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Abstract Finite element models for hydrated soft biological
tissue are numerous but often exhibit certain essential defi-
ciencies concerning the reproduction of relevant mechanical
and electro-chemical responses. As a matter of fact, single-
phasic models can never predict the interstitial fluid flow
or related effects like osmosis. Quite a few models have
more than one constituent, but are often restricted to the
small-strain domain, are not capable of capturing the intrinsic
viscoelasticity of the solid skeleton, or do not account for a
collagen fibre reinforcement. It is the goal of this contribution
to overcome these drawbacks and to present a thermodynam-
ically consistent model, which is formulated in a very gen-
eral way in order to reproduce the behaviour of almost any
charged hydrated tissue. Herein, the Theory of Porous Media
(TPM) is applied in combination with polyconvex Ogden-
type material laws describing the anisotropic and intrinsi-
cally viscoelastic behaviour of the solid matrix on the basis
of a generalised Maxwell model. Moreover, other features
like the deformation-dependent permeability, the possibil-
ity to include inhomogeneities like varying fibre alignment
and behaviour, or osmotic effects based on the simplifying
assumption of Lanir are also included. Finally, the human
intervertebral disc is chosen as a representative for complex
soft biological tissue behaviour. In this regard, two numerical
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1 Introduction and overview

Finite element models of hydrated soft biological tissues can
remarkably aid the design of new implants, thereby serving
as a diagnostic tool or numerical laboratory. In the context
of spine mechanics, the intervertebral disc (IVD) plays a key
role, as it is a representative for complex soft biological tissue
behaviour dominating the overall mechanical performance of
the spine. Hence, the IVD is chosen for the development of
a general model describing several relevant effects.

Note in passing that in industrialised western countries,
almost everybody has been suffering from low back pain
(LBP) at least once in his lifetime, e. g., in a representative
survey carried out in the early nineties and another one con-
ducted ten years later, about 85 % of the German population
had already experienced this widespread ailment. cf. Raspe
et al. 2008; Schmidt et al. 2007. Moreover, LBP is the number
one cause of work related health problems in many European
countries. The fourth European survey on working conditions
in 2007 reported an overall average of 25% of the working
people in Europe suffering from LBP (Parent-Thirion et al.
2007). This clearly reveals the need for research in the field
of IVD mechanics, in order to better understand the complex,
coupled behaviour of the IVD and its influence on the overall
performance.
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Before discussing the features of an appropriate finite
element model, a short overview of the necessary tissue prop-
erties is given. For a more detailed description, the reader
is referred to Urban and Roberts (1996), Ayad and Weiss
(1987), Mow and Hayes (1997), Marchand and Ahmed
(1990), Ehlers et al. (2006b) and references therein. As the

name implies, the IVD is embedded in between two ver-
tebrae, where the cartilaginous endplates build the transi-
tion between the disc and the bony vertebrae but will not be
addressed separately in this contribution. Two main regions
can be distinguished in an axial cut through the IVD, a gelati-
nous core, the nucleus pulposus (NP) enclosed by a fibrous,
lamellar structure, the anulus fibrosus (AF). Both regions are
composed of a porous multi-component microstructure con-
sisting of a charged, hydrated extracellular matrix (ECM)
as well as an ionised interstitial fluid yielding a swelling-
active material. The ECM, also referred to as solid skele-
ton, consists of proteoglycans (PGs), glycosaminoglycans
(GAGs), and collagen fibres of type I and II saturated by
a liquid containing dissolved anions and cations as solutes.
In this regard, the collagen of type I forms large parallel
fibre bundles representing the structural collagen in the AF,
whereas the collagen of type II is distributed statistically
equal, thereby forming a loose network of fibrils contribut-
ing to the isotropic behaviour of the NP. The relatively large
PGs and GAGs carry negative fixed charges, but cannot move
freely as they are trapped in the fine collagen network. Thus,
the fixed negative charges underly the same movement as
the whole solid matrix. Apart from that, the fixed charge
density (FCD) is highest in the NP and lowest at the perime-
ter of the AF (Iatridis et al. 2003; Urban and Holm 1986;
Urban and Roberts 1996). Moreover, the structural collagen
is inhomogeneously distributed throughout the AF concern-
ing its alignment as well as its occurrence yielding varying
mechanical properties of the lamellae (Holzapfel et al. 2005;
Eberlein et al. 2004; Ebara et al. 1996; Skaggs et al. 1994).
Finally, the IVD is characterised by a coupled dissipative
behaviour resulting from the viscous fluid flow, the intrinsic
viscoelasticity of the ECM protein meshwork and the result-
ing swelling phenomena (Ehlers and Markert 2001; Ehlers
et al. 2002; Iatridis et al. 1996, 1997 and references therein) .
Thus, all the properties characterising soft biological tissues
in general are unified within the IVD.

Currently, there are several models and modules avail-
able, which are used to describe soft biological tissues in
general. However, most of them do not cover all the require-
ments needed for the continuum mechanical modelling of
the IVD. For example, the models used for state-of-the-art
simulations of the spine are often restricted to singlephasic
materials, thereby a priori excluding effects resulting from
interstitial fluid flow and osmosis. The first spine simulations
with an advanced IVD model were carried out by Shirazi-
Adl (1994, 2006) or Shirazi-Adl et al. (1986a,b) using a

deformation-dependent Hooke-type material tangent and
non-linear spring elements to capture the collagen fibres in
the AF. In order to overcome the resulting grid dependency
of the alignment of the spring elements, the anisotropic con-
tinuum theory based on Spencer (1972, 1982) and Boehler
(1987) was adopted and applied to the unique behaviour of
the collagen fibres by, e. g., Klisch and Lotz (1999), Elliott
and Setton (2000) or Holzapfel and Gasser (2001), whereas
Schröder and Neff (2003), Balzani et al. (2005) or Markert
et al. (2005) further developed the theory towards a polycon-
vex framework. This knowledge was then incorporated in the
lumbar spine simulations of Eberlein et al. (2001, 2004).

Since these models are singlephasic, they do not account
for the fluid flow in the disc which is important for nutritional
purposes and maintaining the biological composition (Holm
and Nachemson 1983; Urban and Holm 1986). Hence, at least
a second phase, the interstitial fluid, has to be introduced to
overcome this deficiency. In this context, several biphasic
models, based on the works of Biot (1941), Bowen (1976)
and Mow et al. (1980), are applied to describe soft biological
tissues in general or with application to the IVD (Argoubi and
Shirazi-Adl 1996; Iatridis et al. 1998; Klisch and Lotz 2000;
Ayotte et al. 2000; Li et al. 1999, 2003; Riches et al. 2002).
However, as the occurring osmotic effects influence the fluid
flow in the tissue, it also has to be considered. In order
to include these electro-chemomechanically driven swelling
phenomena, the biphasic models need to be extended which
can be accomplished in two different approaches. On the one
hand, there is an independent description of the freely mov-
able ions of the pore fluid yielding a complex and strongly
coupled system of partial differential equations (PDE) lead-
ing to a difficult numerical treatment (Frijns et al. 1997, 2003;
Ehlers et al. 2002; Huyghe et al. 2003; Kaasschieter et al.
2003; Lai et al. 1991; van Loon et al. 2003; Sun et al. 1999).
On the other hand, a much simpler algorithm capable of
describing osmosis is based on the assumption of an instan-
taneous chemical equilibrium throughout the domain of the
IVD (Lanir 1987). Following this, only the solid skeleton is
extended by the almost volume-free, fixed negative charges
and a constitutively computed osmotic pressure is added to
the hydrostatic pressure. This procedure is adopted in the
context of a two-phase model by Laible et al. (1993), Iatridis
et al. (2003), Hsieh et al. (2005) or Ehlers et al. (2006b).
A comparison of the two approaches yields a good approx-
imation of the exact solution for the simplified model, even
when simulating sudden concentration changes in the exter-
nal solution (Wilson et al. 2005). However, as sudden changes
in the surrounding concentration are usually not applicable
for living organisms, Lanir’s assumption is perfectly suitable
for the numerical simulation of the IVD for instance.

Most of the models in the above cited works suffer from the
limitation to the small strain domain with often purely elas-
tic material behaviour. In contrast, the solid skeleton of soft
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Fig. 1 Multicomponent TPM
model of charged hydrated
biological tissues

biological tissues or cartilage emerges intrinsic viscoelastic
properties, see, e.g., Hayes and Bodine (1978) and Ehlers
and Markert (2001) among others. In this regard, it is still
not clear, to what extent intrinsic viscoelastic effects stem
from the proteoglycans, the loose (type II) collagen network,
or the structural (type I) collagen. In this contribution, only
the isotropic part of the solid matrix including the randomly
distributed type II collagen is modelled to be viscoelastic,
while the structural collagen fibres of type I remain hyper-
elastic. The reason for this assumption becomes clear when
the findings of Holzapfel et al. (2005) are observed, stating
that there was little to no rate dependency when a lamella
of the AF is pulled in fibre direction. Hence, the dissipative
effects must stem from the isotropic part of the matrix.

Moreover, the efficient numerical treatment of the govern-
ing equations is often not implemented, and therefore, the
presented numerical examples are restricted to rather simple
1-d and 2-d boundary-value problems (BVP), respectively.
Thus, the goal of this contribution is to present a thermody-
namically consistent model based on the well-founded The-
ory of Porous Media (TPM), cf. Bowen (1980), Mow et al.
(1989), de Boer (2000) and Ehlers (2002), which is suitable
for the simulation of any electro-chemically active soft bio-
logical tissues in general and the IVD in particular. In addi-
tion, the respective constitutive equations needed to include
the anisotropic and viscoelastic material behaviour as well
as the osmotic pressure are presented in a modular manner
allowing for a convenient handling. Finally, the efficiency of
the model is shown by two fully coupled 3-d simulations.
Firstly, a torsional shear experiment is used to fit the vis-
coelastic parameters to the experimental findings of Iatridis
et al. (1997), which are then taken for a swelling experiment
of the nucleus pulposus in an ex vivo sagittally cut IVD.

2 Theory of Porous Media (TPM)

The TPM, originally designed for geotechnical problems,
is a well-founded macroscopic continuum theory, which is

based on the theory of mixtures extended by the concept of
volume fractions, (Bowen 1980; Mow et al. 1989; de Boer
2000; Ehlers 2002). In the case of a liquid-saturated linear
elastic and quasi-static material behaviour in the small strain
domain, the TPM results in the same set of equations as the
theory of Biot (1941) (Schanz and Diebels 2003). However,
when extended to finite deformations with varying porosity
in combination with arbitrary, non-linear dissipative mate-
rial laws, the TPM offers a transparent theoretical access
regarding the separation of the balance and constitutive equa-
tions. In contrast to Biot’s constitutively derived theory, the
TPM approach allows for a clear identification of materially
independent equations (i.e., balance equations) and so-called
constitutive equations characterising the material behaviour
(i.e., viscoelasticity, anisotropy or osmosis), thereby ensur-
ing a convenient modular character of the overall theoretical
framework.

Proceeding from a binary aggregate composed of solid
and fluid constituents ϕα denoted by α = {S, F}, the solid
phase (i.e., the ECM consisting of PGs, GAGs and collagen)
is extended by incorporating the almost volume-free fixed
negative charges ϕ fc (Fig. 1). Furthermore, the interstitial
fluid ϕF as an ionic solution is composed of water as a liquid
solvent ϕL and mobile electrolytes (Na+Cl−) as solutes ϕ+
and ϕ−. In this context, it is assumed that all constituents
ϕα are statistically equal distributed throughout a represen-
tative elementary volume (REV). Hence, a real or a virtual
averaging process over the REV is possible finally leading to
a model of superimposed and interacting continua, i.e., the
homogenised or ‘smeared’ model.

Following this leads to a quadriphasic model describing
each of the solutes ϕ+ and ϕ− independently (Frijns et al.
1997). Exploiting the electroneutrality condition allows for
a reduction to a triphasic model yielding a decrease of the
primary variables from four to three (i.e., the solid displace-
ment, the hydraulic pressure and the cation concentration) as
is described in, e.g., Ehlers et al. (2002, 2005). However, the
first benchmark computations on simple geometries using the
triphasic displacement-pressure-concentration formulation
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were accompanied by oscillations and a general numerical
instability (Ehlers and Acartürk 2007). The cause of the oscil-
lations can be traced back to the dependence of the con-
centration boundary condition (BC) on the solution of the
solid displacement field inside the domain. A numerical sta-
bilisation is only possible if the BC is weakly fulfilled and
included in the iteration process (Ehlers et al. 2005). Hence,
an alternative modelling ansatz must be applied, bearing in
mind that future simulations of the intensely inhomogeneous,
anisotropic IVD (including the much stiffer, adjacent verte-
brae) already evolve several other numerical difficulties. Note
in passing, that other triphasic theories which exhibit four pri-
mary degrees of freedom, i.e., solid displacement and three
modified chemical potentials for water, cations and anions,
do not suffer from these oscillations (Lai et al. 1991; Sun
et al. 1999).

As already mentioned in the introduction, it is possible
to further reduce this model by applying the assumption of
Lanir (1987) stating that the tiny mobile ions are assumed
to diffuse rapidly through the liquid and by themselves, do
not give rise to concentration gradients. In the context of
living soft biological tissues, such as the IVD, this simpli-
fication makes sense because sudden concentration changes
of the surrounding fluid yielding large perturbations of the
chemical equilibrium do not occur. Hence, the soft biolog-
ical tissue is always immediately in electro-chemical equi-
librium, which allows the application of the Donnan (1911)
equilibrium not only at the domain boundary but also in the
inside. The arising osmotic properties can therefore be suffi-
ciently described without considering the ion concentrations
(or electro-chemical potentials) as additional unknowns of
the process. The resulting osmotic pressure is simply com-
puted via a constitutive equation depending on the fixed
charge density inside the domain and added to the hydraulic
pore pressure. The result is an extended biphasic formula-
tion consisting of a fully saturated solid skeleton carrying
volume-free fixed negative charges and an incompressible
pore fluid.

In this context, the volume fractions nα = dvα/dv (partial
volume dvα per bulk volume dv) serve as describing physical
quantities consistent with the saturation constraint
∑

α

nα = nS + nF = 1, where n fc ≈ 0. (1)

Exploiting the definition of the volume fractions nα , a partial
density ρα = dmα/dv (constituent mass mα) and a material
or realistic density ραR = dmα/dvα can be defined for each
constituent ϕα , which are related to each other via

ρα = nαραR . (2)

The kinematics for such an ansatz is based on the frame-
work of superimposed continua, where each spatial point x
of the current configuration is at any time t simultaneously

occupied by material points Pα of all constituents. Following
this, all particles proceed from different reference positions
Xα , which leads to individual motion and velocity fields for
each constituent reading

x = χα(Xα, t) and
′
xα= dχα(Xα, t)

dt
, (3)

respectively. Therein, (·)′α denotes the material time deriv-
ative following the motion of ϕα . Describing multiphasic
materials, it is convenient to express the solid in a Lagrangean
setting via the displacement vector uS = x − XS and the
overall fluid in a modified Eulerian setting relative to the
deforming solid skeleton through the seepage velocity wF =
′
xF − ′

xS . Furthermore, the fixed charges are assumed to
move with the deforming solid skeleton described by the
solid deformation gradient given by FS = ∂x/∂XS .

3 Balance relations

Materially independent balance equations are needed to solve
for the previously introduced unknown field quantities, i.e.,
the solid displacement uS and the seepage velocity wF as well
as to restrict the necessary constitutive equations needed to
close the set of equations. In this context, the mass and the
momentum balances for each of the constituents are usually
applied as well as the entropy inequality. Moreover, the model
under consideration is assumed to be composed of materi-
ally incompressible constituents (defined by ραR = const.),
which is always valid for the case of soft biological tissues
under physiological levels of pressure (Bachrach et al 1998),
yielding a reduction of the mass balance to a volume balance.
Note in passing that the property of material incompressibil-
ity does not lead to a macroscopic incompressibility as the
partial density ρα can still change through changes in the vol-
ume fraction nα , cf. Eq. (2). Furthermore, all thermal effects
as well as internal mass productions are neglected in this con-
tribution, thereby excluding any biochemical reactions and
growth processes. Proceeding from quasi-static and isother-
mal conditions in accordance to Ehlers (2002), the respec-
tive volume and momentum balances as well as the entropy
inequality in the Clausius–Planck form for the solid and fluid
constituents (denoted by α) read

(nα)′α + nα div
′
xα = 0,

div Tα + ρα b + p̂α = 0, (4)
∑

α

(Tα · Lα − ρα (ψα)′α − p̂α· ′
xα) ≥ 0.

Herein, Tα is the partial Cauchy stress tensor and ρα b is
the body force. Furthermore, a measure for the produced
interaction force of the fluid while it percolates through the
pore space is represented by the direct momentum production
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term p̂α satisfying the conservation constraint p̂S + p̂F = 0.

The spatial velocity gradient is denoted by Lα = grad
′
xα ,

while ψα stands for the Helmholtz free energy. As usual for
multi-component models, Eqs. (4) are combined for the solid
and the fluid phase yielding the respective set of governing
equations for the overall aggregate in local form

div [(uS)
′
S + nF wF ] = 0,

div (TS + TF )+ (nSρS R + nFρF R)b = 0, (5)

TS· LS −ρS (ψ S)′S +TF· LF −ρF (ψ F )′F −p̂F· wF ≥0,

where T := TS + TF defines the overall stress of the model,
when lingering flow conditions are assumed inside the tissue.

In order to include the electro-chemical effects while the
tissue is deforming, it is necessary to derive an equation
describing the extensive change of the number of the fixed
negative charges via an intensive concentration measure. As
the fixed charges almost behave like dissolved ions when
they are surrounded by a pore fluid, the molar concentra-
tion c f c

m of the fixed charges is introduced, relating the molar
number of charges to the surrounding fluid volume. In this
regard, we do not distinguish between the intra- and extrafib-
rillar fluid compartments and relate the fixed charges ϕ f c to
the total local fluid volume knowing well that this may lead
to an overestimate in the AF with its high collagen content
(Schröder et al. 2007). Following this, two different densities
can be introduced for the fixed charges, one relating to the
fluid volume, ρ f c

F , and the other one relating to the overall
volume of the aggregate, ρ f c. Making use of the constant
molar mass of a single fixed negative charge, i.e., the molar
mass of an electron M f c

m ≈ 5.486 × 10−7 kg/mol, the fol-
lowing relations become obvious

ρ f c =: nFρ
f c
F = nF c f c

m M f c
m . (6)

Bearing in mind that the fixed charges are attached to the
solid skeleton and thus, undergo the same movement, the
mass balance of the fixed charge density ρ f c is applied with
respect to the deforming solid yielding

(ρ f c)′S + ρ f c div
′
xS = 0 , (7)

or after insertion of (6) and dividing by the constant molar
mass M f c

m

(nF c fc
m )

′
S + nF c fc

m div
′
xS = 0 . (8)

Following this, the volume balance (4)1 of the solid skeleton
for α = S as well as the concentration balance (8) can be
analytically integrated

nS = nS
0S det F−1

S ,
(9)

c f c
m = c fc

0S nF
0S(det FS − nS

0S)
−1

from an initial solidity nS
0S , porosity nF

0S , and molar

concentration c f c
0S , respectively. Herein, the latter relation

can be understood as an evolution equation for the concen-
tration of the fixed charges needed for the postulation of a
constitutive equation used to compute the osmotic pressure
contribution.

4 Constitutive assumptions

In order to close the set of governing equations, certain con-
stitutive assumptions for the Helmholtz free energiesψα , the
partial Cauchy stress tensors Tα as well as the interaction
term p̂F = −p̂S need to be defined. In this regard, the cho-
sen constitutive equations must reflect the material behaviour
in a best possible manner, thereby embracing anisotropic
and viscoelastic effects, the viscous fluid flow as well as
the electro-chemical couplings yielding the osmotic pressure
contribution.

4.1 Saturation constraint and entropy inequality

Proceeding from general thermodynamical considerations,
(Ehlers 1993), a Lagrangean multiplier P is introduced in the
sense of an incompressibility constraint. This becomes clear,
when the material time derivative of the saturation constraint
(1) is taken with respect to the deforming solid. Utilisation
of (4)1 yields a continuity like condition

− P[(nS)′S + (nF )′S ] = P
[
nSdiv

′
xS + nF div

′
xF

+ grad nF · wF

]
= 0 , (10)

which is then added to the Clausius–Planck inequality (5)3

yielding

(TS + nS P I) · LS − ρS (ψ S)′S
+ (TF + nF P I) · LF − ρF (ψ F )′F
− (p̂F − P grad nF ) · wF ≥ 0. (11)

Herein, use was made of the relation div
′
xα = Lα · I , where

I denotes the identity tensor. Hence, the partial quantities Tα

and p̂F are split into an undetermined part resulting from P
and a so-called extra term ( · )E to be determined via appro-
priate constitutive equations, viz.

Tα = −nαP I + TαE and p̂F = P grad nF + p̂F
E . (12)

The overall Cauchy stress of the model is simply obtained
by a summation of the partial stresses under utilisation of (1)
such that

T = −P I + TE with TE = TS
E + TF

E , (13)

where according to Bishop (1959) or Skempton (1960), TE

is known as the effective or extra stress. Hence, P is easily
identified as the unspecified hydraulic pore pressure, whereas
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the extra stress is purely governed by an electro-chemical
contribution, the deformation state as well as the fluid viscos-
ity and velocity.

4.2 Effective stress of the fluid and solid constituent

As a usual assumption in hydraulics, the fluid extra stress
is neglected (i.e., TF

E ≈ 0) in comparison with the extra
momentum production term p̂F

E , which is responsible for the
drag force resulting from the percolating fluid. This fact can
be deduced from an order-of-magnitude analysis, see, e.g.,
Hassanizadeh and Gray (1987), Ehlers et al. (1999) or Mark-
ert (2007) and quotations therein. Moreover, concerning the
incompressible fluid constituent, it can be shown that the set
of constitutive variables for the free energy function is empty,
i.e., its free energy ψ F = ψ F (·) is constant (Ehlers 2002).

The remaining undetermined solid extra stress is then fur-
ther split into an osmotic and a mechanical contribution. The
reason for this split becomes clear, when the physical effect of
the attached negative fixed charges of the ECM on the behav-
iour of the overall tissue is analysed. Herein, a phenomenon
called osmosis is activated, which results in a spontaneous
fluid movement across the tissue boundary. In this context,
the fluid will flow from places with lower solute concentra-
tion to regions with higher concentrations, thereby dilating
the tissue. As the incompressible fluid constituent is assumed
to be non-sensitive to changes in porosity nF , the volume
dilatation is solely carried via tension in the solid matrix.
This is due to the fact that an externally applied hydrostatic
pore pressure is constant in an incompressible fluid, no mat-
ter how much space (i.e., nF ) is available for the pore-fluid.
The osmosis-driven inflow of fluid takes place until it is bal-
anced with the outflow of fluid resulting from the “squeezing
force” of the dilated solid matrix. Finally, the tension in the
ECM at osmotic equilibrium is then defined as the osmotic
pressure difference∆π contributing to the hydrostatic stress
state. Thus, the solid extra stress is further split, viz.

TS
E = TS

E,OSM + TS
E,MECH, where TS

E,OSM = −∆πI.

(14)

Moreover, concerning the purely mechanical behaviour of
the anisotropic and viscoelastic ECM, another additive con-
cept is assumed yielding

TS
E,MECH = TS

ISO + TS
ANISO with TS

ISO = TS
EQ + TS

NEQ,

(15)

where the respective mechanical Cauchy stress is split into an
isotropic (PGs, GAGs, etc.) and an anisotropic (oriented col-
lagen of type I) contribution. In this regard, the isotropic part
is further split into equilibrium and non-equilibrium parts
accounting for the intrinsic viscoelastic behaviour of the iso-
topic fraction of the ECM.

Fig. 2 Generalised Maxwell model composed of a spring-element and
n Maxwell elements

4.3 Inelastic solid kinematics

In order to describe finite viscoelasticity, it is convenient to
proceed from a generalised Maxwell model as depicted in
Fig. 2 and described in Ehlers et al. (2002), Markert (2005)
or Reese and Govindjee (1998), which accounts for the purely
elastic equilibrium (EQ) stress via its elastic spring as well as
for the non-equilibrium (NEQ) overstresses via the respective
n = 1, . . . , N Maxwell branches.

As usual in finite inelasticity, the model is constitutively
based on a multiplicative split of the solid deformation gra-
dient FS = (FSe)n(FSi )n into inelastic deformations (FSi )n
operating between the reference and the stress-free inter-
mediate configurations of the nth Maxwell element as well
as elastic deformations (FSe)n connecting the respective nth
intermediate configuration with the actual frame. In this con-
text, an additive decomposition of the resulting finite strain
measures into elastic and inelastic parts is achieved (Lee
1969; Kleiber 1975; Ehlers 1989, 1991, 1993)

ES = 1

2
(CS − I) , (ESi )n = 1

2
[(CSi )n − I ],

(16)
(ESe)n = ES − (ESi )n = 1

2
[CS − (CSi )n] ,

directly reflecting the structure of the underlying rheological
model given in Fig. 2. Herein, ES , (ESi )n , and (ESe)n are
the respective total, inelastic and elastic Green-Lagrangean
strains, which are defined in the reference configuration. Note
in passing that

(Γ̂Se)n = (FT −1
Si )n (ESe)n (F

−1
Si )n = 1

2

[
(ĈSe)n − I

]
(17)

are the associate elastic strain measures defined on the inter-
mediate configurations of the respective Maxwell branches,
subsequently denoted by (̂ · ), and can be computed via an
inelastic push-forward of (ESe)n (Ehlers 1989, 1991, 1993).
In this regard, the intermediate configurations can be under-
stood as the reference configurations of the springs in the
Maxwell branches. Moreover, the respective right Cauchy-
Green deformation tensors are defined as

CS = FT
S FS, (ĈSe)n = (FT

Se)n (FSe)n,
(18)

(CSi )n = (FT
Si )n (FSi )n .
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4.4 Entropy principle for viscoelastic solid skeleton

As a next step, the modified Clausius–Planck inequality (11)
has to be evaluated in order to achieve rules for the computa-
tion of the solid extra stress as well as restrictions for the evo-
lution equations of the internal variables. Proceeding from an
incompressible fluid at thermodynamical equilibrium, i.e.,
[ψ F (·)]′F = 0 and TF

E ≡ 0, respectively, the inequality (11)
is evaluated using the conjugate pair of the solid stress power
in the referential frame,

SS
E · (ES)

′
S − ρS

0S (ψ
S)′S − p̂F

E · wF ≥ 0 , (19)

where SS
E is the second Piola–Kirchhoff solid extra stress.

Due to the fundamental principles of constitutive modelling,
cf. Noll (1958) and Truesdell (1949), namely determinism,
local action and equipresence, the solid Helmholtz free energy
ψ S may depend on the solid deformation gradient FS as well
as on some second-order structural tensors MS characteris-
ing the kind of anisotropy. In view of the fact that the free
energy can only be stored as an elastic potential in the spring
elements, the non-equilibrium parts of the Maxwell elements
have to depend on (FSe)n . Thus, the suggested split of ψ S

yields osmotic (ψ S
OSM), equilibrium (ψ S

EQ), and anisotropic

(ψ S
ANISO) contributions, each associated with the total defor-

mation FS , as well as a non-equilibrium part (ψ S
NEQ) explic-

itly depending on the elastic deformations (FSe)n of the
Maxwell branches, thereby including an implicit dependence
on the internal variables (FSi )n , as the respective time-
dependent dashpot deformations influence the elastic defor-
mation gradient.

Recalling the arguments stemming from the concept of
material frame indifference (objectivity), the respective
deformation gradients are not admissible as process variables
and have to be replaced by the set of deformation tensors (18),
or according to (16) by the corresponding strain measures.
Proceeding from the definition of a strain-energy function
W S = ρS

0S ψ
S representing the stored elastic energy defined

per unit reference volume, the stress power in the referential
frame evolves as

(W S)′S =
[
∂W S

OSM

∂ES
+ ∂W S

EQ

∂ES
+ ∂W S

ANISO

∂ES

]
· (ES)

′
S

+
N∑

n=1

∂W S
NEQ

∂(ESe)n
· [(ESe)n]′S . (20)

The implicit dependence of W S
NEQ on the inelastic deforma-

tions (FSi )n is identified, when the derivative of the
non-equilibrium part is rewritten with the aid of the inelastic
push-forward used in Eq. (17) yielding

∂W S
NEQ

∂ESe
=
(
∂Γ̂Se

∂ESe

)T ∂W S
NEQ

∂Γ̂Se

=
[
∂(FT −1

Si ESe F−1
Si )

∂ESe

]T
∂W S

NEQ

∂Γ̂Se

= F−1
Si

∂W S
NEQ

∂Γ̂Se
FT −1

Si , (21)

carried out in an exemplary way using N = 1. The latter part
of (21) clearly reveals that the non-equilibrium strain energy
depends explicitly on the elastic strain, while the inelastic
push-forward F−1

Si ( · )FT −1
Si is associated with the movement

of the time-dependent position of the inelastic intermedi-
ate configuration. Thus, in regard of an iterative numerical
implementation, the need for evolution equations of the inter-
nal variables (FSi )n or (CSi )n becomes clear.

Inserting Eqs. (20) and (21) into the inequality (19) as
well as utilising the material time derivative [(ESe)n]′S =
(ES)

′
S − [(ESi )n]′S stemming from Eq. (16)3, finally yields

an expression for the determination of the solid extra stress
SS

E ,

⎡

⎢⎢⎢⎢⎢⎢⎣
SS

E − ∂W S
OSM

∂ES
︸ ︷︷ ︸

SS
OSM

− ∂W S
EQ

∂ES
︸ ︷︷ ︸

SS
EQ

−
N∑

n=1

SS
n︷ ︸︸ ︷

(F−1
Si )n

∂W S
NEQ

∂(Γ̂Se)n
(FT −1

Si )n

︸ ︷︷ ︸
SS

NEQ

− ∂W S
ANISO

∂ES
︸ ︷︷ ︸

SS
ANISO

⎤

⎥⎥⎥⎥⎥⎥⎦
· (ES)

′
S = 0 ∀ (ES)

′
S, (22)

where SS
n is the non-equilibrium stress of a single Maxwell

element and SS
NEQ is the sum of the generalised model. The

remainder of (19) is known as dissipation inequality

N∑

n=1

(
F−1

Si

)

n

∂W S
NEQ

∂
(
Γ̂Se
)

n

(FT −1
Si )n · [(ESi )n]′S − p̂F

E · wF ≥ 0

∀ {[(ESi )n]′S ,wF
}
, (23)

which is needed to derive the evolution equations for the
internal variables (FSi )n or (CSi )n as well as the constitutive
assumption for the fluid momentum production p̂F

E . Finally,
the Cauchy extra stress TS

E and the Kirchoff extra stress τ S
E

can be computed applying a push-forward operation to the
second Piola–Kirchhoff stress such that

τ S
E = FS SS

E FT
S and TS

E = det F−1
S τ S

E . (24)
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4.5 Dissipation of the viscous solid skeleton

In order to derive the evolution equation for the chosen
internal variables (CSi )n , the solid part of the dissipation
inequality (23) is expressed in terms of the respective inter-
mediate configuration as the current configuration of the
inelastic process. This is done, because one describes the
dissipation process of the solid material using real quanti-
ties on its actual (i.e., intermediate) configuration rather than
using the image of these quantities in the reference config-
uration. Having in mind the push-forward (24)1, it is easily
concluded that a similar transport with the inelastic part of the
deformation gradient yields the intermediate-state overstress
tensor of a Maxwell branch

τ̂ S
n = (FSi )n (SS

n ) (F
T
Si )n . (25)

Note that the computation of an entire intermediate-state
overstress tensor τ̂ S

NEQ is only possible in the case of N = 1,
as the individual intermediate overstresses of more than one
Maxwell element may operate on different intermediate con-
figurations. For N ≥ 1, a summation has to be carried out
on the referential or the actual configuration using SS

n or τ S
n ,

respectively. Hence, the first part of the dissipation inequality
(23) has to be evaluated in a mathematically sufficient sense
for every Maxwell element and can be rewritten as

τ̂ S
n · (FT −1

Si )n [(ESi )n]′S (F−1
Si )n = τ̂ S

n · (D̂Si )n ≥ 0 , (26)

where (D̂Si )n are the respective symmetric deformation
velocity tensors of the intermediate configurations. This
inequality is sufficiently satisfied with the simple ansatz

(D̂Si )n ∝ τ̂ S
n −→ (D̂Si )n = 1

2ηS
n

τ̂ S
n

− ζ S
n

2ηS
n (2ηS

n + 3ζ S
n )
(τ̂ S

n · I)I, (27)

where ηS
n and ζ S

n are the macroscopic shear and bulk vis-
cosities of the dashpot in a Maxwell element, respectively.
In this context, relation (27)2 is the inverse from the well-
known stress–strain rate relation for a dashpot yielding a lin-
ear relation between τ̂ S

n and (D̂Si )n (Markert 2005). Since
inequality (26) has to be satisfied, it is easily concluded, that
the restrictions on the viscosities ηS

n > 0 and 2 ηS
n +3 ζ S

n > 0
must hold. However, with regard to the numerical evaluation
of the evolution equation, it is most convenient, when the
spatio-temporal discretisation of (27)2 is carried out on the
constant reference configuration. Applying the known trans-
port mechanisms for D̂Si described in (26) as well as for τ̂ S

n

in (25) yields the final form of the evolution equation

[(CSi )n]′S − 1

ηS
n
(CSi )n SS

n (CSi )n + ζ S
n

ηS
n (2 η

S
n + 3 ζ S

n )

[SS
n · (CSi )n] (CSi )n = 0 , (28)

where the chosen internal variables (CSi )n appear in an
explicit manner, when integrated using a backward Euler
scheme.

4.6 Dissipation of the viscous interstitial fluid

Finally, the remaining unspecified extra quantity p̂F
E needs to

be defined by an appropriate constitutive law reflecting the
properties of a viscous interstitial fluid. Inserting the consti-
tutive assumption p̂F

E = −(nF )2 (KF )−1 wF into Eq. (12)
and then into the fluid momentum balance (4)2 leads to the
well known Darcy filter law

nF wF = −KF (grad P − ρF R b) with KF = K S

µF R
I (29)

relating the hydraulic pressure gradient to the filter velocity
nF wF via the Darcy permeability tensor KF . In this context,
K S is the intrinsic permeability, which is solely a measure
of the pore geometry, and µF R > 0 is the effective fluid vis-
cosity. A deformation dependence can be introduced for the
intrinsic permeability which, according to Markert (2007),
can be computed using

K S = K S
0S

(
JS − nS

0S

nF
0S

)
κ . (30)

Herein, K S
0S is the initial permeability of the undeformed

tissue and κ ≥ 0 is a parameter governing the non-linearity
of the deformation dependency. Note that κ = 0 turns off
the deformation dependency. Moreover, due to the positive
definiteness of KF , the remaining fluid part of the entropy
inequality (19) is satisfied for K S

0S > 0.

4.7 General structure of the solid strain energy

Regarding the definition of constitutive equations describ-
ing the respective parts of W S , it is advantageous to a pri-
ori define a general structure to be used. Starting with the
osmotic part, the beginning of the section states that osmosis
triggers a variation of the volume which is occupied by the
incompressible pore-fluid. In this regard, a purely volumetric
deformation can be initiated in the case of purely isotropic
material behaviour, which is accompanied by shape changes
in the case of an anisotropic behaviour resulting from the
presence of collagen fibres. Following this, the most suit-

able process variable would be det FS = (det CS)
1
2 which

describes the local dilatation of the ECM. The change in
shape may then be caused by the anisotropic stress response
of the material. Moreover, the solid strain energy functions
are often formulated in a very general way using the principal
stretches of the deformation. In this regard and in order to
adopt the results of the classical mechanics of single phase
materials, the process variables of choice are CS and (ĈSe)n .
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This allows for the conclusive form

W S = W S
OSM(det CS)+ W S

EQ(CS)+
N∑

n=1

W S
NEQ[(ĈSe)n]

+ W S
ANISO(CS,MS) . (31)

Applying the chain rule to Eqs. (16)1 and (17), the stress
computation concluded from Eq. (22) can be rewritten in
terms of the actual configuration yielding the Kirchhoff stress

τ S
E = 2 FS

∂W S
OSM

∂CS
FT

S

︸ ︷︷ ︸
τ S

OSM

+ 2 FS
∂W S

EQ

∂CS
FT

S

︸ ︷︷ ︸
τ S

EQ

+ 2
N∑

n=1

τ S
n︷ ︸︸ ︷

(FSe)n
∂W S

NEQ

∂(ĈSe)n
(FT

Se)n

︸ ︷︷ ︸
τ S

NEQ

+ 2 FS
∂W S

ANISO

∂CS
FT

S

︸ ︷︷ ︸
τ S

ANISO

.

(32)

4.8 Specific solid strain energies

As a final step, the respective solid strain energies need to be
defined, which is achieved by the concept of scalar-valued
isotropic tensor functions. Starting with the osmotic contri-
bution, a volumetric strain energy is postulated by use of (9)2

together with the relation det FS = (det CS)
1
2 yielding

W S
OSM[c f c

m (det CS)] = RΘ c f c
0S nF

0S⎡

⎣2 c̄m

c f c
m

−
√

4 c̄2
m + (c f c

m )2

c f c
m

+ arsinh

(
c f c

m

2 c̄m

)⎤

⎦ ,

where c f c
m = c fc

0SnF
0S

[
(det CS)

1
2 − nS

0S

]−1
. (33)

Herein, R denotes the universal gas constant, Θ is the
absolute temperature, whereas c̄m is the molar concentra-
tion of the external monovalent solution surrounding the tis-
sue, which can be treated as a material parameter. In this
regard, (33)1 yields the scalar-valued function relating the
osmotic pressure difference ∆π to the concentration differ-
ences between the pore fluid and the external solution. Hence,
(33) in combination with (24)2 and (32) is equivalent to the
classical way, where one proceeds from the simple exam-
ple of a reservoir filled with two solutions of different con-
centrations being separated by a semi-permeable membrane.
Following this approach, van’t Hoff ’s osmotic law can be
applied yielding the osmotic pressure difference of the two
chemically active solutions at the semi-permeable membrane:

TS
E,OSM = det F−1

S τ S
E,OSM = −∆π I,

where ∆π = RΘ [(c+
m + c−

m )− (c̄ +
m + c̄ −

m )] . (34)

Herein, cγm and c̄ γm for γ = +,− are the molar solute concen-
trations (i.e., anions and cations) of the internal and external
solutions, respectively. Following this, the concentrations of
one solution can be prescribed in the sense of a boundary con-
dition, while the concentrations of the other solution may be
determined using the Donnan (1911) equation,

c+
m c−

m = c̄ +
m c̄ −

m , (35)

which provides the chemical equilibrium at the
semi-permeable membrane. Applying this concept to the
IVD means firstly that the two solutions will be referred
to as internal and external (surrounding) solutions while the
semi-permeable membrane must be understood as the bound-
ary surface of the IVD. Note in passing that exploiting the
Lanir (1987) assumption allows to extend the applicability of
Eq. (35) from the domain boundary to the whole IVD. Sec-
ondly, it is crucial to incorporate the fixed negative charges as
they contribute to the ion-concentration of the internal solu-
tion yielding the osmotic effect. Hence, the electro-neutrality
condition needs to be applied, thereby always ensuring
enough cations being left to balance out the fixed negative
charges. In this context, the following relations hold for the
external and internal solutions, respectively

z+c̄ +
m + z−c̄ −

m = 0 −→ c̄ −
m = c̄ +

m =: c̄m

(external solution),

z+c+
m + z−c−

m + z f cc f c
m = 0 −→ c−

m = c+
m − c f c

m

(internal solution). (36)

Therein, the corresponding valences were used for a mono-
valent salt solution (i.e., Na+Cl− ) reading z+ = 1 and
z− = z f c = −1. Inserting the results of Eqs. (36) into the
Donnan equation (35) yields the two relations

c+
m =

√√√√c̄ 2
m +
(

c f c
m

2

)
2 + c f c

m

2
and

c−
m =

√√√√c̄ 2
m +
(

c f c
m

2

)
2 − c f c

m

2
(37)

also known as the Donnan equilibrium. Finally, the constitu-
tive equation for the osmotic pressure (i.e., osmotic pressure
caused by large molecules, such as PGs and GAGs) can be
postulated by inserting Eqs. (37) and (36)1 into (34) and (14)2

yielding

TS
E,OSM = −∆π I = −2RΘ

[√
c̄ 2

m + (c f c
m /2)2 − c̄m

]
I,

(38)

where c f c
m is deformation dependent as seen in equation (9)2.
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In order to keep the model as general as possible, an Ogden
ansatz is chosen for the mechanical equilibrium and non-
equilibrium strain-energies, thereby allowing for the simu-
lation of any complexity level ranging from very simple to
highly non-linear material behaviour

W S
EQ = µS

0

M0∑

m=1

[
3∑

k=1

µ∗
0(m)

α0(m)

(
λ
α0(m)/2
S(k) − 1

)

−µ∗
0(m) ln (JS)

]
+ U S

EQ(JS),

(39)

W S
NEQ =

N∑

n=1

µS
n

Mn∑

m=1

[
3∑

k=1

µ∗
n(m)

αn(m)

(
(λ
αn(m)/2
Se(k) )n − 1

)

−µ∗
n(m) ln (JSe)n

]
+ U S

NEQ[(JSe)n].

Herein, λS(k) and (λSe(k))n for k = 1, 2, 3 denote the eigen-
values of the right CS and (CSe)n or the left BS and (BSe)n
deformation tensors, respectively. The Jacobians are defined
as JS = det FS and (JSe)n = det (FSe)n , and the indices m
and k denote the number of Ogden terms to be taken and
the dimension in space, respectively. Moreover, µS

0 > 0 and
µS

n > 0 are the first Lamé constants, i.e., the classical ground-
state shear moduli, whereas µ∗

0(m), µ
∗
n(m), α0(m), and αn(m)

represent dimensionless, real-valued material parameters. By
making specific choices of the parameters M , µ∗

m and αm

Model M µ∗
m αm

Varga 1 µ∗
1 = 2 α1 = 1

neo-Hooke 1 µ∗
1 = 1 α1 = 2

Mooney–Rivlin 2 µ∗
1 − µ∗

2 = 1 α1 = 2, α2 = −2

(40)

it turns out that the Ogden law (39) comprises other well-
known finite elasticity models, such as the Varga, neo-Hooke,
or Mooney–Rivlin model (Mooney 1940; Rivlin 1948; Varga
1966; Treloar 1975). Since the strain energies (39) describe
a porous material, a volumetric response function needs to
be defined in order to ensure the compaction point, which
is reached when there is no pore space left. However, due
to the very small permeability of soft biological tissues in
general, the volumetric response function mainly serves to
limit the dilatation of the ECM, as the compaction point is
rarely reached. Thus, the volumetric extension can be taken
in accordance to Eipper (1998), viz.

U S
EQ = ΛS

0

γ S
0

(
γ S

0 − 1 + 1
(1−nS

0S)
2

)

(
J
γ S

0
S − 1 − γ S

0 ln
JS − nS

0S

1 − nS
0S

+ γ S
0 nS

0S
JS − 1

1 − nS
0S

)
,

U S
NEQ =

N∑

n=1

ΛS
n

γ S
n

(
γ S

n − 1 + 1
[1−(nS

Si )n ]2

) (41)

(
(J
γ S

n
Se )n − 1 − γ S

n ln
(JSe)n − (nS

Si )n

1 − (nS
Si )n

+γ S
n nS

Si
(JSe)n − 1

1 − (nS
Si )n

)
.

Herein, ΛS
0 > 0 and ΛS

n > 0 are the second Lamé con-
stants, whereas γ S

0 > 1 and γ S
n > 1 are dimensionless

material parameters governing the non-linearity of the vol-
umetric extension terms. Moreover, the inelastic solidities
(nS

Si )n := nS
0S(J

−1
Si )n are introduced with the aid of the

inelastic Jacobian determinants (J−1
Si )n = det (FSi )n .

The anisotropic contribution of the strain-energy func-
tion describing the locally orthotropic fibre reinforcements
(Markert et al. 2005) can be postulated following a similar
polynomial concept as is used in the Ogden-ansatz yielding

W S
ANISO =

M f∑

q=1

[
µ̃S

q

γ̃ S
q
(I
γ̃ S

q /2
4 + I

γ̃ S
q /2

6 − 2)

− µ̃S
q ln (I4 I6)

1/2

]
∀I4, I6 ≥ 1. (42)

Therein, M f denotes the number of polynomials to be used,
µ̃S

q and γ̃ S
q are material parameters, and

I4 = MS
a · CS = (a0 ⊗ a0) · CS = a0 · CSa0,

(43)
I6 = MS

b · CS = (b0 ⊗ b0) · CS = b0 · CSb0

are the mixed invariants describing the squared stretches in
the respective fibre directions, thereby having a clear phys-
ical interpretation (Spencer 1984). In this context, the unit
fibre vectors a0 and b0 are defined in the undeformed state.
Like in the theory of ropes, the collagen fibres are assumed
to carry loads only under tension. Therefore, the restric-
tion {I4, I6} ≥ 1 must hold, which simultaneously satis-
fies restrictions stemming from polyconvexity considerations
(Balzani et al. 2005; Holzapfel et al. 2004; Schröder and
Neff 2003). Note in passing that the equilibrium and non-
equilibrium parts also fulfil the polyconvexity requirement,
thereby ensuring the existence of minimisers in variational
problems appearing in the framework of the finite element
method (FEM).
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5 Numerical modelling

The FEM has been proven to provide a suitable algorithm
to approximate the resulting set of coupled partial differen-
tial equations stemming from the extended biphasic solid–
fluid model. In this context, the local forms of the governing
multi-field equations (5)1,2 must be brought into a form suit-
able for the numerical approximation process. After inserting
Eq. (29) into (5)1, the quasi-static model under consideration
incorporates two main fields, namely the solid displacement
uS and the hydraulic pore-fluid pressure P. As the osmotic
pressure difference ∆π of the solid extra stress TS

E,OSM can
be added on the hydraulic pressure P, the entire pressure
p = ∆π + P of the model is introduced.

In regard of the FEM as the chosen variational approx-
imation method, the corresponding local forms of the field
equations are transferred into a so-called weak formulation
claiming to be fulfilled in an integral sense instead of seeking
for a closed-form solution for the strong formulation. Thus,
the strong forms (5)1,2 are integrated over the spatial domain
Ω occupied by the porous tissue at time t . Subsequently,
the variational formulation is obtained, when the respective
terms are weighted by independent test functions δuS and δP.
However, in order to allow the application of boundary con-
ditions, some of the volume integrals have to be transformed
into surface integrals. As there are two coupled differential
equations, the overall surface Γ = ∂Ω of the domain Ω is
mathematically split into

Γ = Γu ∪ Γt with Γu ∩ Γt = ∅,
(44)

Γ = ΓP ∪ Γq with ΓP ∩ Γq = ∅,
whereΓu andΓP are the Dirichlet boundaries for the unknown
quantities uS and P, while Γt and Γq represent the respec-
tive Neumann parts. After applying the product rule and the
Gaußian integral theorem, the weak formulations for the cor-
responding balances evolve
∫

Ω

div (uS)
′
S δPdv+

∫

Ω

[
K S

µF R
(grad P − ρF Rb)

]
·grad δPdv

+
∫

Γq

qδPda = 0,

∫

Ω

(
TS

E,MECH− pI
)

· grad δuS dv

−
∫

Ω

(
nSρS R +nFρF R

)
b · δuSdv −

∫

Γt

t · δuSda = 0.

(45)

Herein, q = nF wF · n is the volume efflux of ϕF over the
boundary Γq with the outward oriented unit surface normal n
and t = (TS

E,MECH − p I)n denotes the external load vector

acting on the boundary Γt. Note that the respective Neumann
boundaries include the surface fractions of all constituents,
i.e., solid and fluid, thereby ensuring physically meaning-
ful boundary conditions. However, it is still possible to set
conditions for q̄ and t at the same surface, while a simulta-
neous application of a Dirichlet and a Neumann condition is
forbidden according to (44). Following the standard Bubnov–
Galerkin method, the basis functions for the trial functions of
uS and P as well as the corresponding test functions of δuS

and δP are identical. As a result, the respective test functions
correspond with the trial functions, which causes δuS and δP
to vanish at Dirichlet boundaries Γu and ΓP , where discrete
values are prescribed.

As a next step, the weak forms (45) have to be discre-
tised in space, i.e., an appropriate approximation for the
unknowns uS and P has to be defined. Concerning the spa-
tial discretisation, i.e., the semi-discretisation with respect
to the space variable x, special care must be taken, as the
governing equations represent a strongly coupled solid-fluid
model, i.e., the unknown field quantities uS and P appear
in both equations of (45) (Zienkiewicz and Taylor 2000).
Hence, the unknowns have to be approximated simultane-
ously yielding a so-called mixed finite element formulation.
Regarding the volume balance (45)1 of the overall aggre-
gate, the gradient of the hydraulic pressure field needs to be
computed, leading to at least a linear discretisation of P.
Moreover, as the solid Cauchy extra stress tensor TS

E,MECH
implicitly depends on the gradient of the discretised displace-
ment field uS , its approximation needs to be one order higher
compared with the approximation used for the hydraulic pres-
sure field P. Then, an equal order approximation of the first
term in equation (45)2 is achieved. Thus, according to Sandhu
and Wilson (1969) the natural choice yields the usage of
so-called Taylor–Hood elements having quadratic basis func-
tions for the displacement uS and linear basis functions for
the hydraulic pressure P.

However, regarding numerical accuracy, stability and
numerical costs, the suitable choice of mixed finite element
formulations is by no means phenomenological, but rather
strictly mathematical. In this regard, the inf–sup condition,
often referred to as Ladyshenskaya–Babuška–Brezzi (LBB)
condition, needs to be fulfilled (Brezzi and Fortin 1991;
Braess 1997; Wieners 2003). Following this, the Taylor–
Hood elements fulfil the LBB condition and are the best
possible choice from a stability and accuracy point of view.
In regard of the complex geometries frequently involved
in computational biomechanics, the quadratic discretisation
also leads to a good geometry approximation, even with a
small number of elements. However, concerning the general
3-d case, the enormous number of mid nodes in finer meshes
causes quite large systems of equations, which often have
to be solved in parallel (Wieners et al. 2005; Ehlers et al.
2007). One possibility to overcome this problem is to use the
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so-called MINI element of Arnold et al. (1984) which has an
enriched linear ansatz for uS using a bubble node. This leads
to stable results but the obtained solution is not as accurate
anymore. Note that a linear–linear approximation of uS and

P leads to strange instabilities causing mesh dependent solu-
tions due to the so-called spurious pressure modes (Brezzi
and Fortin 1991).

Finally, the weakforms (45) have to be discretised in time
using a suitable numerical time integration method. In this
regard, finite differences are applied using the implicit Euler
scheme. More detailed information on how the biphasic
model is solved using general Runge-Kutta methods can be
found in Ellsiepen (1999), Diebels et al. (1999) or in the
special case of viscoelastic solid deformations in Markert
(2005).

As a next step, a brief introduction into the structure of the
resulting system of equations is given. Following the abstract
illustration of Ellsiepen (1999), the space-discrete variables
at Nu nodes are unified in u and the internal variables at Nq

quadrature points can be combined to q yielding

u=
[
(u1

S,P1), . . . , (uNu
S ,P Nu )

]T
,

q=
[

C1
Si(kl), . . . ,C

Nq

Si(kl)

]T

⎫
⎪⎬

⎪⎭
y=(uT , qT )T , (46)

where CSi(kl) are the six scalar history variables of the sym-
metric inelastic deformation tensor CSi . If more than one
Maxwell element is used, the number of inelastic history
deformation tensors is increased proportionally. The vector u
includes all the nodal degrees of freedom while q contains all
the history variables. Note that for the sake of clarity, the dif-
ferent ansatz functions for the solid displacement (quadratic)
and the hydraulic pressure (linear) are not regarded in (46).
Using the abbreviation ( · )′ := ( · )′S , the entire semi-discrete
initial-value problem of first order in time can be condensed
to

F(t, y, y′)=
[

g(t,u,u′, q)
l(t, q, q′,u)

]
=
[

Mu′ + k(u, q)− f
Aq′ − r(q,u)

]
!=0 .

(47)

Herein, initial conditions can be prescribed by applying
y(t0) = y0 at an initial time t0 < t . Moreover, k represents the
generalised stiffness vector containing the non-linear depen-
dencies on (u, q), while f denotes the vector of the external
forces including the Neumann load functionals. The prop-
erty of material incompressibility leads then to a non-regular
generalised mass matrix M, which turns the global system
g(t,u,u′, q) into a system of differential algebraic equations
(DAE). A possible time integration scheme solving this sys-
tem is the implicit or backward Euler scheme which is also
used for the computations in the next section. For more infor-
mation on the systematic comparison of the available time-
integration schemes towards their performance, the reader

is referred to Diebels et al. (1999) and Ellsiepen (1999). As
the material behaves partly inelastic, the non-linear system
g cannot be solved straight forward using Newton’s method.
Instead, the local system l(t, q, q′,u) containing the space-
discrete evolution equation (28) has to be solved in each step
of the global Newton iteration. Comparing the structure of
(28) with the general structure of l allows for the identifica-
tion of the regular matrix A with r denoting the rest of the
evolution equation. This local system of ordinary differential
equations (ODE) is also best suitably solved using the back-
ward Euler scheme in combination with a local Newton iter-
ation on element level. For more detailed information on this
so-called multilevel-Newton method, the reader is referred to
the comprehensive work of Ellsiepen and Hartmann (2001)
and references therein. In this regard, the convergence of
Newton’s method strongly depends on the consistent lineari-
sation of the non-linear DAE, which will not be given in this
paper due to its rather lengthy form. However, apart from the
osmotic and anisotropic contributions to the material tangent,
a comprehensive description of the missing linearisation of
the remaining major parts can be found in Markert (2005).

During every iteration step of the global Newton itera-
tion, a finite element code requires an algorithm computing
the solid Cauchy extra stress tensor TS

E,MECH at every inte-
gration point of the numerical quadrature. According to the
known procedure from elastoplasticity, every time the stress
needs to be computed in the global iteration, the local ODE
have to be solved on element level in order to accumulate
the viscoelastic overstress with the isotropic and anisotropic
equilibrium parts. The only difference is that no yield cri-
terion has to be checked in the case of viscoelastic material
behaviour. As a first step, the actual left solid deformation
tensor (BS)

act as well as its eigenvalues and eigentensors,
needed to compute the purely elastic Kirchhoff stress τ S

EQ, is
obtained from the actual solid deformation gradient (FS)

act.
Thereafter, the local Newton iteration starts and an indepen-
dent elastic trial state

(BSe)
trial
n = (FS)

act (C−1
Si )

last
n (FT

S )
act (48)

is computed via a transport of the last deformation tensor
(C−1

Si )
last
n taken from the last time step, but using the actual

deformation gradient (FS)
act as transporting quantity. Once

more, the elastic eigenvalues and tensors are calculated, but
now in order to obtain the trial overstress (τ S

NEQ)
trial from

the elastic part of the trial deformation tensor (BSe)
trial
n . As

the right-hand side of the viscoelastic evolution equation con-
tains the non-equilibrium trial stress expressed in the referen-
tial frame, the non-equilibrium trial stress is pulled back using
the transport (SS

NEQ)
trial = (F−1

S )act (τ S
NEQ)

trial (FT −1
S )act. If

the evolution equation is fulfilled on a satisfactory level, the
local iteration is stopped and the isotropic Kirchhoff stress
is finally obtained with the last trial stress satisfying (28).
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(a) (b)

Fig. 3 a Average dimensions (radius r = 4 mm, height h = 1.44 mm)
of the cylindrical NP specimen, boundary conditions (vertical displace-
ment ∆h = 0.144 mm, rotation angle ϕ) and b spatial discretisa-
tion (441 elements) for the torsion experiment. The colouring indi-

cates the qualitative distribution of the shear stress τ after the vertical
displacement ∆h and the rotation angle ϕ was applied. Note that the
angular outer shape of the deformed specimen in (b) is due to the
incapability of the post-processing to resolve quadratic elements

The anisotropic contribution is computed thereafter using
Eqs. (32) and (42). Together with Eq. (24)2, the sum of
the isotropic and anisotropic parts finally yields the purely
mechanical solid Cauchy extra stress tensor TS

E,MECH.
Due to the choice of P as primary variable, the model

does not a priori exhibit a stress-free reference configuration.
This becomes clear when the overall stress (14) of the model
is computed, thereby using values of the natural state, i.e.,
uS = 0 and P = 0. Due to (34), there is always an initial
osmotic pressure

∆π0S = RΘ [
√

4 c̄ 2
m + (c f c

0S )
2 − 2 c̄m] . (49)

Hence, the constant part∆π0S I is added onto the mechanical
extra stress (15) to enforce a stress-free reference configura-
tion in the sense of classical continuum mechanics. Note that
without this modification, the model would describe an ini-
tial swelling of the tissue until equilibrium between (49) and
the tension in the mechanical extra stress (15) is reached. For
the sake of this contribution, the described simpler approach
is followed and all computations start from a stress free ref-
erence configuration having the initial osmotic pressure (49)
added onto the mechanical solid extra stress.

6 Numerical examples

6.1 Torsion experiment on a cylindrical NP specimen

The first example addresses the intrinsic viscoelastic
material behaviour of the nucleus pulposus in shear. In this
context, a numerical torsion experiment is computed, follow-
ing the real experiments on non-degenerated cylindrical NP
specimens performed by Iatridis et al. (1997). Herein, the
specimens were harvested from shock frozen IVDs (region
L2–L5) and directly placed in a humidity chamber of a testing
apparatus. Note that according to the preliminary swelling
tests performed by Iatridis et al. (1997), the humidity
chamber provides the most stable hydration environment

yielding a relatively constant water content of the discs over
the three hours of testing time, i.e., no swelling occurs due to
the extraction of the specimen from its natural environment.
The specimen was then imposed to an axial compression of
10 % of the original height of the disc in order to ensure a
sufficient grip between the specimen and the two fully planar
and impermeable testing plates, when the angular displace-
ment ϕ is applied, thereafter. The relaxation of the recorded
torque MT of the top platen was then measured over time,
whereas the respective average maximum shear stress τ was
computed using the Saint-Venant theory for a circular cross
section, i.e.,

τ = 2 MT /π r3, (50)

where r is the radius of the cylinder. For the numerical para-
meter fit of the presented model to the experiments per-
formed in Iatridis et al. (1997), the disc was discretised using
20-noded mixed Taylor–Hood elements, as it is seen in Fig. 3.

The upper and lower surface of the disc have movements
prevented in the horizontal direction, whereas the upper sur-
face is displacement-driven in axial direction for 0.144 mm
and a duration of 2.0 s. This vertical displacement is then
held constant over the rest of the computation as well as the
hydrostatic pressure P = 0 MPa at the hoop surface and the
concentration c̄m = 0 mol/l of the external solution. Six hun-
dred seconds after the vertical displacement was applied, a
rotation angle ϕ is induced within 0.025 s on the top surface
and is again held constant for another 600 s, while the relax-
ation of the torsional shear stress is computed. For a better
comparability of the experiments in Iatridis et al. (1997) and
in order to overcome the problem of local solution deficien-
cies, the torque MT is computed, i.e., the corresponding shear
stresses are integrated over the top surface, and afterwards
inserted into (50).

In a first approach, the isotropic NP specimen was mod-
elled using one of the simpler material laws included in (39),
i.e., the neo-Hooke model. In contrast, a total number of two
Maxwell elements was needed, in order to reproduce the rapid
relaxation of the shear stress depicted in Fig. 4.
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Fig. 4 Results of the parameter fit for the torsion experiment in Iatridis
et al. (1997). The lines (dashed, solid, dotted) show the shear-stress
relaxation of the numerical simulation, while the dots are the measured
points at three different rotation angles, respectively. The parameter fit
was carried out for ϕ = 0.036 and held constant for ϕ = 0.018 and
ϕ = 0.054

Herein, the lines indicate the computed curves using the
model described above, whereas the circles display the mea-
sured values from Iatridis et al. (1997). In this context, the
parameters were fit manually to the curve corresponding to an
angular displacement of ϕ = 0.036. The other two curves,
i.e., ϕ = 0.018 and ϕ = 0.054, were then computed with
the identified parameters yielding a good agreement with the
measured points.

Some of the respective material parameters for the NP
(i.e., µS

j , ΛS
j , ηS

j , and ζ S
j for j = 0, 1, 2) have been fitted

using the shear stress-relaxation experiment and are listed
in Table 1. As the parameters occurring in (41) have an

influence on the volumetric deformations solely, they can
hence not be determined clearly. In this context, the assump-
tion of a constant Poisson ratio was made and the relation
stemming from the linear theory ΛS

j = 2µS
j ν/(1 − 2 ν)

with ν = 0.2 has been used, even though it is in the strict
sense only valid around the natural state. Moreover, it was
assumed that the volumetric viscosities have the same values
as the solid shear viscosities, i.e., ζ S

j = ηS
j . The parame-

ters γ S
j were chosen to limit the disc bulge in the swelling

experiment of the IVD, as seen in Fig. 5, whereas remaining
isotropic parameters (also for the AF as well as for the ver-
tebrae) were taken in accordance to the average values given
in Argoubi and Shirazi-Adl (1996), Eberlein et al. (2001),
Iatridis et al. (1996, 1997), Lee et al. (2000), Lim and Hong
(2000), Ochia and Ching (2002), Shirazi-Adl et al. (1986b),
Wu and Chen (1996) and references therein. The parameters
for the anisotropic stress contribution (42) were fitted to the
regional curves given in Holzapfel et al. (2005). Note in pass-
ing that according to Gu et al. (1999) the young AF has an
anisotropic permeability which becomes isotropic with age
or degeneration. Due to the almost impermeable character
of the AF and the fact that the directional variation of the
permeability is ‘only’ of factor two while the values given in
literature span over decades, the anisotropic permeability of
the AF is neglected in this contribution.

6.2 Swelling experiment of a sagittally cut NP

The second example is concerned with the swelling capa-
bility of the presented model. In this context, a swelling

Table 1 Material parameters of the biphasic model for the vertebrae, nucleus pulposus and anulus fibrosus, respectively

Vertebrae: treated with no distinction between cortical shell and spongiosa

K S
0S = 2.7 × 10−5 (mm2) nS

0S = 0.2 (–) µS
0 = 192.0 (MPa) κ = 0.0 (–)

µF R = 3.8 × 10−8 (MPa · s) c f c
0S = 0.0 (mol/l) ΛS

0 = 88.7 (MPa) γ S
0 = 1.0 (–)

Nucleus pulposus: treated as isotropic, viscoelastic and charged material

K S
0S = 3.5 × 10−12 (mm2) nS

0S = 0.2 (–) µS
0 = 0.5 (kPa) κ = 0.0 (–)

µF R = 6.9 × 10−10 (MPa · s) c f c
0S = 0.3 (mol/l) ΛS

0 = 0.3 (kPa) γ S
0 = 50.0 (–)

First Maxwell element ζ S
1 = 0.37 (kPa · s) µS

1 = 2.8 (kPa)

ηS
1 = 0.37 (kPa · s) ΛS

1 = 1.9 (kPa) γ S
1 = 12.0 (–)

Second Maxwell element ζ S
2 = 10.0 (kPa · s) µS

2 = 0.85 (kPa)

ηS
2 = 10.0 (kPa · s) ΛS

2 = 0.57 (kPa) γ S
2 = 12.0 (–)

Anulus fibrosus: treated as inhomogeneous anisotropic charged material

K S
0S = 6.2 × 10−12 (mm2) nS

0S = 0.3 (–) µS
0 = 0.95 (MPa) κ = 0.0 (–)

µF R = 6.9 × 10−10 (MPa · s) c f c
0S = 0.1 (mol/l) ΛS

0 = 2.2 (MPa) γ S
0 = 1.0 (–)

Ventro-Lat. Int. Ventro-Lat. Ext. Dorsal Int. Dorsal Ext.

µ̃S
1 (kPa) 34.3 146.3 5.9 50.8

γ̃ S
1 (–) 44.1 97.1 30.5 54.2

Isotropic contributions are always using the neo-Hookean model and inhomogeneities are modelled as is described in Ehlers et al. (2006a)
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Fig. 5 a Discretisation of the L4-L5 motion segment using 1898
Taylor–Hood elements, where the vertebrae are displayed in blue, the
NP in red and the AF in yellow. b Visualisation at t = 50 s, where the
arrows indicate the seepage velocity of the fluid inside the vertebra and

the colours display the osmotic pressure contribution (red =̂ 0.78 MPa
and blue 0.0 MPa). c The colouring indicates the bulge of the NP with
a peak value of 5.7 mm

phenomenon is computed, which occurred while Holzapfel
et al. (2005) performed an experiment on a sagittally cut
motion segment. Right after the specimen was cut in half
and placed on the laboratory table, the NP started to swell
out of the IVD and reached a maximum bulge of 4.9 mm, cf.
Fig. 4 in Holzapfel et al. (2005).

This behaviour is clearly a result of the tissue being
removed from its physiological setting, i.e., the state where
the net movement of fluid over the tissue boundary is bal-
anced out between the osmotically driven influx of fluid and
the mechanically driven efflux due to the pre-stressed solid
skeleton. Whenever this equilibrium is disturbed, the tissue
tends to gain chemical equilibrium again. For example, the
excess of ions inside the tissue attracts the surrounding fluid
with a lower ion concentration to get sucked inside, until
equilibrium is reached with the resulting excess of tension in
the solid skeleton. The cylindrical NP specimens could not
swell as they were not surrounded by any fluid. Even though
the sagittally cut motion segment is also not surrounded by
a fluid, the IVD is still connected with the adjacent verte-
brae, and hence, to the bone marrow. The results of the com-
putation in Fig. 5b shows clearly that the influx of fluid,
which is responsible for the bulge, stems from the verte-
brae.

The simulations are carried out on a sagittally cut geom-
etry of an L4-L5 motion segment, which is discretised using
1898 20-noded Taylor–Hood elements, cf. Fig. 5a, where
the vertebrae, the NP, and the AF are highlighted in blue, red
and yellow, respectively. The corresponding material para-
meters are listed in Table 1, whereas the inhomogeneities are
modelled as is described in Ehlers et al. (2006a). Following
the swelling experiment, only essential boundary conditions

are applied, which do not lead to a mechanical loading of
the tissue. In this regard, the top and bottom surfaces of the
vertebrae are fixed in space and a drainage (P = 0 MPa)
is ensured on all free surfaces. Furthermore, the concentra-
tion of the external solution is lowered from c̄m = 0.15 to
0.0 mol/l within 50 s and is then held constantly at zero for
another 5000 s.

Figure 5b shows the tendency of the fluid movement when
c̄m reaches zero, i.e., at t = 50 s. The seepage velocity of
the bone marrow is directed towards the IVD with its max-
imum osmotic pressure difference ∆π = 0.78 MPa indi-
cated in red. The reason for the fluid being attracted by an
excess of pressure becomes clear when Fig. 6a is observed,
which shows the evolution of p, ∆π , and P measured at
point A depicted in Fig. 5b. In the beginning of the compu-
tation, i.e., at t0 = 0 s, there is an initial osmotic pressure of
∆π0 = 0.31 MPa, which is solely carried via an ‘ingrown’
pre-stress in the solid skeleton. Hence, the hydraulic pres-
sure vanishes at t0 = 0 s. As the concentration c̄m of the
surrounding fluid is lowered, the osmotic pressure difference
∆π rises gradually inside the NP and the fluid starts to flow
into the IVD to equal out the excess of ions, thereby causing
a volume dilatation. However, due to the almost imperme-
able characteristics of the IVD, the inflow is constrained, and
hence, the volume dilatation inside the IVD happens really
slowly. Thus, the excess osmotic pressure difference is firstly
carried via a suction power of the hydraulic pressure P (part
I in Fig. 6a) and is then gradually released into tension car-
ried by the dilated solid skeleton (part II). The duration of
this process is strongly dependent upon the filter velocity of
the fluid that gets sucked inside, which is finally a function
of the gradient of the negative hydraulic pressure and the
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(a) (b)

Fig. 6 a Evolution of the osmotic pressure difference ∆π , the hydraulic pressure P and the overall pressure p measured at point A, cf. Fig. 5b,
inside the NP and b development of the NP bulge for the viscoelastic computation of the swelling experiment

resistance (i.e., permeability) of the tissue. In principle, this
behaviour is just like a reverse consolidation problem from
geomechanics, where a load on the top surface is firstly car-
ried by the pore fluid alone and later via the extra stress of the
solid skeleton. Note that if the medium was permeable with-
out any resistance, the consolidation or the swelling process
would be finished just after applying the load or concentra-
tion drop.

The endpoint of the swelling process is reached, when the
negative hydraulic pressure inside the tissue is discharged.
According to Fig. 6, this is the case at about t ≈ 3000 s.
The resulting bulge of the NP can be seen in Fig. 5c with the
maximum bulge of 5.7 mm, whereas the development of the
bulge is depicted in Fig. 6b.

7 Conclusions

Even though the presented numerical examples included only
the simpler possibilities of the constitutive equations (39)
and (42), the results clearly reveal the high capacity of the
model. In this regard, it was the idea to develop a model
which includes several levels of complexity, thereby having
the advantage of relatively easy identified material parame-
ters on the one hand and the possibility to describe arbitrary
material behaviour on the other.

In particular, it is a huge benefit to have a model, which
is capable to describe finite deformations with finite material
behaviour in the framework of a thermodynamically consis-
tent biphasic theory. In this context, the constitutive equa-
tions involved fully satisfy the premise of polyconvexity
and therefore, solutions of the numerical approximation are
guaranteed. Moreover, it is possible to numerically repro-
duce all the key functions that occur in charged tissues. On
that account any complexity level concerning the mechanical
behaviour of the solid skeleton, i.e., viscoelasticity, elasticity
and anisotropy, is possible. Regarding the electro-chemical
couplings, it is unfortunately not practicable to simultane-

ously have a tri- or quadriphasic model in combination with
the presented extended biphasic model, as the resulting set
of governing equations cannot be treated in a nice modular
manner. Keeping in mind that the model is to be used on com-
plex geometries in combination with other materials in the
framework of real applications, the choice was made in favor
of the simpler approach to only capture the basic osmotic
effects. This is adequate for most of the applications, thereby
ensuring a reasonable computation time on today’s personal
computers.

As a matter of fact, the application range of the model
is rather vast. For instance, it is possible to model any soft
biological tissue, i.e., cartilage, IVD or brain tissue, as well
as hard tissues like bones. Even man-made materials like
charged hydro-gel or super-absorbent polymers (SAP), which
are able to absorb as much as a thousandfold of their own dry
weight, are easily modelled.

The next step in the enhancement of this model is to
include degeneration effects like the loss of the fixed charge
density which, as a consequence, is often accompanied by
calcification, fracture or other mechanical damage. As
already seen in the numerical examples, the concentration of
the fixed negative charges attracts a certain amount of water,
thereby causing a certain extra pressure in the tissue. If this
mechanism is disturbed, the basic load-bearing behaviour is
modified, and in the case of the IVD, the collagen fibres might
be loaded with pressure instead of tension. This again might
trigger a cell metamorphosis leading to substantial structural
and, therefore, mechanical changes in the tissue. In this con-
text, it is necessary to derive appropriate evolution equations,
which trigger the respective damage due to certain mechani-
cal or chemical influences. With focus on the IVD, it is then
possible to identify possible mechanisms leading to hernia-
tion or calcification of the disc.

Acknowledgments We thank the German Research Foundation
(DFG) for funding the research project “Diffusions- und Strömung-
sprozesse in der anisotropen menschlichen Bandscheibe” under grant
number ‘Eh 107/16’.

123



An extended biphasic model for charged hydrated tissues with application to the intervertebral disc 249

References

Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analy-
sis of a lumbar motion segment in compression. J Biomech 29:
1331–1339

Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the
stokes equations. Calcolo 21:337–344

Ayad S, Weiss JB (1987) Biochemistry of the intervertebral disc. In:
Jayson MIV (ed) The lumbar spine and back pain, 3rd edn.
Churchill Livingstone, New York pp 100–137

Ayotte DC, Ito K, Perren SM, Tepic S (2000) Direction-dependent con-
striction flow in a poroelastic solid: The intervertebral disc valve.
ASME J Biomech Eng 122:587–593

Bachrach NM, Mow VC, Guilak F (1998) Incompressibility of the
solid matrix of articular cartilage under high hydrostatic pressures.
J Biomech 31:445–451

Balzani D, Neff P, Schröder J, Holzapfel G (2005) A polyconvex frame-
work for soft biological tissues. Adjustment to experimental data.
Int J Solids Struct 43:6052–6070

Biot MA (1941) General theory of three dimensional consolidation.
J Appl Phys 12:155–164

Bishop AW (1959) The effective stress principle. Teknisk Ukeblad
39:859–863

Boehler JP (1987) Introduction of the invariant formulation of
anisotropic constitutive equations. In: Boehler JP (ed) Applica-
tions of tensor functions in solid mechanics, CISM courses and
lectures No. 292. Springer, Wien pp 13–30

de Boer R (2000) Theory of Porous Media. Springer, Berlin
Bowen RM (1976) Theory of mixtures. In: Eringen AC (ed) Continuum

physics, vol III. Academic Press, New York pp 1–127
Bowen RM (1980) Incompressible porous media models by use of the

theory of mixtures. Int J Eng Sci 18:1129–1148
Braess D (1997) Finite elemente. Springer, Berlin
Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods.

Springer, New York
Diebels S, Ellsiepen P, Ehlers W (1999) Error-controlled Runge-Kutta

time integration of a viscoplastic hybrid two-phase model. Tech-
nische Mechanik 19:19–27

Donnan FG (1911) Theorie der Membrangleichgewichte und Mem-
branpotentiale bei Vorhandensein von nicht dialysierenden
Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiolo-
gie. Zeitschrift für Elektrochemie und angewandte physikalische
Chemie 17:572–581

Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M
(1996) Tensile properties of nondegenerate human lumbar anulus
fibrosus. Spine 21:452–461

Eberlein R, Holzapfel GA, Schulze-Bauer CAJ (2001) An anisotropic
model for annulus tissue and enhanced finite element analysis of
intact lumbar disc bodies. Comput Methods Biomech Biomed Eng
4:209–229

Eberlein R, Holzapfel GA, Fröhlich M (2004) Multi-segment FEA of
the human lumbar spine including the heterogeneity of the anulus
fibrosus. Comput Mech 34:147–165

Ehlers W (1989) Poröse Medien–ein kontinuumsmechanisches Modell
auf der Basis der Mischungstheorie. Habilitation, Forschungs-
berichte aus dem Fachbereich Bauwesen, Heft 47, Universität-
GH-Essen

Ehlers W (1991) Toward finite theories of liquid-saturated elasto-
plastic Porous Media. Int J Plast 7:433–475

Ehlers W (1993) Constitutive equations for granular materials in geo-
mechanical context. In: Hutter K (ed) Continuum mechanics in
environmental sciences and geophysics, CISM courses and lec-
tures No. 337. Springer, Wien, pp 313–402

Ehlers W (2002) Foundations of multiphasic and porous materials. In:
Ehlers W, Bluhm J (eds) Porous media: theory, experiments and
numerical applications. Springer, Berlin, pp 3–86

Ehlers W, Acartürk A (2007) The role of weakly imposed Dirich-
let boundary conditions for numerically stable computations of
swelling phenomena. Comput Mech (submitted)

Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for
soft tissues based on the Theory of Porous Media. ASME J Bio-
mech Eng 123:418–424

Ehlers W, Ellsiepen P, Blome P, Mahnkopf D, Markert B (1999) Theo-
retische und numerische Studien zur Lösung von Rand-und
Anfangswertproblemen in der Theorie Poröser Medien,
Abschlußbericht zum DFG-Forschungsvorhaben Eh 107/6-2.
Bericht Nr. Nr. 99-II-1 aus dem Institut für Mechanik (Bauwesen),
Universität Stuttgart

Ehlers W, Markert B, Acartürk A (2002) Large strain viscoelastic
swelling of charged hydrated porous media. In: Auriault JL,
Geindreau C, Royer P, Bloch JF, Boutin C, Lewandowska J
(eds) Poromechanics II, Proceedings of the 2nd Biot confer-
ence on poromechanics, Swets & Zeitlinger, Lisse (Netherlands),
pp 185–191

Ehlers W, Markert B, Acartürk A (2005) Swelling phenomena of
hydrated porous materials. In: Abousleiman YN, Cheng AHD,
Ulm FJ (eds) Poromechanics III, Proceedings of the 3rd Biot Con-
ference on Poromechanics, Balkema Publishers, pp 781–786

Ehlers W, Karajan N, Markert B (2006a) A porous media model
describing the inhomogeneous behaviour of the human interverte-
bral disc. Mater Sci Eng Technol 37:546–551

Ehlers W, Markert B, Karajan N (2006b) A coupled FE analysis of the
intervertebral disc based on a multiphasic TPM formulation. In:
Holzapfel GA, Ogden RW (eds) Mechanics of Biological Tissue,
Springer, Berlin, pp 373–386

Ehlers W, Karajan N, Wieners C (2007) Parallel 3-d simulations of a
biphasic porous media model in spine mechanics. In: Ehlers W,
Karajan N (eds) Proceedings of the 2nd GAMM Seminar on Con-
tinuum Biomechanics, Report No. II-16 of the Institute of Applied
Mechanics (CE), Universität Stuttgart, Germany, pp 11–20

Eipper G (1998) Theorie und Numerik finiter elastischer Deformationen
in fluidgesättigten Porösen Medien. Dissertation, Bericht Nr. II-1
aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart

Elliott DA, Setton LA (2000) A linear material model for fiber-induced
anisotropy of the anulus fibrosus. ASME J Biomech Eng 122:
173–179

Ellsiepen P (1999) Zeit- und ortsadaptive Verfahren angewandt auf
Mehrphasenprobleme pröser Medien. Dissertation, Bericht Nr.
II-3 aus dem Institut für Mechanik (Bauwesen), Universität
Stuttgart

Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of cur-
rent non-linear finite element analyses as differential–algebraic
equations. Int J Numer Methods Eng 51:679–707

Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quad-
riphasic mixture theory for intervertebral disc tissue. Int J Eng Sci
35:1419–1429

Frijns AJH, Huyghe JM, Kaasschieter EF, Wijlaars MW (2003)
Numerical simulation of deformations and electrical potentials in
a cartilage substitute. Biorheology 40:123–131

Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins B
(1999) The anisotropic hydraulic permeability of human lumbar
anulus fibrosus. Spine 24:2449–2455

Hassanizadeh SM, Gray WG (1987) High velocity flow in porous
media. Transp Porous Media 2:521–531

Hayes WC, Bodine AJ (1978) Flow-independent viscoelastic proper-
ties of articular cartilage matrix. J Biomech 11:407–419

123



250 W. Ehlers et al.

Holm S, Nachemson A (1983) Variations in the nutrition of the canine
intervertebral disc induced by motion. Spine 8:866–974

Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-
reinforced composites at finite strains: Continuum basis, computa-
tional aspects and applications. Comput Methods Appl Mech Eng
190:4379–4403

Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-
layer structural model for arterial walls with a Fung-type model,
and issues of material stability. ASME J Biomech Eng 126:
264–275

Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P (2005) Mono-
lamellar mechanics of the human lumbar anulus fibrosus. Biomech
Model Mechanobiol 3:125–140

Hsieh AH, Wagner DR, Cheng LY, Lotz JC (2005) Dependence of
mechanical behavior of the murine tail disc on regional mater-
ial properties: A parametric finite element study. J Biomech Eng
127:1158–1167

Huyghe JM, Houben GB, Drost MR (2003) An ionised/non-ionised
dual porosity model of intervertebral disc tissue. Biomech Model
Mechanobiol 2:3–19

Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus
pulposus a solid or a fluid? Mechanical behaviors of the human
intervertebral disc. Spine 21:1174–1184

Iatridis JC, Setton LA, Weidenbaum M, Mow VC (1997) The viscoelas-
tic behavior of the non-degenerate human lumbar nucleus pulposus
in shear. J Biomech 30:1005–1013

Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow
VC (1998) Degeneration affects the anisotropic and nonlinear
behaviors of human anulus fibrosus in compression. J Biomech
31:535–544

Iatridis JC, Laible JP, Krag MH (2003) Influence of fixed charge density
magnitude and distribution on the intervertebral disc: Applications
of a Poroelastic and Chemical Electric (PEACE) model. Trans
ASME 125:12–24

Kaasschieter EF, Frijns AJH, Huyghe JM (2003) Mixed finite ele-
ment modelling of cartilaginous tissues. Math Comput Simul 61:
549–560

Kleiber M (1975) Kinematics of deformation processes in materi-
als subjected to finite elastic–plastic strains. Int J Eng Sci 13:
513–525

Klisch SM, Lotz JC (1999) Application of a fiber-reinforced continuum
theory to multiple deformations of the annulus fibrosus. J Biomech
32:1027–1036

Klisch SM, Lotz JC (2000) A special theory of biphasic mixtures and
experimental results for human annulus fibrosus tested in confined
compression. ASME J Biomech Eng 122:180–188

Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling
and deformation behaviors of articular cartilage. ASME J Biomech
Eng 113:245–258

Laible JP, Pflaster DS, Krag MH, Simon BR, Haugh LD (1993) A
poroelastic-swelling finite element model with application to the
intervertebral disc. Spine 18:659–670

Lanir Y (1987) Biorheology and fluid flux in swelling tissues. I. Bicom-
ponent theory for small deformations, including concentration
effects. Biorheology 24:173–187

Lee CK, Kim YE, Lee CS, Hong YM, Jung JM, Goel VK (2000) Impact
response of the intervertebral disc in a Finite-Element Model.
Spine 25:2431–2439

Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl
Mech 36:1–6

Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear
analysis of cartilage in unconfined ramp compression using a fibril
reinforced poroelastic model. Clin Biomech 14:673–682

Li LP, Shirazi-Adl A, Buschmann MD (2003) Investigation of mechan-
ical behavior of articular cartilage by fibril reinforced poroelastic
models. Biorheology 40:227–233

Lim TH, Hong JH (2000) Poroelastic properties of bovine vertebral
trabecular bone. J Orthop Res 18:671–677

Marchand F, Ahmed AM (1990) Investigation of the laminate structure
of the lumbar disc anulus. Spine 15:402–410

Markert B (2005) Porous media viscoelasticity with application to poly-
meric foams. Dissertation, Bericht Nr. II-12 aus dem Institut für
Mechanik (Bauwesen), Universität Stuttgart

Markert B (2007) A constitutive approach to 3-d nonlinear fluid flow
through finite deformable porous continua with application to
a high-porosity polyurethane foam. Transp Porous Media 70:
427–450

Markert B, Ehlers W, Karajan N (2005) A general polyconvex strain-
energy function for fiber-reinforced materials. Proc Appl Math
Mech 5:245–246

Mooney M (1940) A theory of large elastic deformation. J Appl Phys
11:582–592

Mow VC, Hayes WC (1997) Basic orthopaedic biomechanics.
Lippincott-Raven, New York

Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and
stress relaxation of articular cartilage in compression: theory and
experiments. ASME J Biomech Eng 102:73–84

Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA
(1989) Biphasic indentation of articular cartilage. II. A numer-
ical algorithm and an experimental study. J Biomech 22:
853–861

Noll W (1958) A mathematical theory of the mechanical behavior of
continous media. Arch Rat Mech Anal 2:197–226

Ochia RS, Ching RP (2002) Hydraulic resistance and permeability in
human lumbar vertebral bodies. J Biomech Eng 124:533–537

Parent-Thirion A, Macías EF, Hurley J, Vermeylen G (2007) Fourth
European Working Conditions Survey. European Foundation for
the Improvement of Living and Working Conditions, Dublin

Raspe H, Hueppe A, Neuhauser H (2008) Back pain, a communicable
disease?. Int J Epidemiol 37:69–74

Reese S, Govindjee S (1998) A theory of finite viscoelasticity and
numerical aspects. Int J Solids Struct 35:3455–3482

Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The
internal mechanics of the intervertebral disc under cyclic loading.
J Biomech 35:1263–1271

Rivlin RS (1948) Large elastic deformations of isotropic materials. Proc
R Soc Lond Ser A 241:379–397

Sandhu RS, Wilson EL (1969) Finite-element analysis of seepage in
elastic media. ASCE J Eng Mech Div 95:641–652

Schanz M, Diebels S (2003) A comperative study of biot’s theory and
the linear Theory of Porous Media for wave propagation problems.
Acta Mech 161:213–235

Schmidt CO, Raspe H, Pfingsten M, Hasenbring M, Basler HD, Eich
W, Kohlmann T (2007) Back pain in the german adult population.
Prevalence, severity, and sociodemographic correlations in a mul-
tiregional survey. Spine 32:2005–2011

Schröder J, Neff P (2003) Invariant formulation of hyperelastic trans-
verse isotropy based on polyconvex free energy functions. Int J
Solids Struct 40:401–445

Schröder Y, Sivan S, Wilson W, Merkher Y, Huyghe JM, Maroudas
A, Baaijens FPT (2007) Are disc pressure, stress and osmolarity
affected by intra- and extrafibrillar fluid exchange. J Orthop Res
25:1317–1324

Shirazi-Adl A (1994) Nonlinear stress analysis of the whole lumbar
spine in torsion-mechanics of facet articulation. J Biomech 27:
289–299

Shirazi-Adl A (2006) Analysis of large compression loads on lumbar
spine in felxion and torsion using a novel wrapping element.
J Biomech 39:267–275

Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986a) A finite element
study of a lumbar motion segment subjected to pure sagittal plane
moments. J Biomech 19:331–350

123



An extended biphasic model for charged hydrated tissues with application to the intervertebral disc 251

Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical
response of a lumbar motion segment in axial torque alone and
combined with compression. Spine 11:914–927

Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC
(1994) Regional variation in tensile properties and biochemical
composition of the human lumbar anulus fibrosus. Spine 19:1310–
1319

Skempton AW (1960) Significance of Terzaghi’s concept of effective
stress (Terzaghi’s discovery of effective stress). In: Bjerrum L,
Casagrande A, Peck RB, Skempton AW (eds) From theory to prac-
tice in soil mechanics. Wiley, New York pp 42–53

Spencer AJM (1972) Deformations of fiber-reinforced materials.
Oxford University Press, NY, USA

Spencer AJM (1982) The formulation of constitutive equations
for anisotropic solids. In: Boehler JP (ed) Mechanical behav-
ior of anisotropic solids, Proceedings of the Euromech Col-
loquium, vol 115, Martinus Nijhoff Publishers, The Haque,
pp 2–26

Spencer AJM (1984) Constitutive theory for strongly anisotropic
solids. In: Spencer AJM (ed) Continuum theory of the mechan-
ics of fibre reinforced composites, CISM Courses and Lectures
No. 282. Springer, Wien pp 1–32

Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite
element formulation of triphasic mechano-electrochemical theory
for charged, hydrated biological soft tissues. Int J Numer Methods
Eng 45:1375–1402

Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Claren-
don Press, Oxford

Truesdell C (1949) A new Definition of a Fluid, II. The Maxwellian
fluid. Tech. Rep. P-3553, § 19, US Naval Research Laboratory

Urban J, Holm S (1986) Intervertebral disc nutrition as related to spinal
movements and fusion. In: Hargens AR (ed) Tissue nutrition and
viability. Springer, Berlin, pp 101–119

Urban JPG, Roberts S (1996) Intervertebral disc. In: Comper WD (ed)
Extracellular matrix, vol 1, Tissue function. Harwood Academic
Publishers GmbH, pp 203–233

van Loon R, Huyghe FM, Wijlaars MW, Baaijens FPT (2003) 3D FE
implementation of an incompressible quadriphasic mixture model.
Int J Numer Methods Eng 57:1243–1258

Varga OH (1966) Stress–strain behavior of elastic materials. Inter-
science, New York

Wieners C (2003) Taylor–Hood elements in 3D. In: Wendland WL,
Efendiev M (eds) Analysis and simulation of multified problems.
Springer, Berlin pp 189–196

Wieners C, Ehlers W, Ammann M, Karajan N, Markert B (2005)
Parallel solution methods for porous media models in biomechan-
ics. Proc Appl Math Mech 5:35–38

Wilson W, van Donkelar CC, Huyghe JM (2005) A comparison
between mechano-electrochemical and biphasic swelling theories
for soft hydrated tissues. ASME J Biomech Eng 127:158–165

Wu JSS, Chen JH (1996) Clarification of the mechanical behavior of
spinal motion segments through a three-dimensional poroelastic
mixed finite element model. Med Eng Phys 18:215–224

Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis,
vol 1, 5th edn. Butterworth Heinemann, Oxford

123


	An extended biphasic model for charged hydrated tissueswith application to the intervertebral disc
	Abstract
	1 Introduction and overview
	2 Theory of Porous Media (TPM)
	3 Balance relations
	4 Constitutive assumptions
	4.1 Saturation constraint and entropy inequality
	4.2 Effective stress of the fluid and solid constituent
	4.3 Inelastic solid kinematics
	4.4 Entropy principle for viscoelastic solid skeleton
	4.5 Dissipation of the viscous solid skeleton
	4.6 Dissipation of the viscous interstitial fluid
	4.7 General structure of the solid strain energy
	4.8 Specific solid strain energies

	5 Numerical modelling
	6 Numerical examples
	6.1 Torsion experiment on a cylindrical NP specimen
	6.2 Swelling experiment of a sagittally cut NP

	7 Conclusions
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


