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Abstract This study suggests a method to compute the
material parameters for arteries in vivo from clinically reg-
istered pressure-radius signals. The artery is modelled as a
hyperelastic, incompressible, thin-walled cylinder and the
membrane stresses are computed using a strain energy. The
material parameters are determined in a minimisation pro-
cess by tuning the membrane stress to the stress obtained
by enforcing global equilibrium. In addition to the mechan-
ical model, the study also suggests a preconditioning of the
pressure-radius signal. The preconditioning computes an
average pressure-radius cycle from all consecutive cycles in
the registration and removes, or reduces, undesirable distur-
bances. The effect is a robust parameter identification that
gives a unique solution. The proposed method is tested on
clinical data from three human abdominal aortas and the
results show that the material parameters from the proposed
method do not differ significantly (p < 0.01) from the cor-
responding parameters obtained by averaging the result from
consecutive cycles.

Keywords Abdominal aorta · Continuum model · In vivo ·
Mechanics · Parameter identification

1 Introduction

One of the major objectives of cardiovascular research is
to learn more about the interaction of the different constit-
uents that comprises the system. In this knowledge resides
the key to understanding important processes such as age-
ing and development of diseases, both closely related to the
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mechanics of the soft tissue. For instance, it is generally
accepted that the abdominal aorta stiffens with age (Länne
et al. 1992; Sonesson et al. 1993). This is believed to be
related to fibrosis and progressive depositions of amorphous
substances for the elastin (Nichols and O’Rourke 2005) and
to increased cross-linking for collagen (Bailey et al. 1998).
These processes reduce the mobility of the constituents, for
instance, the increased cross-linking of collagen with age
restrains the unfolding of the molecule and the arterial wall
stiffens.

Several studies have tried to assess the mechanical
properties of the normal and the diseased arterial wall. The
most detailed are in vitro studies in which both the global
response and the micro structural changes to different loads
and stimuli can be assessed, see, for instance, Cattell and
Anderson (1996), Holzapfel et al. (2005), and Schulze-Bau-
er et al. (2003). These studies are of great importance since
they provide information which can be used to develop new
models. However, a weakness of all in vitro studies is that the
specimen is deprived of its environment, e.g. the periadventi-
tial support and different chemical and hormonal stimuli. In
addition, in vitro studies are also impossible to use clinically
since they require dissection of the specimen. Other stud-
ies have tried to assess the mechanical properties in vivo,
see for instance, Ryden-Ahlgren et al. (2001), Hansen et al.
(1995), Länne et al. (1992), and Sonesson et al. (1993).
Therein, the arterial wall stiffness is estimated by the pres-
sure strain elastic modulus (Peterson et al. 1960) or the,
so-called, stiffness (Kawasaki et al. 1987). Although appeal-
ingly simple, the measures suffer from a weakness: they are
based on the global pressure-radius response of the arter-
ies while the cause is related to the micro structure. The
need for a more detailed in vivo method that links the
global response to the underlying structure is, therefore,
evident.
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142 J. Stålhand

Attempts at developing a detailed method for the in vivo
situation has been presented before, see Schulze-Bauer and
Holzapfel (2003) and previous work from our research group
(Stålhand and Klarbring 2005, 2006; Stålhand et al. 2004).
Methods for the in vivo case must handle a couple of com-
plications that are not present for the in vitro case. First,
the data to the model are often incomplete in the sense that
only the pressure-radius response is registered excluding all
information in the axial direction of the vessel. In addition,
the registration time is often limited for practical reasons and,
therefore, the number of available pulses. Second, data col-
lected under in vivo conditions are often afflicted by distur-
bances, e.g., respiratory motion and involuntary movements
of the ultrasonic probe. An example can be seen in the last
radii cycles in Fig. 1 where the hand-held ultrasonic probe
is slightly shifted and loses focus; a measurement error is,
thereby, introduced. The effect of the measurement error is a
deterioration of the parameter identification process, result-
ing in large variations of the parameters identified from con-
secutive pulses, as will be shown. An intuitive solution is to
use the mean of the parameters. The mean may not be a good
choice in all situations, however, since it is sensitive to outli-
ers. This problem is further aggravated by the limited num-
ber of pulses. This study addresses the identification issues
outlined above and proposes a method to obtain a unique
set of material parameters. The method comprises a signal
processing routine and a mechanical model. The signal pro-
cessing routine removes noise, corrects any offset between
the pressure and radius signals, and computes an average, or
system, shape for the registered pulses. The result is then fed
to a mechanical model which approximates the artery as a
thin-walled, homogeneous cylinder and computes the mem-
brane stresses using a two-dimensional form of the strain-
energy function proposed by Holzapfel et al. (2000). The
membrane stresses are determined down to a set of unknown
material and geometrical parameters. These parameters are
obtained by a least-squares fitting of the membrane stresses
and the stresses computed by enforcing global equilibrium.
Since the parameter identification operates on the average
shape, a unique set of model parameters are obtained for
each subject and the problems associated with the mean are
not encountered.

2 Method

The mechanical model and the signal processing routine are
described in the following subsections. Two sets of stresses
are determined for the mechanical model: equilibrium
stresses and constitutively determined stresses. These sets
are then used in the parameter identification where the under-
lying idea is that the membrane stress computed in the two
different ways should be equal.
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Fig. 1 A typical clinical registration of the pressure and radius. Note
the measurement error in the radius signal at the end of the registration
(the strong coning of the cycles in the interval 8–12 s)

2.1 Equilibrium stress

Let the abdominal aorta be given by a thin-walled, incom-
pressible cylinder of length l, and inner and outer radius r0

and r1, respectively. The cylinder is subjected to a pressure at
the inner boundary while the outer boundary is traction free.

By enforcing global equilibrium, the circumferential and
axial stress are computed to be:

σθθ = P(r1 + r0)

2h
, σzz = πr2

0 P + F

A
, (1)

where P is the transmural pressure, h � r0 is the wall thick-
ness, F is the external axial force (equal to the force mea-
sured in in vitro inflation tests) and A is the current wall
cross-sectional area. The outer radius and wall thickness can
be eliminated from the circumferential stress using the rela-
tions A = 2πr0h and r1 = r0 + h. After the elimination the
membrane stresses become

σθθ =
(

2πr2
0

A
+ 1

2

)
P, σzz = πr2

0 P + F

A
. (2)

To compute the membrane stresses, two assumptions need
to be made (Schulze-Bauer and Holzapfel 2003),

(i) the axial force and the axial stretch are constant and
independent of the internal pressure, and

(i) the ratio between the axial and circumferential stress is
known at one internal pressure P .

The axial force in Eq. (2)2 can be determined explicitly
by applying condition (ii). If the ratio γ = σzz/σθθ is known
at the pressure P , the axial force is given by:
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F = πr2
0 P

(
2γ + γ A

2πr2
0

− 1

)
, (3)

where r0 is the inner radius corresponding to P . Note that
Eqs. (2) and (3) do not depend on the material properties
of the vessel. They are only functions of the applied load
and geometry, and, as a consequence, the membrane stress
becomes statically determined.

2.2 Constitutively determined stress

In addition to the loaded state previously described, intro-
duce an unloaded, stress-free reference state. Let the refer-
ence state be a thin-walled cylinder of length L , and inner and
outer radius R0 and R1, respectively. The deformation out of
the reference state is described by the deformation gradient

F = λθEθ ⊗ Eθ + λzEz ⊗ Ez + λr Er ⊗ Er , (4)

where λθ , λz , and λr are the stretches, and Eθ , Ez , and Er are
the cylindrical base vectors. The indices θ , z, and r denote the
circumferential, axial, and radial directions, respectively. For
future use we also introduce the right Cauchy-Green stretch
tensor defined as C = FTF where a superscribed T denotes
the transpose. The stretches in Eq. (4) are not independent
since the arterial wall is incompressible. The stretches must,
therefore, satisfy the incompressibility constraint

det F = λθλzλr = 1. (5)

The stress tensor for an hyperelastic, incompressible material
is given by (Holzapfel 2000)

σmod = −pI + F
∂ψ

∂C
FT, (6)

where p is an arbitrary multiplier associated with the incom-
pressibility, I is the identity tensor, andψ is the strain energy.
The superscript mod indicates that the stresses are associ-
ated with the continuum model. Following Holzapfel et al.
(2000), we take the strain energy function to be additively
decomposed into an isotropic part ψiso associated with the
non-collageneous materials such as elastin, smooth muscle
cells, and other cellular and non-cellular material, and an
anisotropic part ψani associated with the embedded collagen
fibres. Thus,

ψ = ψiso + ψani. (7)

In addition, let the collagen fibres be oriented along the
two (non-parallel) direction vectors M and N in the refer-
ence state and introduce the particular strain-energy functions
suggested in Holzapfel et al. (2000):

ψiso = c(I1 − 3),

ψani = k1

2k2

(
ek2(I4−1)2 + ek2(I6−1)2 − 2

)
, (8)

where I1 = tr C, I4 = M · CM, I6 = N · CN. The constants
must satisfy c, k1, k2 > 0 to guarantee material convexity.
Let the collagen fibres be oriented in two concentric helices,
symmetrically arranged around the circumferential direction.
If the pitch angle relative to the circumferential direction is
β, the fibre direction vectors are given by:

M = cosβ Eθ + sin β Ez, N = cosβ Eθ − sin β Ez . (9)

The average radial stress in a thin-walled cylinder can be
approximated by −Pr0/(r0 + r1) (Humphrey 2002) and is
at least one order-of-magnitude smaller than the other mem-
brane stresses, c.f., Eq. (1). The radial stress is, therefore,
taken to be σrr = σmod

rr ≈ 0. The arbitrary multiplier p
can now be determined by substituting Eqs. (4) and (7)–(9)
in Eq. (6) and applying σmod

rr = 0. The result reads p =
2cλ2

r = 2c(λθλz)
−2, where the last equality follows from

Eq. (5). Back-substitution of the result into Eq. (6) gives the
circumferential and axial stress

σmod
θθ = 2c

(
λ2
θ−

1

(λθλz)2

)
+ 4k1(I − 1)ek2(I − 1)2λ2

θ (cosβ)2,

σmod
zz = 2c

(
λ2

z−
1

(λzλθ )2

)
+ 4k1(I − 1)ek2(I−1)2λ2

z (sin β)2,

(10)

where I = I4 = I6 = λ2
θ (cosβ)2 + λ2

z (sin β)2.
In order to compute the model stresses for a given set of

material parameters, c, k1, k2, and β, we must define the
stretches λθ and λz . Let the stretches in the mid-wall be
defined as

λθ = r1 + r0

R1 + R0
, λz = l

L
.

The outer radii can be eliminated from the circumferential
stretch in analogy with the method used for Eq. (2). Take
the referential cross-sectional wall area to be A0 = 2πR0 H ,
where H is the referential wall thickness, and use R1 =
R0 + H to arrive at

λθ = R0

r0

4πr2
0 + A

4πR2
0 + A0

.

The referential and current cross-section areas are related
through the incompressibility constraint. Incompressibility
implies constant volume for the vessel wall and, hence, Al =
A0 L . By substituting Al/L for A0 and using that λz = l/L ,
the stretches can be written as

λθ = R0

r0

4πr2
0 + A

4πR2
0 + λz A

, λz = l

L
. (11)
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For a given set of material parameters, the membrane σmod
θθ

and σmod
zz can now be computed by substituting Eq. (11) in

Eq. (10).

2.3 Signal processing routine

To improve the performance of the method, the measured sig-
nals are subjected to a preconditioning step prior to the iden-
tification process. The preconditioning step has the objective
to remove, or reduce, disturbances in the signals that dete-
riorates the parameter identification. The disturbances are
typically noise, respiratory artifacts, and errors introduced
by small, involuntary movements of the ultrasonic probe.
Albeit not related to the mechanical model itself, this step is
crucial in order to have robust parameter identification, see
Sect. 5. The preconditioning step suggested in this subsec-
tion is suitable for implementation as an automatic routine
prior to the parameter identification.

The measurement consists of simultaneous registrations
of the internal pressure and the inner radius at a uniform
sampling time T . First, the signals are zero-phase filtered
through a low-pass fourth-order Butterworth filter to remove
noise. The cut-off frequency of the filter is chosen to be 15 Hz
following Fetics et al. (1999).

Second, the pressure and radius signals are re-aligned in
the time domain to remove an offset associated with the
measurement setup, see Sonesson et al. (1994). The offset is
automatically estimated using a low-order ARX model (auto-
regressive exogenous model, see Ljung 1999). The ARX
model is based on a linear difference equation relating the
output y(t) and the input u(t) according to

y(t)+ a1 y(t − T )+ · · · + ana y(t − naT )

= b1u(t − (nk + 1)T )+ · · · +
bnb u(t − (nk + nb)T )+ e(t), (12)

where the output y(t) depends on the na previous outputs,
the nb previous inputs delayed nk samples, and the error
term e(t). The parameters ak (k = 1, . . . , na) and bl (l =
1, . . . , nb) in Eq. (12) can be computed using linear regres-
sion for a given model order and delay (Ljung 1999). An
estimate of the offset is obtained in the following way: the
pressure and radius signals are chosen as output and input to
the ARX model, respectively. After a suitable scaling where
the signals are given the same order of magnitude, the linear
regression is computed for different delays using an ARX
model of order na = 1 and nb = 2. The offset is taken to be
the delay with the lowest residual. The particular ARX model
chosen in this case corresponds to a classical viscoelastic
three-parameter element, c.f., Flügge (1975). This element
is able to separate the offset associated with the measure-
ment setup from the time delay associated with the intrinsic

viscoelastic properties of the wall. In this way, the correction
does not affect the offset associated with the viscoelasticity.

Third, the pressure and radius signals are segmented into
consecutive pulses after the re-alignment. The segmentation
is done by computing the second derivative of the pressure
signal with respect to time using a central difference formula.
At the onset of the systolic (loading) flank, the second deriv-
ative has a characteristic peak-up–peak-down pattern that is
used as a trigger. The minimum pressure is sought in a win-
dow around the trigger and stored. A complete pulse cycle is
then defined as the samples between two pressure minima.

Fourth, average pulses for the pressure and the radius
signals are computed for each subject using the segmented
pulses. The average pulse is computed using a method called
corrected integral shape averaging (CISA), see Boudaoud
et al. (2007).

Finally, the average pressure-radius loop is re-sampled
from time equidistant to path equidistant samples along the
averaged pressure-radius loop using cubic interpolation. Path
equidistant samples give the same weight to the whole
pressure-radius cycle in the parameter identification and
avoids the higher weight implicitly placed on parts with
slower dynamics by time equidistant sampling, see Stålhand
et al. (2004).

2.4 Parameter identification

Let the processed radius and pressure signals, r0 and P ,
respectively, be the input to the mechanical model defined
by Eqs. (10) and (11). The mechanical model is determined
down to the model parameters R0, λz , c, k1, k2, β, and the
cross-sectional area A. These parameters must be obtained by
a parameter identification process. The cross-sectional area
was not available for the data at hand but it is, in principle,
measurable using ultrasonic equipment. It will, therefore,
be eliminated using published data for the intima-media-
complex in humans, see Sect. 3.

The parameters can be computed by applying standard
minimisation techniques. For instance, define the objective
function as the sum of squared errors for the membrane
stresses as

φ(κ) =
n∑

j=1

[(
σmod
θθ (κ, r0, j )− σθθ (r0, j , Pj )

)2 +
(
σmod

zz (κ, r0, j )− σzz(r0, j , Pj )
)2

]
, (13)

where κ = (R0, λz, c, k1, k2, β) is a vector, j denotes a sam-
ple, and n is the total number of samples in the average pulse.
The model parameters are then the solution to the minimisa-
tion problem:
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Determination of human arterial wall parameters from clinical data 145

{
min

κ
φ(κ)

subject to: κ ≤ κ ≤ κ,

where κ and κ are the lower and upper bounds for κ , respec-
tively. The standard function fmincon in the Matlab Opti-
mization Toolbox (The Mathworks, Natick, MA, USA) is
used to solve the minimisation problem in this study. The
exact jacobian for the objective function φ(κ) is supplied to
enhance the robustness and convergence rate of the parame-
ter identification process.

3 Material

The material for this study is three healthy, non-smoking,
Caucasian males, see Table 1. The pressure was measured
invasively using a catheter while the radius was obtained non-
invasively through an echo-tracking system. For a detailed
description of the material and the measurements, see Sones-
son et al. (1994). Informed consent was given by each subject
prior to investigation.

The current wall cross-sectional area was not available for
the data at hand. It was instead approximated by the intima-
media area in the male human abdominal aorta obtained from
Åstrand et al. (2005). To account for the adventitial thick-
ness, it was assumed that the intima-media-complex com-
prises two-third of the wall thickness (Holzapfel et al. 2000).
After correction, the current wall cross-sectional area is given
by: A = 19.60 + 0.80 × age(p < 0.0001), where A is in
mm2 and age is in years.

4 Results

The method described in Sect. 2 is applied to the subjects
in Table 1. The stress ratio is taken to be γ = 0.59 at
the pressure P = 13.3 kPa following Schulze-Bauer and
Holzapfel (2003). There is no unique pressure-radius relation
because of the hysteresis, and the associated inner radius r0

is taken to be the average of the two flanks at P . The lower
bounds for R0, c, k1, and k2 are set to 10−8 to guarantee
strictly positive values. The lower and upper bounds on λz

are set to 1.0 and 1.3, respectively, the former chosen to avoid

Table 1 Data for the subjects used in the method

Subject Age (years) Length (cm) Weight (kg) DBP (kPa) SBP (kPa)

I 41 MI MI 9.6 16.1

II 25 191 83 8.4 15.8

III 24 168 67 9.4 16.8

DBP and SPB are the diastolic and systolic blood pressures, respec-
tively, MI missing information

Table 2 Model parameters computed by using the average cycle from
the CISA method

Subject R0 (mm) λz (–) c (kPa) k1 (kPa) k2 (–) β (deg)

I 5.61 1.08 34.40 10.31 5.61 46.1

II 5.86 1.05 18.80 44.20 2.56 45.7

III 5.53 1.04 40.86 20.92 4.41 50.2

Table 3 Model parameters computed by taking the average of the
parameters obtained for the consecutive cycles (mean ± 1SD)

Subject No. cycles R0 (mm) λz (–)

I 10 5.65 ± 1.36 1.12 ± 0.07

II 10 4.74 ± 1.65 1.09 ± 0.11

III 9 5.46 ± 0.20 1.05 ± 0.01

Subject c (kPa) k1 (kPa) k2 (–) β (deg)

I 26.49 ± 14.07 7.32 ± 4.20 4.73 ± 3.73 47.2 ± 2.2

II 21.74 ± 28.26 21.26 ± 16.48∗∗∗ 3.60 ± 14.26 49.7 ± 5.48

III 38.70 ± 8.49 21.16 ± 4.94 4.31 ± 1.57 50.2 ± 0.65

*** significant difference compared to the parameter in Table 2 at the
p < 0.001 level

buckling and the latter as a physiological upper limit, see
Stålhand et al. (2004). Note, however, that axial stretch under
1.0 has been observed in elderly (Schulze-Bauer et al. 2003).
The bounds for the fibre angle is taken to be 10−8 ≤ β ≤ π/2
to guarantee non-parallel fibre vectors.

The model parameters are computed in two different ways:
first, using the average cycle from the CISA method described
in Sect. 2.3, and, second, by identifying a set of model param-
eters for each consecutive cycle and taking the mean of all
cycles. The results are presented in Tables 2 and 3.

The parameters in Table 3 are tested to see if there is any
significant difference compared to the parameters in Table
2 using a paired t-test. Values of p < 0.01 are considered
significant. The results show that there is no significant dif-
ference in the parameters identified using the CISA cycle or
the mean parameters from the consecutive cycles, apart from
k1 for subject II. The p-value and the confidence intervals
from the t-test are presented in Table 4 for completeness.

Finally, the membrane stresses are computed using the
values in Table 2 and the result is presented in Figs. 2, 3 and
4. The physiological condition for each subject is indicated
by a bar.

5 Discussion

A comparison of the parameters obtained using the average
cycle in Table 2 and the mean of the parameters from the
consecutive cycles in Table 3 shows reasonable agreement,
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Table 4 The p-value and the 99% confidence interval (CI) from a
paired t-test to compare the parameters computed by the CISA method
to the those computed by taking the average of the consecutive cycles

Subject R0 (mm) λz (–)

I p 0.115 0.078

CI [−0.51 , 1.88] [−0.10 , 0.02]

II p 0.094 0.254

CI [−0.58 , 2.42] [−0.15 , 0.06]

III p 0.307 0.723

CI [−0.12 , 0.26] [−0.01 , 0.01]

Subject c (kPa) k1 (kPa) k2 (–) β (deg)

I p 0.114 0.337 0.440 0.151

CI [−5.19 , 19.40] [−3.34 , 6.84] [−2.32 , 4.08] [−2.92 , 0.92]

II p 0.316 0.0001 0.250 0.047
CI [−34.94 , 16.52] [9.94 , 39.94] [−18.34 , 7.62] [-8.69 , 1.29]

III p 0.458 0.888 0.853 0.464

CI [−6.11 , 10.42] [−5.04 , 4.57] [−1.43 , 1.63] [−0.79 , 0.47]
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Fig. 2 The membrane stress in the abdominal aorta wall as a function
of the stretches for subject I. Solid and dashed lines are the tangential
and axial stress, respectively, at, from left to right, 50, 100, 200, 500,
and 1000 kPa. The vertical bar indicates the physiological range for the
subject

an observation also corroborated by the t-test. This is in
particular true for subject III who has notably uniform
pressure-radius cycles, indicated by a small standard devi-
ation for the parameters, in comparison with the others. For
this subject, the mean of the parameters from the consecutive
cycles is very close to the value from the average cycle. This
result shows that the parameters obtained from the two meth-
ods converge as the intra cycle difference tends to zero, as
expected. For subject II, on the other hand, the intra cycle
variance is substantial, see Fig. 5. The variance causes a con-
siderable difference for the material parameters in Table 3,
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Fig. 3 The membrane stress in the abdominal aorta wall as a function
of the stretches for subject II. Plot key same as in Fig. 2
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Fig. 4 The membrane stress in the abdominal aorta wall as a function
of the stretches for subject III. Plot key same as in Fig. 2

as indicated by the large standard deviation, which can be
expected since the parameter identification uses the pressure-
radius response curve. On closer inspection, it can be seen
that the pulses at both ends of the registration are affected
by the measurement, see Fig. 1. If these pulses are removed
and the average is recomputed by using cycles 2–7, the result
becomes: R0 = 5.036±1.603 mm, λz = 1.030±0.023, C =
21.72±19.59 kPa, k1 = 29.89±12.11 kPa, k2 = 2.87±1.87,
and β = 50.4 ± 7.0 (mean ± SD). The mean is closer to
the values obtained using the average cycle but the stan-
dard deviations are of the same order as before, c.f., Table 3.
This indicates that there still is a substantial variation among
the parameters. However, there is no longer a significant
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Fig. 5 Distribution of the consecutive pressure-radius cycles for
subject II (dashed lines) and the average cycle (solid line)

difference between the mean values and the parameters from
the average cycle in Table 2 when using a paired t-test.

The average cycle has two features which makes it attrac-
tive. First, it is a simple way to reduce the superimposed
motion from respiration by averaging the effect from inha-
lation and exhalation. Second, the average cycle may be
thought of as the underlying system cycle that the artery will
have free of disturbances. This means that the parameters
identified using the average cycle are a better representation
of the true arterial properties than the average parameters
from the consecutive cycles. This is because the parameters
in the latter case also model possible measurement errors and
respiratory artifacts. Finally, the cost for computing an aver-
age cycle, in terms of CPU time, is much smaller than the
cost to compute the model parameters. The proposed method
is, therefore, much cheaper.

The abdominal aorta is modelled as a cylindrical, homo-
geneous membrane in this study. In reality, this assumption
is questionable. First, the wall thickness to radius ratio for
arteries is, generally, greater than 0.1 (Nichols and O’Rourke
2005) and the aorta should be treated as thick wall cylinder.
A thick walled theory is much more complex in terms of
modelling and parameter identification, however (Stålhand
et al. 2004), and this study is, therefore, confined to treat-
ing the aorta as a cylindrical membrane. Second, most arter-
ies consist of three separate layers: tunica intima, tunica
media, and tunica adventitia. Each layer has a unique con-
stitution and mechanical properties (Holzapfel et al. 2000,
2005; Schulze-Bauer et al. 2002), and a truly correct model
should treat them as separate layers and not assume the wall
to be homogeneous. Although desirable, it does not seem
feasible to introduce three layers in the in vivo case. The rea-
son is that the clinically measurable pressure-radius response

contains a limited amount of information from which the
model parameters are identified. A threefold increase of the
material parameters is likely to introduce dependencies
among the model parameters resulting in an over-parameteri-
sation of the objective function in Eq. (13). For a thorough
discussion on the implication of over-parameterisation, see
Stålhand et al. (2004).

In addition to the membrane assumption, the abdominal
aorta is also assumed stress free in its unloaded case, imply-
ing that there is no residual stress in the tangential direc-
tion. The existence of a residual stress in arteries has been
known for many years, and its major effect is to redistribute
the stress field to achieve transmuraly uniform conditions at
some pressure. For a membrane model, the effect of resid-
ual stress is only reflected by an increase in the stress level
since the transmural distribution is not modelled in the two-
dimensional analysis. The membrane stress may, therefore,
be thought of as an average stress in the arterial wall and, in a
first approximation, it is assumed equal to the uniform stress
field caused by the residual stress. Furthermore, the outer
boundary is taken to be traction free, i.e., the artery is a free-
standing tube and the periadventitial support is neglected. If
the surrounding tissue is assumed axisymmetric and its mate-
rial properties are known, the periadventitial support can be
modelled as an external pressure on the outer boundary of the
artery. Singh and Devi (1990) used this approach to compute
the stress difference in the circumferential direction between
a tethered and a free artery. Their result indicates that the
difference is small, about 10% or less of the total circumfer-
ential stress. Given the limited influence on the solution and
that a correct model would also require an identification of
the surrounding tissue’s mechanical properties, the traction-
free boundary was considered sufficient for this study, as a
first approximation.

Although the mechanical modelling in this study is the
same as in Schulze-Bauer and Holzapfel (2003), the strain
energy functions differ. The reason to change from the Fung-
type, exponential strain energy to the decoupled strain energy
proposed in Holzapfel et al. (2000) is that the latter is more
detailed in its description of the underlying structure by sepa-
rating the isotropic and anisotropic constituents. In addition,
the isotropic part of the strain energy in Eq. (8) proved impor-
tant to get a good fit for the objective function in Eq. (13) for
the young subjects, particularly at low pressures.

In a number of previous studies by the research group
(Stålhand and Klarbring 2005, 2006; Stålhand et al. 2004), it
has been observed that the parameter identification depends
on the initial guess for κ . The parameter identification in this
study was tested for this dependency by altering the initial
guess for κ . Regardless of the initial guess, the identification
process converged rapidly to the same solution (for the con-
sidered subject). This is taken as an indication of the exis-
tence of a unique local minimum within the bounds for κ
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(mathematically this is equivalent to the objective function
being unimodal). It is, therefore, possible to identify a unique
set of model parameters and, as a consequence, a unique
stress field in the arterial wall.

The anisotropy is introduced by the embedded fibres’ ori-
entation, i.e., the angle β. Because of the two-dimensional
modelling, β becomes a phenomenological parameter and
cannot be directly compared to histological data. The colla-
gen fibre orientation is usually considered almost circumfer-
ential in the media while being more axial in the adventitia,
see Holzapfel et al. (2000) and Rhodin (1980). If β in Table
2 is interpreted as the angle which gives the mean anisotropy
of the two layers, values in the interval 45◦–50◦ seem to be
reasonable.

To assess the precision in the re-alignment of the pres-
sure and radius signals by the ARX model, the offset for the
subjects I–III were compared to a manual correction made
by an experienced vascular chief surgeon. The comparison
showed complete agreement for subjects II and III and a
difference of six samples (0.007 s) for subject I. The ARX
model was, therefore, considered acceptable for this purpose
of this study. Other model orders for the ARX model were
also tested, but the results were not as good.

In conclusion, this study presents a method suitable for
in vivo estimation of material parameters from clinical mea-
surements. The method reduces the effect of disturbances in
the data by computing the model parameters from an aver-
age pressure-radius response. The study also shows that this
average response is preferable in the parameter identification
process.
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