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Abstract Bone remodelling is the process that maintains
bone structure and strength through adaptation of bone tissue
mechanical properties to applied loads. Bone can be model-
led as a porous deformable material whose pores are fil-
led with cells, organic material and interstitial fluid. Fluid
flow is believed to play a role in the mechanotransduction
of signals for bone remodelling. In this work, an osteon, the
elementary unit of cortical bone, is idealized as a hollow
cylinder made of a deformable porous matrix saturated with
an interstitial fluid. We use Biot’s poroelasticity theory to
model the mechanical behaviour of bone tissue taking into
account transverse isotropic mechanical properties. A finite
element poroelastic model is developed in the COMSOL
Multiphysics software. Elasticity equations and Darcy’s law
are implemented in this software; they are coupled through
the introduction of an interaction term to obtain poroelasticity
equations. Using numerical simulations, the investigation of
the effect of spatial gradients of permeability or Poisson’s
ratio is performed. Results are discussed for their implication
on fluid flow in osteons: (i) a permeability gradient affects
more the fluid pressure than the velocity profile; (ii) focu-
sing on the fluid flow, the key element of loading is the strain
rate; (iii) a Poisson’s ratio gradient affects both fluid pressure
and fluid velocity. The influence of textural and mechanical
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properties of bone on mechanotransduction signals for bone
remodelling is also discussed.
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1 Introduction

Bone remodelling is the phenomenon that maintains and
adapts bone structure to applied mechanical loading (Cowin
2001). Mechanical loading influences the rate of bone tissue
renewal (Lanyon and Rubin 1984). It is important to link bone
mechanical loading to local bone tissue remodelling since it
could help to understand this latter phenomenon. From a
mechanical point of view, cortical bone tissue can be seen
as a multiscale deformable porous material, and an osteon as
its basic structure unit (Cowin 2001; Martin et al. 1998). Sti-
muli for bone adaptation have been hypothesized to be shear
stresses on cells membranes induced by interstitial fluid flow
in the lacuno-canalicular porosity of the osteon (Weinbaum
et al. 1994). Note that this hypothesis is now argued about
in the literature (You et al. 2001). Thus mechanical loading’s
influence on fluid flow needs to be better understood. Since
experimental work at this scale does not seem feasible at
the moment, models have been developed (Smit et al. 2002;
Steck et al. 2000; Weinbaum et al. 1994; Zeng et al. 1994;
Zhang and Cowin 1994).

Models of the osteon permit to better understand the fluid–
solid interaction for this type of tissue. Weinbaum et al.
(1994) built a multiscale poroelastic model to explain how
fluid shear stresses can act on bones cells to stimulate bone
remodelling. Zhang and Cowin (1994) gave the closed-form
solution of a cyclic loaded poroelastic beam, although this
solution cannot be transposed to the cylindrical geometry of
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the osteon. Note that both calculations of the pore pressure
for a cylindrical structure and a beam have been compared
(Zhang et al. 1998). Furthermore in both cases, material iso-
tropy of the tissue was supposed in spite of the different
mechanical properties in longitudinal and radial directions
(Turner et al. 1999). The analytical solution for the pres-
sure term obtained by Wang et al. (2000) was also used to
study tracers concentrations within bone pores. They showed
that permeability and loading frequency are key parameters
of fluid transport. More recently, Rémond and Naili (2004)
suggested a model of an osteon in which transverse isotropic
mechanical properties have been taken into account.

Finite element method has been applied to solve poroela-
stic problems. Some softwares contain a poroelastic mode
that can be used to model poroelastic material. Application
to bone tissue was studied by Manfredini et al. (1999). They
compared the analytical solution of the problem solved by
Zhang and Cowin (1994) to the finite element one obtained
with the Abaqus software for a rectangular beam of trabecu-
lar bone.

The aim of this work is to study macroscopic averaged
flow and the way it is driven by mechanical loading at the
osteon scale, including the effect of spatial gradients of
mechanical properties. Indeed, as suggested by many refe-
rences, cortical bone properties such as permeability or
Poisson’s ratio can vary spatially. For instance, physiologi-
cal observations show that lacunae are more connected by
canaliculi in the inner layers of osteons (You et al. 2004;
Beno et al. 2006). Thus, the permeability parameter certainly
decreases in the radial direction of osteons. Moreover, a few
studies propose an experimental determination of Poisson’s
ratio of cortical bone and show that this parameter can vary.
For instance, Reilly and Burstein (1975) assumed transverse
isotropy of fibro-lamellar bone, and used extensometers to
measure strains in two orthogonal directions concurrently.
They found that the transverse and longitudinal Poisson’s
ratio values are bounded by 0.29 and 0.63. Ashman et al.
(1984) reported on the use of an ultrasonic continuous wave
technique, and found Poisson’s ratio values ranging between
0.27 and 0.45. Pithioux et al. (2002) also used an ultrasonic
method, and found that the Poisson’s ratio varies between
0.12 and 0.29. More recently, Shahar et al. (2007) carried out
an optical determination of this parameter ranging between
0.09 and 0.19. This dispersion of the values cannot only be
explained by disparities between the different experimental
techniques, but also by the microstructural differences that
exist within various types of cortical bone (Turner et al. 1999;
Zysset et al. 1999; Hengsberger et al. 2003).

When working with spatially varying mechanical proper-
ties, it is necessary to obtain a numerical solution to the
poroelastic problem. An original method is used where linear
elasticity equations and Darcy’s law are coupled to obtain the
poroelasticity model. A one-level porosity model based on

cylindrical geometry of the osteon is developed. Its mate-
rial properties are taken to be transverse isotropic. Both fluid
and solid phases are supposed to be compressible. A cyclic
longitudinal loading is applied. Then, using a finite element
method, the influence of different mechanical parameters and
their spatial variations are assessed.

After this introduction, the general formulation of the
osteon model is given in Sect. 2. The method uses an ori-
ginal numerical approach based on a finite element method
which is described in Sect. 3. Results and their implicati-
ons on the interstitial fluid flow in the osteon are discussed
in Sect. 4. Our attention particularly focuses on the effect
of spatial gradients of mechanical properties. Thus the role
of the permeability and Poisson’s ratio are analyzed. Conse-
quences of such spatial variations of mechanical parameters
on mechanotransduction of bone’s remodelling are finally
discussed in Sect. 5.

2 General formulation

Poroelasticity theory (Biot 1955) is used to account for fluid–
solid interactions in this model of an osteon. After describing
the geometry and stating the main poroelasticity equations,
boundary and initial conditions are specified.

2.1 Model’s definition

A complete osteon is idealized as a hollow cylinder whose
longitudinal axis is defined by z, where z is a unit vector.
The geometry is axisymmetric. The central hole models the
Haversian canal through which interstitial fluid and blood
flow. Inside and outside osteon radii are designated by ri and
ro respectively. The height of the osteon is noted h. Cylin-
drical coordinates are (r, θ, z). Taking into account the axial
symmetry, the problem depends only on coordinates r and z.
The local basis associated with the cylindrical coordinates is
a set of orthogonal unit vectors (er , eθ , z).

2.2 Governing equations

Osteon tissue is considered as a deformable porous material
saturated by an interstitial fluid phase. Poroelasticity theory
(Biot 1955) is used to describe the mechanical behaviour of
the osteon.

Mass conservation of the fluid phase The mass conser-
vation law links the fluid content variation per unit volume ξ

(dimensionless variable) in a given space to the fluid velocity
vector v:

∂ξ

∂t
+ div v = 0, (1)
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where div is the divergence operator. Time is denoted by t
and the derivative with respect to t is written ∂�/∂t .

Momentum conservation equation Only low frequencies
of loading occur for a large number of physiological activi-
ties except shocks. Thus, inertia terms are neglected in linear
momentum conservation equation. No body forces are con-
sidered. In this case, the momentum conservation equation
becomes:

div σ = 0, (2)

where σ is the total stress tensor and div designates the
usual divergence operator acting on a second-order tensor.

Constitutive equations are needed to complete the mecha-
nical description of the osteon. The conjugated pairs of stress
measures and strain measures are linked through linear rela-
tionships. These are specified in the following section.

Stress tensor constitutive relationship The stress tensor
σ is linearly related to the skeleton strains ε of the porous
solid and to the fluid pressure p. This relationship is given by:

σ = Cε − α p, (3)

where C is the drained stiffness fourth order tensor and α is
the Biot coefficients second-order tensor. These two tensors
are assumed to be isotropic transverse with aligned principal
directions.

The elastic porous material is transverse isotropic with
its symmetry axis defined by z. The drained stiffness ten-
sor C is expressed in terms of five independent parameters,
namely longitudinal Young’s modulus Ez and Poisson’s ratio
νz , transverse Young’s modulus Er and Poisson’s ratio νr ,
and longitudinal shear modulus Gz .

The diagonal Biot coefficients tensor α is expressed in
terms of two independent parameters αr and αz respectively
in the (er , eθ ) isotropic plane and along the z-axis of sym-
metry.

The skeleton strain tensor ε is related to the porous matrix
displacement field u by the relationship:

ε = 1

2

(
grad u + (grad u)T

)
, (4)

where grad is the gradient operator acting on a vector field
and the superscript �T designates the transpose operator.

Fluid content constitutive relationship This relationship
gives the pore pressure p as a function of the variation in
fluid content ξ and the strain ε. This constitutive relationship
is defined by:

p = M {ξ − Tra (αε)} , (5)

where M is the Biot modulus and Tra is the trace operator.

Darcy’s law Darcy’s law is a linear relationship between
the fluid velocity vector v and the pore pressure gradient. It
is written:

v = −K grad p, (6)

where grad is the gradient operator acting on a scalar field.
The permeability K = κ/µ is defined by the ratio between
the intrinsic permeability κ and the interstitial dynamic fluid
viscosity µ.

Reformulated equations of poroelasticity Substituting
the constitutive relationship (3) into the momentum conser-
vation Eq. (2) leads to:

div(Cε) = α grad p. (7)

Furthermore, Darcy’s law (6) and the fluid content consti-
tutive relationship (5) are combined to the mass conservation
Eq. (1) to give:

1

M

∂p

∂t
− div(K grad p) = − ∂

∂t
(Tra(αε)) . (8)

These last two Eqs. (7) and (8) lead to a system of equa-
tions whose unknowns are the displacement vector u and
the pore pressure p. In what follows, boundary and initial
conditions for the problem are described.

2.3 Boundary and initial conditions

Boundary conditions Pressure inside the Haversian canal
is used as a reference pressure. Considering the low frequen-
cies of loading, this canal is large enough to hold the reservoir
function. Its dimensions enable the fluid to relax so that its
pressure can be assumed to remain constant. The exterior
lateral surface of the osteon is supposed to be impermeable.
Thus, there is no macroscopic fluid flow through this surface.
Full impermeability is an idealization of the real boundary
condition since a few canaliculi can cross this lateral surface
(which is called cement surface) and thus enable the fluid to
flow. In addition, bases of the hollow cylinder are assumed to
be impermeable. As a consequence, the following boundary
conditions for the pore pressure must be taken into account:
{

p=0, ∀ r =ri ; grad p · er =0, ∀ r =ro,

grad p · z=0, ∀ z =0; grad p · z=0, ∀ z =h.
(9)

Stresses on the Haversian canal surface are supposed to
be negligible compared to stresses induced by the fluid flow.
It leads to the boundary condition on stress:

σ er = 0, ∀ r = ri. (10)

On the outside boundary at r = ro, the radial displace-
ment is constrained to zero. Cyclic loading in the longitudinal
direction is applied. Applied loading results in the maximal

123



490 A. Rémond et al.

longitudinal displacement of magnitude hε0 at a given f fre-
quency, where ε0 is the longitudinal strain amplitude. This
latter condition is imposed on the longitudinal displacement
field for z = h. In addition, the displacement is constrai-
ned to zero for z = 0. These conditions are given by the
relationships:

{
u · er =0, ∀ r =ro;
u · z=0, ∀ z =0; u · z=−ε0h sin f t, ∀ z =h.

(11)

The condition imposed on z = h via Eqs. (11) allows to
obtain a periodic variation of the longitudinal displacement
always equal to 2π for all frequencies.

Initial conditions The poroelastic material is supposed
to be at rest at times t < 0.

3 Method of solution

COMSOL Multiphysics (2005), a finite element software
for various multiphysical problems, was used. This software
contains a library from which classical physical models can
be combined. It can be used to solve coupled physics pheno-
mena such as the poroelasticity as a combination of elasticity
and Darcy’s law.

3.1 Mesh

The axis (O; z) defines the axisymmetry axis for the geome-
trical model. Thus, the plane (O; er , z) for the positive radii
is enough to describe the problem. This plane is meshed,
however one should keep in mind that the value calculated
at each node is the value on a circle for the hollow cylinder
model. Similarly, each element represents the cross section
of an annulus. A rectangle of dimension (ro − ri) × h =
100×1,000 µm2 is meshed with a total of 75 quadrangle ele-
ments, since the geometry is regular enough. The finite ele-
ments are of quadratic lagrange type. This choice is made to
ensure continuity of pressure gradients, since they are inclu-
ded in the interaction term.

3.2 Computations

Poroelasticity equations were solved as coupled elasticity
and Darcy’s law problems. The interaction between fluid flow
and solid matrix deformations is given by external forces in
elasticity and source terms in Darcy’s law mode. Poroela-
sticity equations are implemented in the software COMSOL
Multiphysics. Equations are then solved simultaneously in
the time-domain to calculate the response of the system to
cyclical load.

Table 1 Material properties used in the poroelastic model of the osteon

Er 17 GPa Ez 12 GPa

νr 0.3 νz 0.3

Gz 9 GPa

M 40 GPa

αr 0.15 αz 0.15

κ 10−18 m2 µ 10−3 Pa s

3.3 Parameters for the computations

The computation of the system response is based on a direct
time integration scheme. The time step must be chosen to
ensure accuracy and stability requirements. Time step is kept
under a critical value calculated from loading frequency. In
order to improve the stability, Rayleigh’s damping was added
to the elasticity equations in the numerical scheme. Compa-
rison with the analytical solution developed by Rémond and
Naili (2005b) showed that damping did not influence nume-
rical results (Rémond and Naili 2005a).

Using material properties of cortical bone listed in Table 1,
the solution to the poroelastic problem is computed with
values adapted from the literature and for osteon’s inside and
outside radii being ri = 50 µm and ro = 150 µm respectively
(Cowin 2001).

According to boundary condition (11), results are compu-
ted for loading conditions defined by a loading frequency f
and a longitudinal strain amplitude ε0. Two types of simu-
lations are proposed which are described in the following
paragraph.

Influence of permeability Permeability can be seen as
the macroscopic indicator of the fluid flow at the microsco-
pic level. According to recent results of Beno et al. (2006),
this parameter lies between 10−23 and 10−18 m2. Nevert-
heless, the low values of this parameter seem too small to
suit with continuum mechanics. That is why we choose to
work with the largest value proposed by these authors, con-
sidering a reference case with a constant permeability of
κ = 10−18 m2. Since this parameter is only estimated, its
spatial variations are difficult to quantify. There seems to be
fewer canaliculi connecting lacunae toward the exterior of
the osteon, which would lead to a decreasing permeability
from the inside radius to the outside one (Cowin 2001). To
study the influence of its variations, Poisson’s ratio is kept
constant (νr = 0.3) and the permeability is assumed to be
a linear function between ri and ro. For this purpose, three
cases are considered: Case 1 (κi = 10−18 m2 and κo = 0.5×
10−18 m2); Case 2 (κi = 10−18 m2 and κo = 0.1×10−18 m2);
Case 3 (κi = 2 × 10−18 m2 and κo = 10−18 m2) where the
permeability is noted κi at ri and κo at ro.
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The role of loading frequency is also considered via two
frequencies (1 and 20 Hz). By maintaining a constant lon-
gitudinal strain rate, it is possible to study the sensitivity
of poroelastic behaviour of bone with mechanical properties
gradients without taking into account the loading frequency
influence. Thus, when textural or mechanical gradients are
considered, these loading conditions are chosen so that the
magnitude of the longitudinal strain rate ε̇ = ε0 f can remain
constant, setting ε̇ = 10−3 Hz. This value can be compared
with bone remodelling mechanotransduction signals (Turner
1998; Burger et al. 2003) which are bounded by 10−4 and
10−3 Hz.

Influence of Poisson’s ratio This coefficient is the matrix
material parameter that links loading in one direction to defor-
mation in another direction. Since fluid flow is driven by the
porous solid matrix deformation through the interaction term,
variations of solid porous matrix Poisson’s ratio do affect
pressure. The mechanical behaviour of the osteon depends
on Poisson’s ratio, its influence is studied by using a linear
variation of νr between ri and ro. Its reference value is assu-
med to be defined by νr = 0.30 (Cowin 1999). Considering
a constant permeability of 10−18 m2, two cases are conside-
red: Case 1 (νi = 0.15 and νo = 0.3); Case 2 (νi = 0.3 and
νo = 0.45) where Poisson’s ratio νr is denoted by νi at ri and
νo at ro.

Remarks Before presenting numerical results given by the
present model, we must bear in mind that its validity has
been checked comparing its steady state simulations with an
analytical solution considering constant mechanical proper-
ties of the medium (Rémond and Naili 2005b). When spatial
gradient of permeability or Poisson’s ratio are considered,
this closed-form solution is no longer valid and numerical
calculations are required to obtain the poroelastic response
of the osteon to cyclic load. In the next section, such nume-
rical results are presented. To assess their validity, all the
following results include a representative closed-form solu-
tion case with a constant permeability or Poisson’s ratio νr .

4 Results

Results for pressure and fluid velocity distributions are pre-
sented in the following section. The typical loading frequency
is chosen to be 1 Hz which corresponds to walking activity.
Results for interstitial fluid pressure and fluid velocity in the
radial direction of the osteon are exhibited at half the height
of the osteon, i.e. at z = h/2, when the pressure peak is rea-
ched, i.e. when the maximal compression effect is observed.
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Fig. 1 The frequency of loading and longitudinal strain amplitude are
fixed at f = 1 Hz and ε0 = 1 × 10−3 respectively. Pressure versus
radial coordinate for linear variations of the permeability values: Case 1
(κi = 10−18 m2 and κo = 0.5×10−18 m2) (◦◦); Case 2 (κi = 10−18 m2

and κo = 0.1 × 10−18 m2) (××); Case 3 (κi = 2 × 10−18 m2 and
κo = 10−18 m2) (++) and a constant permeability κ = 10−18 m2 (solid
line)

4.1 Permeability spatial gradient

Pressure Results for pressure as a function of the osteon
radius are shown on Fig. 1. The loading frequency and the
longitudinal strain amplitude are respectively f = 1 Hz and
ε0 = 1 × 10−3.

As shown on this figure, pressure builds up toward the
outside radius. This trend can be linked to the non-leaking
condition on the cement surface. Moreover, permeability gra-
dients modify strongly the pressure profiles. For instance,
taking as a reference a constant permeability (solid line), the
relative variations for Cases 1 and 2, which are lower than
10% for radii smaller than 7 × 10−5 m, do increase to reach
respectively 20 and 50% at the cement surface. The trend is
different for Case 3 since the relative variation of pressure
is more pronounced near the Haversian canal (about −45%
at r = 7 × 10−5 m) than in the outer part of osteon (about
−39% at the cement surface). It indicates that: (i) the permea-
bility gradient quantitatively affects the pressure profile; (ii)
compared to the value of its gradient, the value of the permea-
bility at the inside radius plays a more important role on the
development of the pressure peaks. This latter point is logical
since the fluid flows from the Haversian canal to the cement
line and is thus strongly dependent on the inflow-outflow
conditions, that is to say on the value of the permeability
at ri.

Fluid velocity Fluid flow at the macroscopic scale is
important since it represents the average fluid flow through
the canaliculi and can be linked to fluid flow at the micros-
copic scale in the lacuno-canalicular porosity. Moreover, it
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Fig. 2 The frequency of loading and longitudinal strain amplitude are
fixed at f = 1 Hz and ε0 = 1×10−3 respectively. Radial fluid velocity
versus radial coordinate for linear variations of the permeability values:
Case 1 (κi = 10−18 m2 and κo = 0.5 × 10−18 m2) (◦◦); Case 2 (κi =
10−18 m2 and κo = 0.1 × 10−18 m2) (××); Case 3 (κi = 2 × 10−18 m2

and κo = 10−18 m2) (++) and a constant permeability κ = 10−18 m2

(solid line)

is known that this interstitial flow is crucial in the mecha-
notransduction of signals of bone remodelling (Burger et al.
2003). Thus, the radial fluid velocity, obtained through the
Darcy’s law given by Eq. (6), is presented on Fig. 2 for the
three cases of permeability variation with the same conditi-
ons as in the previous paragraph. This figure indicates that
spatial gradients of the permeability do not lead to a notable
variation of the radial fluid velocity distribution. This result
shows that permeability variations are compensated by spa-
tial pressure variations, having no significant consequences
on the radial fluid velocity. To complete this study, we must
analyse the possible role of loading frequency.

4.2 Loading frequency

In this paragraph, we intend to show the role of loading fre-
quency. Two types of simulations are performed to do that.
Firstly, two loading frequencies (1 and 20 Hz) are considered
when κ = 10−18 m2, νr = 0.3 and ε0 = 1×10−3. The lower
frequency corresponds to a walking activity while the higher
one refers to a mechanical stimulation without any shock.
With these parameters, the pressure and radial velocity fields
developing along the osteon radius are evaluated. Secondly,
the study proposed previously in Sect. 4.1 (paragraph Pres-
sure) is done again keeping the same longitudinal strain rate
ε̇ but considering a higher loading frequency f = 20 Hz and
the corresponding strain amplitude ε0 = 5 × 10−5.

Study for a given longitudinal strain amplitude In order
to assess the role of loading frequency, pressure and velo-
city profiles are plotted for a longitudinal strain amplitude
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Fig. 3 The longitudinal strain amplitude is fixed at ε0 = 1 × 10−3.
Pressure versus radial coordinate for constant permeability and Pois-
son’s ratio values: (i) f = 1 Hz (××); (ii) f = 20 Hz (++)
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Fig. 4 The longitudinal strain amplitude is fixed at ε0 = 1 × 10−3.
Radial velocity versus radial coordinate for constant permeability and
Poisson’s ratio values: (i) f = 1 Hz (××); (ii) f = 20 Hz (++)

ε0 = 1 × 10−3. Two levels of loading frequency are studied:
(i) f = 1 Hz which typically corresponds to the frequency
resulting from walking activity; (ii) f = 20 Hz. Figure. 3
presents a comparison between pressure profiles at these two
frequencies. The higher the frequency is, the more dramati-
cally the pressure builds up toward the osteon radius. Similar
results are visible on Fig. 4 since the fluid velocity corre-
sponding to the higher frequency is one order of magnitude
larger than the one corresponding to walking activity. These
results show the strong dependency of the elastic response of
bone on loading frequency as shown by (Wang et al. 2000;
Rémond and Naili 2005a). Nevertheless, the key parameter
governing the poroelastic response of the system is the lon-
gitudinal strain rate ε̇.
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Fig. 5 The frequency of loading and longitudinal strain amplitude are
fixed at f = 20 Hz and ε0 = 5 × 10−5 respectively. Pressure versus
radial coordinate for linear variations of the permeability values: Case 1
(κi = 10−18 m2 and κo = 0.5×10−18 m2) (◦◦); Case 2 (κi = 10−18 m2

and κo = 0.1 × 10−18 m2) (××); Case 3 (κi = 2 × 10−18 m2 and
κo = 10−18 m2) (++) and a constant permeability κ = 10−18 m2 (solid
line)

Study considering a constant longitudinal strain rate To
check the crucial role of ε̇, the pressure profiles presented
on Fig. 1 are calculated again for a higher loading frequency
f = 20 Hz and the corresponding strain amplitude ε0 = 5×
10−5, keeping the same longitudinal strain rate ε̇ = 10−3 Hz.
These results are presented on Fig. 5. These profiles are very
close to those of Fig. 1. Thus, preserving the longitudinal
strain rate ε̇, the role of the frequency remains very weak.
Since the radial fluid velocity is calculated from these pres-
sure profiles through the Darcy law (6), the radial velocities
derived from Fig. 5 are very close to those of Fig. 2 and are
not presented here.

Remarks The results obtained in this section involving spa-
tial gradients of the permeability show that when permeabi-
lity varies, interstitial fluid flow is not affected as much as
pressure peak values. This can be explained since fluid flow is
driven through the quasi-uniform deformation of the porous
matrix resulting from longitudinal loading. Thus, interstitial
fluid flow leads to higher pressure values when permeability
decreases toward the outside radius. These results show that
the solid matrix deformation drives fluid flow because the
imposed mechanical loading is introduced through the lon-
gitudinal deformation of the porous matrix. It is necessary to
complete this study by analyzing the influence of Poisson’s
ratio spatial gradient since this coefficient plays an important
role in the interaction between matrix deformation and fluid
flow.
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Fig. 6 The frequency of loading and longitudinal strain amplitude are
fixed at f = 1 Hz and ε0 = 1×10−3 respectively. Pressure versus radial
coordinate for linear variations of Poisson’s ratio: Case 1 (νi = 0.15 and
νo = 0.3) (◦◦); Case 2 (νi = 0.3 and νo = 0.45) (××) and a constant
Poisson’s ratio νr = 0.30 (solid line)

4.3 Poisson’s ratio spatial gradient

Considering the loading conditions used to obtain the results
drawn on Figs. 1 and 2, profiles of pressure and radial velo-
city are plotted for a constant permeability (κ = 10−18 m2)
and spatial gradients of Poisson’s ratio. The two considered
cases are: Case 1 (νi = 0.15 and νo = 0.3); Case 2 (νi = 0.3
and νo = 0.45) where Poisson’s ratio is denoted by νi at ri

and νo at ro by using a linear variation of νr between ri and
ro. Moreover, the reference case with a constant Poisson’s
ratio of νr = 0.3 is also presented.

Pressure As shown on Fig. 6, the pressure profiles that
develop radially depend on Poisson’s gradient. We consi-
der a Poisson’s ratio of νr = 0.3 as the reference. In Case 1,
Poisson’s ratio becomes larger than the reference value toward
the outside radius, which would correspond to a more com-
pressible porous solid matrix at the radius ri, pressure builds
up to a larger value than the reference value with a con-
stant Poisson’s ratio. On the other hand, if the porous matrix
is considered as more compressible than the porous matrix
reference toward the zone of the Haversian canal, pressure
remains significantly lower for the same loading.

Fluid velocity Figure 7 presents the corresponding radial
fluid velocity derived from previous pressure profiles. The
radial flow is modified when Poisson’s ratio spatially changes.
Quantitatively, these changes are the same as those described
in the previous paragraph therefore similar conclusions can
be drawn. Thus, in the first case, the radial velocity profile
remains close to the reference curve whereas in the second
case, it is higher.
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Fig. 7 The frequency of loading and longitudinal strain amplitude are
fixed at f = 1 Hz and ε0 = 1×10−3. Radial fluid velocity versus radial
coordinate for linear variations of Poisson’s ratio: Case 1 (νi = 0.15 and
νo = 0.3) (◦◦); Case 2 (νi = 0.3 and νo = 0.45) (××) and a constant
Poisson’s ratio νr = 0.30 (solid line)

Since these results were computed for values relevant to
a model of an osteon, possible implications of these findings
are discussed in the following section.

5 Discussion and conclusion

5.1 Relevance to mechanotransduction

Mechanotransduction signals for bone remodelling are lin-
ked to fluid flow (Burger et al. 2003). Cells buried in the
lacuna-canalicular porosity of the bone matrix have shown
sensitivity to shear stresses induced by fluid flow. Since it
was also observed that bone had maintained and increased
its mass density when cyclically loaded (Lanyon 1984; Qin
et al. 2002); models have been developed to link these pheno-
mena and to explain part of the bone tissue behaviour. At the
osteon scale, the present model allows us to study the influ-
ence of mechanical loading on fluid flow. The mechanical
adaptation of bone suggests that this system senses the app-
lied mechanical loading. It transmits the loading information
to cells. These cells respond through bone tissue resorption
and apposition. Therefore, bone tissue adapts to the applied
mechanical loading.

Influence of the permeability spatial gradient Simulati-
ons proposed to analyze the influence of permeability spatial
gradient suggest that pressure is strongly affected by textu-
ral variations whereas fluid velocity is not. Indeed the pres-
sure peaks at a higher value when permeability decreases
toward the outside of the osteon. This phenomenon develops
to maintain a similar radial fluid velocity. Thus, at the osteon
scale, since permeability changes do not modify significantly

the interstitial fluid flow, the cell sensitivity to this parame-
ter is certainly less important than a priori expected. Howe-
ver, there is a limit to this conclusion; since the calculated
velocity is averaged information, the present results should
be scaled down to estimate effects at the cell scale. This
macroscopic approach does not allow us to represent nar-
rowing or clogging effects located at the pore scale, and the
resulting microscopic friction effects are washed out through
the macroscopic permeability parameter.

Permeability is not directly linked to variations of fluid
velocity within the osteon but gives an indication of pressure
peaks. According to recent studies suggesting that pressure
could also influence bone cell behaviour (Nagatomi et al.
2001, 2002), gradients of permeability play a more important
role in cell response through pressure than fluid velocity.

Furthermore, these results show that we must focus on
in the inflow–outflow area, that is to say near the Haversian
canal since the hydraulic response across osteon is very sen-
sitive to the value of permeability at r = ri.

Influence of Poisson’s ratio spatial gradient Similarly,
since the porous matrix elastic properties of the osteon vary
spatially (Martin et al. 1998), influence of Poisson’s ratio
spatial gradient has been investigated. Our results show that
both pressure and radial fluid velocity are influenced by spa-
tial gradients of Poisson’s ratio alike. Consequently, mecha-
notransduction signals discussed above are directly affected
by spatial gradients of this poroelastic parameter which is
directly linked with aging effects, mineralization, etc. (Cowin
2001).

5.2 Conclusion and perspectives

Finite element analysis using a coupled physics mode in soft-
ware COMSOL Multiphysics has been developed to solve
poroelastic problems applied to osteon. Comparison with
steady state closed-form solution showed that this method
can accurately solve equations for a poroelastic problem.
Results presented here show how relevant it can be to account
for textural and elastic spatial gradients since they do influ-
ence hydraulic response of the osteon. Consequently, such
variations in mechanical properties of bone result in diffe-
rent mechanotransduction signals for bone cells. This work
also leads naturally to the question of temporal variations of
these properties when the osteon is formed and that could
lead to supplementary differences especially in the longitu-
dinal direction (Martin et al. 1998).
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