length is nm. Note that since Eq. (13) has three fitting para-
meters, this solution is not unique. Data for the Ogden case is virtually
identical. b Comparison of Eq. (2) and FEA-derived, Mooney-Rivlin

contact radii at small displacement. For this case, differences between
Mooney-Rivlin, Ogden, and Hertz models were negligible. c Indenta-
tion stress–strain curves using the definitions in Eqs. (3). FEA and the
theoretical Ogden model from Table 2 both indicate significant nonli-
nearity. d Vertical strain field in the Ogden material at maximum inden-
tation (δ = R). The maximum compressive strain of ∼46% occurs
at the point of initial contact, but the average value is in line with the
definition ε∗ = 0.2a/R

the case of the engineered tissue, the dataset consisted of
individual indentations acquired at random locations over
the sample.

Code written in Matlab was used to automatically process
each dataset and extract values of Young’s modulus using
an optimization-based approach. Because the AFM is not
capable of directly measuring force and indentation depth,
these values must be inferred from directly measurable quan-
tities, the cantilever spring constant kc, and knowledge of the
point of contact. The directly measured values are typically
the bending position of the cantilever (d) and the position of
the cantilever base (z), the zero points of which are usually

arbitrary. It is necessary to determine the reference values
or the values at the contact point, of the deflection (d0) and
position (z0). In terms of the reference values, force (F) and
indentation (δ) in the absence of attractive or repulsive inter-
actions are

F = kc(d − d0) (14)

δ = (z − z0) − (d − d0) (15)

Fitting the force-indentation equations in Table 2 to an AFM
dataset of (z, d) pairs necessitates identifying the contact
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Table 3 Young’s modulus (mean ± st. dev.) of PVA gels from two methods and various models

Model Macro. compressiona AFM indentationb

E0 (kPa) Mean r2 E0 (kPa) Mean r2

Hookean/Hertzian (Hz) – – 24.13 ± 3.56 0.9926

Small strain Hookean/ Hertzian (sHz)c 20.49 ± 2.67 0.9846 21.36 ± 3.61 0.9978

Neo-Hookean (NH) 20.74 ± 0.76 0.9994 21.92 ± 2.88 0.9967

Mooney-Rivlin (MR) 20.26 ± 1.00 0.9997 20.96 ± 2.75 0.9975

18.23 ± 2.38d –

2-term reduced polynomial (2p) 20.30 ± 0.90 0.9998 18.05 ± 4.84 0.9997

Fung (Fu) 20.31 ± 0.90 0.9998 18.63 ± 4.49 0.9997

Ogden (Og) 19.85 ± 1.23 0.9998 22.95 ± 4.23 0.9997

van der Waals (vdW)e 20.12 ± 1.12 0.9998 21.32 ± 2.85 0.9974

Gaylord–Douglas (GD) 19.77 ± 1.30 0.9998 21.69 ± 2.82 0.9969

Tschoegl–Gurer (TG) 19.86 ± 1.21 0.9998 21.54 ± 2.80 0.9971

a Macroscopic compression: 3 samples, 3 loading cycles/sample
b AFM indentation: 3 samples, 256 indentations/sample
c Data limited to strains < 0.05
d Values using Eq. (5), applied to two samples (Lin et al. 2007b)
e Limiting tensile strain of εm = 4 was used

point (z0, d0) and solving the regression problem for the fit-
ting coefficients.

4 Results

The dependence of the contact radius on the indentation as
evaluated by nonlinear FEA is shown in Fig. 2a and b. A gene-
ralized relationship between a and δ in the form of Eq. (13)
was used to fit the large displacement FEA data (Fig. 2a). For
both the large and small displacement cases, a comparison
is made between the FEA solution and Eq. (2). In Fig. 2c,
the indentation stress–strain response predicted by the FEA
is compared to the theoretical model from Table 2. The pre-
dicted strain field is presented in Fig. 2d.

From the compression tests, the means and standard devia-
tions of the initial Young’s modulus E0 of the PVA gel, obtai-
ned using a Hookean relationship at limited strain (0 < ε <

0.05, where compressive strains are taken to be positive) and
the various hyperelastic models, are summarized in Table 3.
A representative dataset fit with the Mooney-Rivlin uniaxial
equation is shown in Fig. 3. Also listed in Table 3 are the
corresponding values obtained from the AFM microindenta-
tion of three different samples (256 indentations per sample).
The mean coefficient of determination (r2) is also listed for
each model. In the case of the Mooney-Rivlin equation, pre-
viously reported results using Eq. (5) (Lin et al. 2007b) are
also listed for comparison.

Figures 4 and 5 show datasets representative of the inden-
tation response of mouse cartilage matrix and chondrocytes,
respectively. Fits to the data using the Fung and Mooney-
Rivlin models are compared in Fig. 4 while the Ogden and

Tschoegl-Gurer models are compared in Fig. 5. In Fig. 6, the
full results of analyzing a complete force–volume set of data
(1,024 indentations) using the Fung model are presented in
the form of an elastic modulus map. Ten random datasets each
from the extracellular matrix and the chondrocytes, selected
with the aid of five AFM topography images such as shown in
Fig. 6, were also analyzed using each model. We chose points
near the centers of cells and near the middle of the intercel-
lular spaces. The results are tabulated in Table 4 along with
those from the indentation of the engineered cartilage.

Finally, Fig. 7 shows a comparison of the extent of line-
arity among the mouse cartilage matrix, cells, and the PVA
gel. The data are represented by their respective fits using the
Fung model.

5 Discussion

The finite element method proved to be a powerful tool for
validating and establishing the limit of the contact radius rela-
tionship given by Eq. (2). Figure 2a and b indicate that Eq. (2)
holds for a/R below ∼0.4 or indentation strains of less than
8%. We expect this limit to hold for each hyperelastic model
studied. Beyond a/R = 0.4, the relationship given in Fig. 2a
or one that is similar can be used. Computational modeling of
indentation by FEA therefore serves the additional, integral
purpose of extending the applicability and accuracy of the
analytical force–indentation equations beyond this limit. It
should be pointed out that we did not attempt to numerically
validate the a–δ relationship for each model. Since the nor-
malized indentation δ/R never exceeded 0.2 (and hence, a/R
never exceeded 0.4 according to Fig. 2b) in the indentation
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Fig. 3 Sample compressive engineering stress–strain behavior of a
PVA gel cylinder. Every tenth data point is plotted. Compressive stresses
and strains are taken to be positive for consistency with the convention
used in indentation. The solid curve is the best fit (r2 = 0.9999) to the
data using the uniaxial Mooney-Rivlin equation (see Table 1). The ana-
lysis was limited to the deformation range 0 < ε < 0.3. For this particu-
lar case, E0 = 20.69 kPa and the fitting parameters are C1 = 3.214 kPa
and C2 = 0.235 kPa. The quality of fit is virtually indistinguishable
among the various hyperelastic models

tests regardless of the size of the bead used, it was possible
to apply Eq. (2) in conjunction with the equations in Table 2
to fit the AFM deflection-position data.

As shown by Fig. 2c and d for the representative Ogden
hyperelastic material, FEA also verified Tabor’s empirical
definitions of stress and strain given by Eqs. (3). The simu-
lated stress–strain response is in reasonable agreement with
the theoretical relationship found in Table 2. Moreover, the
strain field supports that theoretical prediction of the exis-
tence of tensile strains solely at the edge of contact (Johnson
1985).

Chemically crosslinked PVA in swelling equilibrium with
water is known to be rubber elastic and obeys the simple
Neo-Hookean constitutive model under uniaxial loading
(Horkay and Nagy 1980). The results shown in Fig. 3 and
Table 3 indicate that each of the hyperelastic models exami-
ned in this study capably describes rubber elastic behavior
(i.e., both the initial linear elastic response and the strain
stiffening are accurately captured by the mathematical fits).
This is not true when applied to the indentation of the carti-
lage samples. In fact, only the Fung and Ogden models were
found to be viable for both native and engineered tissues, as
seen by comparing the average coefficients of determination
(r2) in Table 4 and illustrated by the representative data-

Fig. 4 Sample deflection-position data showing every tenth data point
from the AFM indentation of the extracellular matrix of mouse cartilage.
The data is plotted twice, with the two sets shifted apart for clarity.
The solid curves are the best fits using the Fung (fitting parameters
B = 19.59 kPa and b = 196.5, E0 = 20.78 kPa) and Mooney-Rivlin
(fitting parameters B1 = 2.289×10−5 kPa and B2 = 149.35 kPa, E0 =
158.36 kPa) force-indentation equations (see Table 2). The points of
contact are indicated by the filled circles. Also shown are the coefficient
of determination and mean-squared-error (MSE) for each fit. These
values are also listed for the fit using the older form of the Mooney-
Rivlin equation given by Eq. (5)

Fig. 5 Sample deflection-position data showing every tenth data point
from the AFM indentation of a mouse cartilage chondrocyte. The data is
plotted twice, with the two sets shifted apart for clarity. The solid curves
are the best fits using the Ogden (fitting parameters B = 25.41 kPa and
α = 115.4, E0 = 13.47 kPa) and Tschoegl-Gurer (fitting parameters
B1 = 6.804 × 10−6 kPa and B2 = 430.8 kPa, E0 = 77.65 kPa) force-
indentation equations (see Table 2). The points of contact are indicated
by the filled circles. Also shown are the coefficient of determination and
mean-squared-error (MSE) for each fit
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Fig. 6 Young’s modulus map and surface plot of a 30 × 30 mm region of mouse cartilage. Moduli were computed using the Fung model. Mean
coefficient of determination of the 1,024 fits: 0.999

sets shown in Figs. 4 and 5. In analyzing the indentation of
cartilage and the PVA gels, the single-term Ogden model
often yielded elastic moduli that slightly exceeded
those obtained from the Fung model. We surmise that this
discrepancy may be related to retaining only one term in the
Ogden strain energy potential.

The suitability of the Fung and Ogden hyperelastic models
for the indentation of cartilage and cells is not unexpected
since they have been applied successfully to a number of
other soft biological tissues. Fung formulated the exponen-
tial strain energy function based on mechanical testing of
mesentery and arterial tissues (Fung 1967; Fung et al. 1979);
his model is widely used in describing blood vessel elasticity
(Pandit et al. 2005; Schulze-Bauer et al. 2002). The single-
term Ogden model has been found to be capable of accura-
tely representing the elastic response of the vocal fold (Zhang
et al. 2006), spinal cord (Bilston and Thibault 1996), brain
tissue (Prange and Margulies 2002), and dura mater from
the brain and spinal cord (Maikos et al. 2008). Use of these
models in biological indentation should allow enhanced sen-
sitivity in detecting spatial variations in elastic moduli and
promote greater accuracy of tissue elasticity maps. Figure 6
indicates that when an appropriate fitting function is applied,
even a relatively large spherical probe is capable of delinea-
ting differences in stiffness within a cell’s perimeter (i.e., the
elastic modulus map reveals that the cells are softer close to
their centers and stiffer near their edges). We note the possi-
bility that some models not included in our list may perform
as well as the Fung and Ogden equations. Even disregarding
those that were eliminated by necessity (e.g., higher order
polynomials with more than two fitting parameters), it was
not our intent to conduct a comprehensive comparison of
hyperelastic models. Other indentation equations can easily
be derived from strain energy functions using the approach
described.

In the macroscopic compression tests, limiting the strain
in the Hookean analysis to 5% still ensured that an adequate
number of data points remained such that the effects of ran-
dom noise were essentially obviated. Because the indenta-
tion strain does not scale linearly with δ, limiting ε∗ to a
similar range leaves a smaller portion of the data for analy-
sis; at the 5% strain level, each truncated dataset contained
approximately one tenth of the total points in the contact
regime. For the soft tissue samples, onset of stress–strain
nonlinearity prior to ε∗ = 0.05 and the presence of higher
levels of noise in the vicinity of initial contact rendered the
Hertzian approach nonviable. Figure 7 shows that the car-
tilage extracellular matrix and cells exhibited highly nonli-
near elasticity when indented, with the nonlinear response
of the matrix already pronounced at an indentation strain of
3%. The poor results we obtained when attempting to fit our
experimental results with the Hertz equation (see Table 4)
are consistent with the findings of Costa and Yin (1999),
who conducted finite element studies on the indentation of
materials whose behavior conformed to the Mooney-Rivlin,
two-term reduced polynomial, or Fung strain energy func-
tions. In their simulations of finite indentation with a conical
tip, large errors were incurred in the estimated elastic moduli
when using linear elastic models to fit the data except in the
case of the Mooney-Rivlin material. Hence, it was concluded
that linear elastic models are inappropriate for fitting AFM
indentation data at the deformations applied in typical tests.

The pronounced nonlinearity of the cartilage and chon-
drocytes in comparison to the response of the PVA is likely
associated with the innately more complex structure of the
biological materials. Furthermore, unlike PVA, cartilage
is not expected to obey rubber-like elasticity since the
majority of its constituents are rigid. Although the effects
of finite chain extensibility are expected to be important
contributors to strain stiffening, interactions in the cartilage

123



Spherical indentation of soft matter beyond the Hertzian regime 355

Table 4 Young’s modulus (mean ± st. dev.) of cartilage matrix and cells from the models

Modela Eng. cartilageb,c Mouse matrixb Mouse Cellsb

E0 (kPa) Mean r2 E0 (kPa) Mean r2 E0 (kPa) Mean r2

Hz 0.81–5.08 0.9359 97.79 ± 16.78 0.8755 45.64 ± 12.46 0.9025

sHz 0.45–3.59 0.9635 56.69 ± 15.54 0.9291 19.39 ± 4.74 0.9725

NH 0.68–4.39 0.9528 99.92 ± 19.08 0.8982 41.81 ± 12.27 0.9098

MR 0.60–4.04 0.9584 95.21 ± 18.50 0.9215 39.18 ± 11.76 0.9153

2pd Failed – Failed – Failed –

Fu 0.46–3.03 0.9962 19.64 ± 2.30 0.9996 11.05 ± 2.01 0.9997

Og 0.54–3.97 0.9976 19.71 ± 3.40 0.9995 12.47 ± 2.44 0.9996

vdW 0.62–4.12 0.9573 96.33 ± 18.64 0.8871 39.79 ± 11.88 0.9141

GD 0.66–4.31 0.9540 98.79 ± 18.93 0.8847 41.18 ± 12.14 0.9110

TG 0.65–4.25 0.9548 98.02 ± 18.84 0.8854 40.76 ± 12.06 0.9118

a Abbreviations from Table 3
b Ten randomly selected samples
c Range of values shown rather than mean ± standard deviation since measurements for matrix and cells could not be separated
d Two-term polynomial model failed to produce viable fits in the majority of cases

extracellular matrix between the collagen and glycosamino-
glycan networks as well as the presence of fixed and mobile
charges must also be considered. The cellular cytoskeleton
and cytoplasm can be viewed as parts of an even more intri-
cate network. It is not surprising, therefore, that none of the
molecular models, which cannot possibly account for such
structural features, proved capable of fitting the experimen-
tal data. For the measurement of elastic properties, pheno-
menological models are viable alternatives to complicated
constitutive laws such as Mow’s biphasic theory of cartilage
(Mow et al. 1980) and the molecular theory of semiflexible
biopolymer networks proposed by Janmey and coworkers
(Storm et al. 2005).

Analysis using the Fung model yields a value of approxi-
mately 20 kPa for the Young’s modulus of neonatal mouse
ECM. For comparison, we also found a maximum value of
3 kPa for the engineered constructs (Table 4). A survey of
the literature shows these measurements to be within the
range typical of immature native and statically engineered
tissue. Some relevant results are listed in Table 5. Although
the stiffness of the engineered cartilage appears to be signi-
ficantly less than that of the native tissue, a direct compari-
son between the two types of samples is not expedient due
to differences in preparation. It is possible that even light
fixation of the native cartilage may have a particularly mar-
ked effect on the mechanical properties of the cells, which
contain various macromolecules that are susceptible to cross-
linking. In fact, the average elastic modulus we measured
for the mouse chondrocytes (Table 4, using the Fung and
Ogden models as the basis for comparison) is relatively high
compared to values reported in the literature using a number
of different techniques—see, e.g., comparison by Darling
et al (2006), where the instantaneous Young’s modulus ran-

Fig. 7 Indentation stress versus strain (0.2 a/R) for representative
microindentations of the PVA gel, mouse cartilage extracellular matrix,
and chondrocytes. Data are from the Fung fit of sample AFM data-
sets (PVA E0 = 19.1 kPa, matrix E0 = 20.7 kPa, chondrocyte E0 =
12.2 kPa). The stress–strain response of the PVA gel appears linear (due
to the scaling, nonlinearity is not obvious) while the cartilage compo-
nents are highly nonlinear. Inset shows the relationship up to 2% strain

ged from 0.29 to 8 kPa, and results listed in Table 5. Despite
the lack of surface plots and hence, a means of segregating
indentations of chondrocytes from those performed on the
matrix, our measurements on the engineered tissue indicate
that the average elastic modulus of the cells is within the
range of values reported by other investigators.

The elastic moduli measured in this study are instanta-
neous values calculated using the loading data and disregar-
ding the effects of loading rate. For the tip velocity applied
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Table 5 Reported values of Young’s modulus for engineered and immature native cartilage

Reference Source of tissue and culture conditions Technique E (kPa)

Ficklin et al. (2007) Newborn bovine knee joint patellofemoral groove explants, Macro compression 22

load applied normal to articular surface

Klein et al. (2007) Fetal and bovine knee joints, surface region Macro compression 28

Park et al. (2004) 4–6 month old bovine humeral heads AFM indentation (Hertz model) 45.8

Schinagl et al. (1997) Adult bovine knee joint patellofemoral groove, Micro compression 79

superficial layer

Darling et al. (2006) Porcine chondrocytes AFM indentation, micropipette aspiration 0.6–1.2

Guilak et al. (2005) Adult canine hip joints, pericellular matrix (PCM) Micropipette aspiration 23–24

Guilak et al. (1999) Adult human hip joints, pericellular matrix Micropipette aspiration 1.54

Ng et al. (2007) Bovine chondrocytes cultured in growth AFM indentation (Hertz model) 0.7–1 (cells),

factor stimulated medium 0.1–4.15 (PCM)

Huang et al. (2008) Engineered tissue from bovine chondrocytes, Macro tension ∼20–107

static culture, no growth factors

Janjanin et al. (2008) Engineered tissue from human bone marrow derived Macro compression ∼3–12

stem cells, bioreactor culture

Mauck et al. (2003) Engineered tissue from bovine chondrocytes, static Macro compression ∼20–186

and dynamically loaded culture

in our indentation of the PVA gels and soft tissues, use of
indenters of different radii resulted in strain rates (ε̇∗) varying
from 0.08–0.11 s−1. It is reasonable to assume that there
exists a threshold of ε̇∗ above which viscoelastic effects
can be considered insignificant (Cheng and Cheng 2005;
Franke et al. 2007). At the aforementioned rates, it is likely
that most of the stress–strain response is independent of
fluid flow, and therefore virtually elastic. In a study using
bovine articular cartilage (DiSilvestro et al. 2001), it was
found that peak reaction forces were dependent on strain rate
(ε̇∗ = 0.0001–0.01 s−1), but instantaneous Young’s modulus
was unaffected. For studies of creep-compliance, mathema-
tical methods such as utilization of the Laplace transform to
map the time-dependent contact solution to a corresponding
elastic solution (Lee 1955), can be extended to the elastic
contact models in Table 2. This method was employed in the
spherical indentation of chondrocytes (Darling et al. 2006).
The hereditary integral operator approach proposed by Lee
and Radok (1960), which has been applied to the indentation
of polymers (Kumar and Narasimhan 2004; Lu et al. 2003;
Oyen 2005; Tweedie and Van Vliet 2006) and soft tissues
(Mattice et al. 2006), is generally regarded as more accu-
rate since it pertains to time-varying boundary conditions
(Lu et al. 2003).

Conclusions

We have demonstrated the validity of the hyperelastic force-
indentation equations introduced herein for describing the

indentation of materials that obey simple rubber elastic beha-
vior as exemplified by the PVA gels. The equations based
on the Fung and Ogden models also show promise in
modeling the indentation of biological tissues beyond the
Hertzian regime. The relative simplicity of these closed-form
equations makes them attractive for applications in biologi-
cal indentation, where the ability to detect local variations
in elastic properties is of significant benefit. The combined
numerical–analytical approach of deriving force-indentation
equations can also be applied to other nonlinear elastic,
stress–strain constitutive laws.
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