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Abstract Modelling the course of healing of a long bone
subjected to loading has been the subject of several investiga-
tions. These have succeeded in predicting the differentiation
of tissues in the callus in response to a static mechanical
load and the diffusion of biological factors. In this paper
an approach is presented which includes both mechanore-
gulation of tissue differentiation and the diffusion and
proliferation of cell populations (mesenchymal stem cells,
fibroblasts, chondrocytes, and osteoblasts). This is achieved
in a three-dimensional poroelastic finite element model
which, being poroelastic, can model the effect of the fre-
quency of dynamic loading. Given the number of parameters
involved in the simulation, a parameter variation study is
reported, and final parameters are selected based on com-
parison with an in vivo experiment. The model predicts that
asymmetric loading creates an asymmetric distribution of
tissues in the callus, but only for high bending moments.
Furthermore the frequency of loading is predicted to have
an effect. In conclusion, a numerical algorithm is presented
incorporating both mechanoregulation and evolution of cell
populations, and it proves capable of predicting realistic dif-
ference in bone healing in a 3D fracture callus.
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1 Introduction

Bone fracture is a common injury which normally heals with-
out any complications. But in up to 10% of the cases (Einhorn
1995; Praemer et al. 1999) complications may lead to delayed
healing or non-union.

It was shown clinically that mechanical stimulation of
the fractured bone can influence the healing process. Many
researches clinically investigated a wide range of mechan-
ical factors in order to find optimal mechanical conditions,
under which the healing will be successful. Goodship and
Kenwright (1985) showed that application of controlled axial
micro-movement results in significant improvement of heal-
ing as compared to rigid fixation of the osteotomy site. Claes
et al. (1995); Claes et al. (1997) and Claes et al. (1998)
showed a negative effect of large osteotomy gaps on the
healing process. While exploring the influence of the loading
applied to the fractured bone, Augat et al. (2003) showed a
negative effect of shear movement and Goodship et al. (1998)
showed a positive effect of high strain rate on bone healing. In
earlier studies, the healing process was mainly quantified by
interfragmentary movement, walking stiffness or bone min-
eral content, while more recent studies also present results on
the histology analysis of callus under different loading con-
ditions (for instance, Claes et al. 1998; Le et al. 2001). Other
authors managed to develop experimental animal protocols
that force the healing process to go into a predefined path,
like intramembranous ossification (Thompson et al. 2002).

Despite the progress in experimental techniques it has
proven difficult to understand mechanoregulation during
fracture healing because it is not possible to isolate the effect
of the various mechanical parameters. Computer models, on
the contrary, allow accurate simulation of very complicated
mechanical and biological environments. Calculating local
stresses and strains in the fractured bone by finite element
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analysis, Claes and Heigele (1999) successfully predicted
course and type of fracture healing. Gardner et al. (2000)
investigated the healing process in long bone fractures and
in oblique fractures. Ament and Hofer (2000) went one step
further by simulating the kinetics of the healing process using
linear elastic FE simulation in combination with their fuzzy
logic model. Lacroix and Prendergast (2002a) and Lacroix
et al. (2002) assumed a poroelastic nature of the callus and
simulated dispersal of the mesenchymal cell as a diffusion
process. They assumed that differentiation of the migrating
mesenchymal cells into bone, cartilage and fibrous tissue
forming cells will be regulated by tissue’s shear strain and
velocity of the fluid inside the callus. This approach allowed
successful prediction of the osteotomy gap size effect on the
healing process. Later, Lacroix and Prendergast (2002b) per-
formed a 3D healing simulation based on the real geometry
of a fractured bone with an external fixator. Bailon-Plaza and
van der Meulen (2001) were the first who introduced a very
advanced biological component in their numerical model-
ling, which included simulation of cell migration, prolifera-
tion and differentiation under the influence of growth factors,
as well as production and resorption of corresponding tissues.
However, this pioneering work did not account for mecha-
noregulation of the healing process. But, in their next paper
(Bailon-Plaza and van der Meulen 2003) the added mechan-
ics helped to show the effect of the different timing in loading
application. However, as it employed a 2D finite difference
approach and was limited to elasticity, it was not able to pre-
dict the effect of the strain rate as was shown by Goodship
et al. (1998) (the clinical result Bailon-Plaza and van der
Meulen 2003 used for the validation of their model). It is the
complexity of their biological model, which probably did not
allow them to easily implement it in a finite element model.

In the current work we aim at developing a model that
would account for the major processes during the bone heal-
ing, while, at the same time, allowing easy implementation
in a finite element model. The latter makes the model appli-
cable for the study on realistic clinical cases, i.e., complex
geometries, where patient-specific simulations could be con-
templated. The model was calibrated and validated using in
vivo experiments reported in literature. The application of the
model examines the effect of bending and loading frequency
on the healing process.

2 Methods

2.1 Tissue differentiation model inside the callus

Bone fracture healing can be classified as primary and
secondary. Primary healing takes place in case of high
mechanical stability and small gap sizes. In this case, bone
fragments get connected by direct bone remodelling in the

Fig. 1 Schematic description of the osteotomized (fractured) bone
region

space between the bone fragments with formation of small or
no fracture callus (Perren 1979). However, in most cases, the
healing goes via a secondary path. Secondary healing starts
with inflammation, when blood, that comes from the ruptured
blood vessels, causes formation of hemorrhage (Einhorn
1998). Next, mesenchymal cells, that originate from perios-
teum (see Fig. 1 for explanation), and marrow stromal cells
migrate into the callus and proliferate. Depending on the local
mechanical and biological environment, these cell differenti-
ate either into osteoblasts, bone forming cells, chondrocytes,
cartilage forming cells or fibroblasts, the cells that produce
fibrous tissue.

Again, depending on the mechanical and biological envi-
ronment, these cells can migrate, proliferate and produce cor-
responding tissues. Mesenchymal cells that reach the fracture
gap often differentiate into fibroblasts, forming fibrous tissue.
Bone formation starts in the external part of the callus near
original cortical bone via intramembranous ossification while
chondrogenesis initiates near the periosteum layer, but closer
to the osteotomy plane. As healing progresses, the intramem-
branous ossification front advances towards the osteotomy
plane. Next, the ossification of the cartilage callus begins,
a process known as endochondral ossification. Endochon-
dral ossification finalizes the reparative stage of the healing.
During this process chondrocytes are replaced by osteoblasts
that produce bone matrix. Endochondral ossification contin-
ues until all the cartilage has been replaced by bone and
bone entirely bridges the fracture gap. The last stage of the
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healing is restoration of the original geometry of the bone by
resorption of the external callus.

In this study we present a model of secondary bone heal-
ing. We study the same geometry of the fracture callus as
Lacroix and Prendergast (2002a) which is assumed constant
during the simulation. The simulated interfragmentary gap
size was 3 mm. The model consists of the two main com-
ponents: biological and mechanical. The biological compo-
nent of the model allows simulation of cellular processes,
namely cell migration, proliferation, differentiation, tissue
deposition and replacement. The mechanical component of
the model calculates the mechanical stimuli that influence
the cellular processes. We assume that all cell types have the
same critical “saturated” density value and the presented cell
densities are normalized with respect to that saturated den-
sity. The presented tissue densities are quantified as volume
fractions of the corresponding tissues. Subsequently, the sum
of all tissue densities is equal to one. Initial and boundary
conditions are: (a) the callus is filled with granulation tissue
and all the cell and other tissue densities are zero; (b) mes-
enchymal cells originate from the periosteum layer and the
bone marrow, hence the mesenchymal cell density at those
areas are kept at the highest saturated level (unity in terms of
the normalized values) for a period of time which is treated
later as a parameter of the model; (c) influx of fibroblasts,
chondrocytes and osteoblasts from the boundary of the cal-
lus is set to zero (prohibited). Cell differentiation, prolifera-
tion and tissue production are regulated by tissue shear strain
and interstitial fluid velocity, as was proposed by Prendergast
et al. (1997). Evolution of mesenchymal and fibroblast cell
densities are described by equations:

dcm

dt
= Dm∇2cm + Pm(1 − ctot)cm − F f (1 − c f )cm

− Fc(1 − cc)cm − Fb(1 − cb)cm, (1)
dc f

dt
= D f ∇2c f + Pf (1 − ctot)c f + F f (1 − c f )cm

−Fc(1 − cc)c f − Fb(1 − cb)c f . (2)

Here cm , c f , cc and cb are mesenchymal, fibroblast, chon-
drocyte and osteoblast normalized cells densities, Dm and
D f are the corresponding diffusion coefficients. The diffu-
sion coefficients are assumed to depend on bone (mb) and
cartilage (mc) volume fractions in the following way: Di =
Di0(1 − mc − mb), i = m, f . Dm0 and D f0 are the initial
diffusion coefficients. The total cell density is ctot = cm +
c f + cc + cb. Values Pm and Pf are proliferation rates, that
also depend on cartilage and bone volume fractions: Pi =
Pi0(1−mc −mb), i = m, f . Values Pm0 and Pf0 are the ini-
tial proliferation rates that depend on the mechanical stimulus
(see Appendix 4) introduced by Prendergast et al. (1997):
S = γ

a + ν
b . Values γ and ν are maximal shear strain and

interstitial fluid velocity, respectively, and a = 0.0375 and
b = 3 µm s−1 are the constants, determined by Huiskes

et al. (1997). According to Prendergast et al. (1997), if S
is smaller than some threshold Smin, then the mechanical
environment is favorable for osteoblast differentiation and
bone matrix deposition. Moderate magnitudes of the stimu-
lus (Smin < S < Smax) favor chondrocytes differentiation and
cartilage production. High values of the stimulus (Smax < S)
favor fibroblast differentiation and fibrous tissue production.
Therefore, F f ,Fc and Fb are differentiation rates that also
depend on S (see Appendix 4). Evolution of chondrocytes
and osteoblast cell densities is modelled in a similar way, but
it is assumed that they do not migrate:

dcc

dt
= Pc(1 − ctot)cc + Fc(1 − cc)(cm + c f )

−Fb(1 − cb)cc, (3)
dcb

dt
= Pb(1 − ctot)cb + Fb(1 − cb)(cm + c f + cc). (4)

Here Pc and Pb are chondrocyte and osteoblast proliferation
rates that also depend on cartilage and bone volume fractions
and on the mechanical stimulus S. Tissues production and
replacement is regulated by the corresponding cells, tissues
themselves and mechanical stimulation:

dmb

dt
= Qb(1 − mb)cb, (5)

dmc

dt
= Qc(1 − mb − mc)cc − Dbcbmcmtot, (6)

dm f

dt
= Q f (1 − mtot )c f − (Dbcb + Dccc)m f mtot. (7)

Here mb, mc and m f are bone, cartilage and fibrous tissue
volume fractions, respectively, Qb, Qc and Q f are produc-
tion rates of the corresponding tissues. The production rates
are also functions of S (see Appendix 4). Db and Dc are tis-
sue resorption rates that are chosen to be equal to Qb and
Qc. mtot = m f + mc + mb is the volume fraction of all
tissues except the granulation tissue, which volume fraction
is 1 − mtot. The system of equations (1)–(7) has this prop-
erty that as soon as equality mtot = m f + mc + mb = 1 (no
granulation tissue) is achieved, it will hold permanently.

The mechanical component of the model is meant for the
calculation of the stimulus S in the callus. All tissues in the
callus were modelled as poroelastic, using a finite strain for-
mulation and Neo-Hookean hyperelastic properties for the
solid phase. Cortical bone was modelled as linear elastic.
The material properties of the tissues are presented in Table 1.
Stiffness of the granulation tissue was calculated similar to
Lacroix and Prendergast (2002a), by fitting Young’s modu-
lus of the granulation tissue in such a way that 500 N force
applied to the cortex results in approximately 1 mm of inter-
fragmentary motion. This is also consistent with the exper-
iment of Claes et al. (1998). The obtained overall stiffness
was 188 kPa. Since several tissues can coexist together in
one material point, mechanical properties at this point are
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Table 1 Material properties

Material Young’s Poisson’s Permea- Porosity Fluid
modulus ratio bility bulk
(MPa) (m4 N−1 s−1) modulus

(MPa)

Cortical bone 20000a 0.3a – – –

Mature bone 6000a 0.3a 3.7 × 10−13b
0.8 2300c

Cartilage 10d 0.1667e 5 × 10−15f
0.8 2300c

Fibrous tissue 2d 0.1667e 1×10−14g
0.8 2300c

Gran. tissue 0.188 0.1667e 1×10−14g
0.8 2300c

a - Claes and Heigele (1999)
b - Ochoa and Hillberry (1992)
c - Anderson CB (1967)
d - Hori and Lewis (1982)
e - Spilker et al. (1988)
f - Armstrong and Mow (1982)
g - Estimated by Prendergast et al. (1997) based on Armstrong and Mow (1982) and Levick (1987)

calculated by the rule of mixtures (Lacroix and Prendergast
2002a):

Total property = ∑

i
single tissue propertyi × mi .

The set of partial differential equations (1)–(7) was solved
using a finite element model (Appendix 4), which was for-
mulated using the Galerkin method. Semi-implicit time inte-
gration procedure was used. The resulting nonlinear system
was solved by a Newton iterative scheme. The formulation
was implemented as a four-node tetrahedral user element in
MSC Marc (version 2003r2, Palo Alto, USA) and success-
fully validated using a one-dimensional Matlab solution. A
finite strain poroelastic four-node tetrahedral user element
was also implemented in MSC Marc (Andreykiv A 2006).
All simulations were performed on a 8-node parallel network
cluster.

2.2 Calibration of the model

Calibration of the model was performed using animal test
results, reported by Claes et al. (1995) and Claes and Heigele
(1999). In these studies the authors investigated the influence
of the osteotomy gap size on the fracture healing process.
Several groups of sheep underwent a standardized trans-
verse osteotomy of the right metatarsal. The osteotomy was
stabilized by a specially designed external ring fixator with
extremely high bending and torsional stiffness, while allow-
ing axial movements through a telescoping system. Weight
bearing in the operated limb produced an axial telescoping,
corresponding to a controlled interfragmentary movement.
The change of interfragmentary movement was monitored
weekly.

Fig. 2 Finite Element mesh, used for the calibration of the model

The proposed model was calibrated to the results of the
group of sheep with 3 mm gap size and approximately 1 mm
initial interfragmentary movement. The calibrated values
were cell differentiation rates (Fbmin ,Fbmax , Fcmax , F fmax ),
tissue production rates (Qbmin ,Qbmax , Qcmax , Q fmax , see
Appendix 4 for the definitions), time period for mesenchymal
cells boundary condition application and, as was mentioned
before, initial callus stiffness. The goal of the calibration was
to obtain realistic kinetics of interfragmentary movement and
tissue distribution, i.e. similar to the ones, reported by Claes
et al. (1995) and Claes and Heigele (1999).

A 3D finite element mesh, used for the calibration, was
build from the axisymmetric geometry introduced by Lacroix
and Prendergast (2002a). Due to axial symmetry, the geometry
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was simplified to one eighth of the cortical bone with mar-
row and callus (Fig. 2). The mechanical component of the
model simulates the mechanical environment, as described
by Claes and Heigele (1999). The bottom nodes of the mesh
are constrained in vertical direction and a vertical axial force
of 500 N is applied in 0.5 s (the force is linearly dependent
on time). Symmetry boundary conditions are applied to the
sides of the model. Exchange of fluid between the callus and
the marrow is allowed (they share common nodes) while fluid
flux on the surface of the joint marrow/callus geometry is set
to zero. The biological component of the model was mod-
elled only in the callus region of the mesh, where the healing
takes place. As was mentioned before, saturated mesenchy-
mal cell density was prescribed at the periosteum layer and
bone marrow interface and kept constant for a short period
of time, the latter is determined from the calibration of the
model.

Initially, all cell densities are zero, except those prescribed
as boundary conditions. First, the biological model starts.
It immediately invokes a mechanical simulation which runs
with the initial material properties of the callus. When the
mechanical simulation is finished, it passes the calculated
stimulus S to the biological part. The biological part simu-
lates one day of the healing process and invokes the mechani-
cal simulation with new callus material properties. This cycle
is repeated until 7 weeks of the healing process is simulated.

2.3 Corroboration of the model

The model was corroborated against the ovine experiment
reported by Goodship et al. (1998). The latter investigated
the effect of strain rate and timing of mechanical stimulation
on fracture healing. In this experiment a middiaphyseal oste-
otomy was created to form a 3-mm gap which is stabilized
with a unilateral external fixator. The fixator was applied
to the cranial aspect of the tibia. The sheep walked within
24 h of surgery and the fixator frames were left in situ for
12 weeks. In the first part of the study three groups of skele-
tally mature female sheep were used in which displacement
rates of 2, 40, and 400 mm per second were applied using a
microprocessor controlled actuator. An initial displacement
was used, applied with a force of 200 N at 0.5 Hz for 5 con-
secutive days per week for 12 weeks. The second part of the
study used an additional group of six sheep. The osteoto-
mies in this group were subjected to the same stimulation
(400 mm s−1 of applied cyclic micromovement) as the pre-
ceding groups, but the stimulation was initiated at 6 weeks
postoperatively when periosteal bridging had commenced.

In order to simulate the described experiment, some adjust-
ments to the calibrated model were needed. In order to take
into account the bending moment, caused by walking, one
fourth of the fractured bone had to be simulated (Fig. 3).

Fig. 3 Finite Element mesh and boundary conditions used for the cor-
roboration of the model. Both, axial and bending loads were applied to
the top nodes of the cortex mesh

The simulation aims at replicating the loading conditions,
reported by Goodship et al. (1998). Hence both axial load-
ing, applied by the microprocessor controlled actuator, and
bending loading, applied when the sheep was walking with
the locked fixator, are simulated. Due to the fact that in the
animal experiment the axial stimulation was applied sepa-
rate from the bending stimulation, separate purely axial and
purely bending simulations are performed. The magnitude of
S, that is passed to the tissue-differentiation model every day,
is taken as a maximum of the two values, calculated from the
two loading regimes. Similarly to the animal experiment, the
axial stimulation is simulated only during the working days
(Monday till Friday), while the bending moment is applied
during every day of the simulated period, since in the ani-
mal experiment the sheep were allowed to walk freely. Duda
et al. (1998) showed that the maximum bending moment dur-
ing the sheep’s gait is 1900 N cm. Similarly to Bailon-Plaza
and van der Meulen 2003, we investigate the influence of the
bending moment by using 5% and then 40% of this value.
The corresponding moment is applied to the bone as a lin-
early distributed pressure. In the experiment by Goodship
et al. (1998), an initial displacement of 1 mm was caused by
application of 200 N force. In order to replicate this behav-
ior, the initial callus stiffness is changed to 0.085 MPa, which
was the result of the calibration.

In order to study the influence of the loading frequency,
as reported in the animal experiment, two displacement rates
of 2 and 40 mm s−1 are simulated. As in the experiment, the
above rates are applied by 200 N axial load in 0.5 and 0.025 s,
respectively.

In total, four corroboration numerical experiments are
performed. First, the one with 2 mm s−1 displacement rate
for the axial loading and 5% of the total bending moment.
Second, the one with 2 mm s−1 displacement rate for the
axial loading and 40% of the total bending moment. Third,

123



448 A. Andreykiv et al.

the one with 40 mm s−1 displacement rate and 5% of the total
bending moment. Forth, the one with 40 mm s−1 displace-
ment rate and 40% of total bending moment.

The results of the simulations are presented as spatial dis-
tribution of cells and tissue densities in the callus at different
time points. Interfragmentary movement, axial stiffness and
bone fractions were also calculated. Axial stiffness was cal-
culated similar to Bailon-Plaza and van der Meulen 2003,
by applying 100 N load and dividing this load by the aver-
age nodal displacement of the cortex at the osteotomy gap.
Average bone fraction was calculated in the whole callus
and at the osteotomy plane. Axial stiffness and bone fraction
results were qualitatively compared to the walking stiffness
index and the bone mineral content at the osteotomy line,
measured by Goodship et al. (1998).

2.4 Parameter study

After the calibration study established the base magnitudes
of the model parameters, sensitivity of the model to minor
variation of these parameters was studied. Only the model,
that was used for the calibration was used for the parameter
study. Each of the 18 parameters was increased by 10% of its
base value and the same simulation, that was used for the cal-
ibration of the model, was performed. Hence 18 simulations
were performed to show the sensitivity to variation of each
individual parameter. The results of the parameter study are
demonstrated by the influence of each parameter variation
on the interfragmentary movent, average bone, cartilage and
fibrous tissue fractions in the callus.

3 Results

Calibration of the model produced the following values
for the model parameters: cell differentiation rates Fbmin =
0.005 day−1, Fbmax = 0.15 day−1, Fcmax = 0.3 day−1, F fmax =
0.01day−1, tissue production rates Qbmin = 0 day−1,
Qbmax = 0.1 day−1, Qcmax = 0.2 day−1, Q fmax = 0.06 day−1,

time period for maintaining the mesenchymal cells boundary
conditions at the periosteum layer—one week. Using these
parameters the model could successfully reproduce the in-
terfragmentary movement history obtained by Claes et al.
(1995) and Claes and Heigele (1999) (Fig. 4). Tissue dif-
ferentiation inside the callus also compares well with the
scheme reported by Claes and Heigele (1999). Initially, the
callus is filled with granulation tissue only. The following
event is invasion of the mesenchymal cells and their subse-
quent differentiation into osteoblasts along the bone sides
(Fig. 5), and fibroblast and chondrocyte differentiation in the
gap area. The corresponding tissue production has a similar
pattern to the cell density distribution (Fig. 6). Similarly to
the animal experiment of Claes et al. (1995), the model did

Fig. 4 Simulated and experimentally observed interfragmentary move-
ment

not predict bone bridging of the osteotomy gap, leaving some
space filled with cartilage tissue. The cell differentiation is
governed by the biophysical stimulus S, which reduces grad-
ually, as the callus gets stiffer (Fig. 7).

The results of the parameter study show that the model
is relatively insensitive to small variations of each individ-
ual parameter (Fig. 8). The only parameter whose variation
caused a visible deviation of average bone fractions and in-
terfragmentary movement from the result of the unperturbed
model was Smax. But even for this specific parameter the
general behaviour of the model did not change and the tis-
sue patterns were very similar to the ones produced by the
unperturbed model.

Application of a small bending moment (5% of the
1,900 N m maximum value) in the first corroboration sim-
ulation (2 mm s−1 displacement rate) does not substantially
change the tissue distribution pattern (Fig. 9) as compared
to the pattern in the calibration simulation with pure uni-
axial loading (Fig. 6). Application of the higher bending
moment (40% of the 1900 Nm maximum value) disturbs
the symmetry of the tissue distribution (Fig. 10). The bend-
ing moment causes some extra stimulation of the external
callus (Fig. 11, right) which leads to the additional bone and
cartilage production in this area. This additional stimulation
also causes increase of the average bone density in the whole
callus (Fig. 15a) and in the osteotomy plane (Fig. 15b). The
increase of the bone density in the osteotomy plane results in
the increase of the axial stiffness (Fig. 16a) and subsequent
decrease in the interfragmentary movement (Fig. 16b).

Higher displacement rate also changes the tissue distribu-
tion pattern in the callus (Figs. 12 and 13). It increases the
stimulus S (Fig. 14), which causes more cartilage and bone
formation in certain areas of the callus (Fig. 15a). However,
the tissue distribution, caused by the higher displacement
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Fig. 5 Cell concentrations
inside the callus for the
calibration simulation

Fig. 6 Tissue fractions inside
the callus for the calibration
simulation

Fig. 7 Biophysical stimulus S
for the calibration simulation

rate, is such that the ossification front propagation is delayed.
As a result, the axial stiffness (Fig. 16a) and the bone frac-
tion in the osteotomy plane (Fig. 15b) are lower than in
case of 2 mm/sec displacement rate. Interestingly, at this high

displacement rate the model is substantially less sensitive
to the variation of the bending moment magnitude, as the
distribution of tissues and the biophysical stimulus is quite
similar.
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(a) (b)

(d)(c)

Fig. 8 Sensitivity of the model. Interfragmentary movement (a), fibrous tissue (b), cartilage (c) and bone fractions (d) calculated with the original
and the 10% increased parameters are plotted

4 Discussion

In this study we were aiming at the development of a tis-
sue differentiation model for fracture healing that is not only
capable of capturing the influence of the mechanical envi-
ronment on the number of cellular and tissue processes, but
can also be implemented in complicated 3D geometries and
loading conditions.

In order to model tissue differentiation, some assumptions
were necessary. First of all, most of the model parameters
were either calibrated in such a way that the results agree
with experiments by Claes et al. (1995) or taken from in
vitro studies. Clearly, most parameters might vary from spe-
cies to species or even among individuals. However, the mag-
nitude and the influence of these variations can be roughly
estimated. For instance, osteoblast proliferation rates used in

the present model were based on four independent in vitro
studies, chondrocyte and fibroblast proliferation on two
in vitro studies. The parameter study, performed in this work,
showed that the model is relatively insensitive to minor varia-
tions of the parameter in the vicinity of the base magnitudes,
established in the calibration study. In addition, using the
same values for Smin and Smax, Geris et al. (2004) success-
fully predicted tissue differentiation inside a bone chamber.
The second assumption of the model is a an axisymmetric
geometry of the bone and the callus. Apparently, using a
real geometry, as it was done by Lacroix and Prendergast
(2002b), would contribute to the accuracy of the simulation.
However, in this study we wished to demonstrate the predic-
tive abilities of the model in three dimensions and this can
now be extended to anatomical geometries without undue
difficulty. One more factor that was not explicitly modelled
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Fig. 9 Tissue fractions inside
the callus for the simulation
with 2 mm s−1 displacement rate
and 5% bending moment. The
tissue distributions are shown in
two perpendicular planes:
parallel and perpendicular to the
bending direction

is the stimuli created by growth factors, as it was done by
Bailon-Plaza and Van der Meulen (2001) and Bailon-Plaza
and van der Meulen 2003. Although significance of the
growth factors is an established fact, it remains unclear how
important it is to model the growth factors themselves. A
number of bone fracture healing models, mentioned earlier
in this article, are shown to be capable to predict the main
stages of the healing process. Therefore, we hypothesize that
the explicit modelling of the growth factors becomes crucial
only if the distribution of the growth factors is abnormal.
The latter can happen, for instance, in case of absence or

altered expression of a single growth factor, which may lead
to dramatic fracture healing abberations (King et al. 1994;
Kocher and Shapiro 1998). Another example is when the
growth factors are administered exogenously to a fracture
in order to induce bone formation and accelerated healing
(Joyce et al. 1990). Another simplification of the model is
simulation of only one loading cycle per day (one axial load-
ing cycle during 5 days per week and one bending loading
cycle every day). This way we ignore the accumulative effect
of the repetitive cyclic loading. However, in their study on
bone adaptation Rubin and Lanyon 1984 demonstrated that
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Fig. 10 Tissue fractions inside
the callus for the simulation
with 2 mm s−1 displacement rate
and 40% bending moment. The
tissue distributions are shown in
two perpendicular planes:
parallel and perpendicular to the
bending direction

after a certain number of loading cycles per day there is a sort
of load saturation, when after some critical number cycles
bone does not respond to additional loading cycles anymore.
In our study we hypothesize that the same load saturation
effect might take place in case of bone fracture healing, and
the loading cycle that we simulate every day is an average
“characteristic” load from the saturated load regime. Addi-
tionally, we used a diffusion equation without taxis terms to
model migration of mesenchymal and fibroblast cells. There
are only few numerical schemes capable of solving partial
differential equations with taxis terms, like the ones, pro-
posed by Gerisch (2001) and Gerisch and Chaplain (2005).

Bailon-Plaza and van der Meulen (2001) were using alternat-
ing direction finite difference methods to cope with the taxis
terms. The required condition for application of the above
methods is the usage of structured discretization grids. One
of the goals of this work was an implementation of tissue
differentiation model in finite element method that allows
unstructured grids. Therefore we decided to build a model
that would only be as complete as finite element implemen-
tation would allow, hence dropping the taxis terms.

Despite the above limitations, the model was able to pre-
dict the tissue differentiation patterns as observed by Claes
et al. (1995) and Claes and Heigele (1999). In particular, the
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Fig. 11 Biophysical stimulus S
for the simulation with 2 mm s−1

displacement rate. The
biophysical stimulus
distributions are shown in two
perpendicular planes: parallel
and perpendicular to the
bending direction

ossification front starts from the external side of the cortical
bone and propagates in the direction of the osteotomy plane
as the tissue differentiation continued (Fig. 6). Similarly to
the animal experiment of Claes et al. (1995), the model did

not predict bone bridging of the osteotomy gap, leaving some
space filled with cartilage tissue.

However, unlike the experiment of Goodship et al. (1998),
the model showed a negative effect of the displacement rate
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Fig. 12 Tissue fractions inside
the callus for the simulation with
40 mm s−1 displacement rate
and 5% bending moment. The
tissue distributions are shown in
two perpendicular planes:
parallel and perpendicular to the
bending direction

increase on the axial stiffness. Goodship et al. (1998) also
observed an increase in the bone mineral content in the oste-
otomy plane when the applied displacement rate was changed
from 2 to 40 mm s−1. However, the simulation predicted quite
an opposite effect—as the displacement rate is increased
from the 2 to 40 mm s−1, an average bone fraction in the
osteotomy plane decreases (Fig. 15b). However, Goodship’s
experiment also presents a case of a negative correlation
between the applied displacement rate and the bone mineral
content in the osteotomy gap: application of 400 mm s−1 dis-
placement rate produced lower bone mineral content at the
osteotomy gap than 40 mm s−1 rate. This might indicate that
there is some optimal displacement rate which produces the

maximum bone mineral content in the osteotomy gap, but
our model is not calibrated efficiently to detect such an opti-
mum, as we did not have enough experiment data to calibrate
the model with respect to different loading frequencies (we
could not use Goodship’s results, as we already used them
for corroboration of the model, hence using them also for
the calibration would not be appropriate). It is also worth
mentioning that, as compared to the result of 2 mm s−1 dis-
placement rate, the effect of 40 mm s−1 rate was positive
for the average bone fraction in the whole callus (Fig. 15a).
This is also consistent with Goodship et al. (1998). Radio-
graphs of the callus distribution, presented in Goodship et al.
(1998), show higher mineral content in the callus, stimulated
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Fig. 13 Tissue fractions inside
the callus for the simulation with
40 mm s−1 displacement rate
and 40% bending moment. The
tissue distributions are shown in
two perpendicular planes:
parallel and perpendicular to the
bending direction

with 40 mm s−1 displacement rate, as compared to the one,
stimulated with 2 mm s−1 displacement rate. Comparison
of Goodship’s radiographs for the callus, stimulated with 2
and 400 mm s−1 displacement rates, might explain why the
axial stiffness in the numerical simulation did not show pos-
itive correlation with the displacement rate. From the radio-
graphs it looks like the size of the callus stimulated with a
400 mm s−1 displacement rate is noticeably larger than the
one, stimulated with a 2 mm s−1 displacement rate. Appar-
ently the larger size of the callus gives the whole structure
higher stiffness. Garcia-Aznar et al. (2007) have made an
attempt to simulate callus size growth caused by the cell
proliferation.

Based on the results of the simulation we suggest that this
model is a step forward as compared to the studies of Lacroix
and Prendergast (2002a), Lacroix et al. (2002) and Lacroix
and Prendergast (2002b). Unlike the numerical algorithms
in these studies, the present model is presented as a set of
differential equations where cell proliferation is modelled
explicitly, tissues are modelled separate from cells and tissue
production rates are not equal for every tissue. Although the
model does not allow simulation of the growth factors, like
Bailon-Plaza and van der Meulen (2001) and Bailon-Plaza
and van der Meulen 2003, it allows for a finite element sim-
ulation, which is a definite advantage for complicated geom-
etries and loading conditions. However, the comparison of
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Fig. 14 Biophysical stimulus S
for the simulation with
40 mm s−1 displacement rate.
The biophysical stimulus
distributions are shown in two
perpendicular planes: parallel
and perpendicular to the
bending direction

tissue differentiation patterns of our results and results of
Bailon-Plaza and van der Meulen 2003 is quite good. Both,
the present model (see Fig. 12) and the models presented by
Bailon-Plaza and van der Meulen (2001) and Bailon-Plaza

and van der Meulen 2003, were able to predict the clinically
observed fact (Claes and Heigele 1999) that bone differen-
tiation starts in the external callus near the original cortical
bone. However, in Bailon-Plaza and van der Meulen 2003 and

123



Simulation of fracture healing 457

(a) (b)

Fig. 15 Average bone fraction in the whole callus (a) and in the osteotomy plane (b) for the corroboration simulations

Fig. 16 Axial stiffness (a) and
interfragmentary movement (b)
for the corroboration
simulations. (The (b) is not
continuous because the axial
loading was not applied during
weekends)

(a) (b)

certainly in Bailon-Plaza and van der Meulen (2001) this
can be explained by the fact that the bone surface is also a
source of the osteoblasts favoring growth factors, while in
the presented simulation this comes purely as a result of the
mechanical environment. Due to the fact that in Lacroix and
Prendergast (2002a), Lacroix et al. (2002) and Lacroix and
Prendergast (2002b) the bone is appearing with an equal rate
whenever stimulus S is less than unity, the bone differentia-
tion pattern is somewhat different. Although the ability of the
model to predict the influence of the loading frequency was
proven only partially, this fact makes the model a potential
tool in the development of loading protocols used for accel-
eration of fracture healing processes.

Appendix A: Parameters of the tissue differentiation
model

Estimation of different model parameters was performed
based on a number of in vitro studies and mechanoregulation
theory of Prendergast et al. (1997).

Diffusion coefficient for mesenchymal cells dispersal
was based on leukocyte movement studies (Gruler and

Bültmann (1984)), which gave an estimate for Dm0 = 240
µm2 min−1 = 0.3456 mm2 day−1. A similar value was obtai-
ned by Lacroix et al. (2002) during calibration of their model.
Based on Friedl et al. (1998); Bailon-Plaza and van der Meu-
len (2001) made an estimate of the fibroblasts diffusion coef-
ficient, which resulted in a maximum value of D f0 = 60µm2

min−1 = 0.1152 mm2 day−1. The latter was also used in the
present model.

A number of authors performed in vitro studies on osteo-
blast proliferation (Findlay et al. 2004; Lee et al. 2004;
Heino et al. 2004; Ushida et al. 2001). Based on these studies,
osteoblast proliferation rate Pb0 can be estimated between
0.5 and 1 day−1. In the present study 0.5 day−1 was used.
Application of a low cyclic strain has a stimulatory effect
on the proliferating osteoblasts. From studies of Weyts
et al. (2003), Kaspar et al. (2000, 2002), and Kapur et al.
(2003) it was estimated that proliferation rate of the stim-
ulated osteoblasts is 1.5 time higher that of non-stimulated
ones. Now, assuming that the highest osteoblast proliferation
rate will be achieved at the maximum value of the mechan-
ical stimulus S, favorable to osteoblasts differentiation, the
osteoblast proliferation rate Pb0 depends on S as depicted in
Fig. 17.
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Fig. 17 Cell proliferation rates
as functions of stimulus S

Fig. 18 Cell differentiation
rates as functions of stimulus S

In vitro studies show that non-stimulated chondrocytes
proliferate at a rate similar to osteoblasts. Analyzing the
results of Zhang et al. (2003) and Wu and Chen (2000), Pc0

can be estimated as 0.75 day−1, while moderate mechanical
stimulation can increase this rate to 0.925 day−1. Prendergast
et al. (1997) assumed that the most favorable environment
for the differentiation and proliferation of chondrocytes is
reached when the biophysical stimulus S lies between Smin

and Smax. Based on this hypothesis and the results of Zhang
et al. (2003) in the present chapter it is assumed that Pc0

depends on S as shown on Fig. 17.
Fibroblasts exhibit much lower proliferation rates without

mechanical stimulation. According to Mizuno et al. (2004),
proliferation rate of non-stimulated fibroblasts Pf0 can be
estimated as 0.1 day−1. The reported stimulated rates
(Mizuno et al. 2004; Yang et al. 2004) range between 0.1 and
0.6 day−1 (0.6 day−1 used in this work) and the maximum
stimulation is achieved under higher strain levels
(Yang et al. 2004). The assumed dependence between Pf0

and S is shown in Fig. 17.
It remains unclear whether mechanical loading has a pos-

itive or a negative effect on proliferation of mesenchymal
stem cells. For instance Ku et al. (2006) and Song et al.
(2007) show a positive correlation, while according to Sim-
mons (2003), even small mechanical strain reduces the pro-
liferation rate of mesenchymal cells. For now only the later
results are included in this study. According to the study
of Simmons (2003), the proliferation rate of the non-stimu-
lated mesenchymal cells Pm0 can be estimated as 1.2 day−1.
Mechanical stimulation reduces this rate to around 0.5 day−1.
Given this data, we assumed the dependence of Pm0 on S as
shown in Fig. 17.

Cell differentiation rates were obtained from calibration
of the model presented in this work. The calibrated values

Fbmin , Fbmax , Fcmax and F fmax were used in the dependencies,
as shown in Fig. 18. The shape of the rates dependence on
stimulus S was assumed taking into account the mechanore-
gulation model of Prendergast et al. (1997).

Tissue production rates depend on S in the same manner as
the differentiation rates, shown in Fig. 18. The correspond-
ing parameters Qbmin , Qbmax , Qcmax and Q fmax were obtained
from the calibration of the model.

The lower and the higher thresholds of the stimulus S
according to Huiskes et al. (1997) are: Smin = 1, Smax = 3.

Appendix B: Finite element formulation for the tissue
differentiation model

Only Eqs. (1) and (2) have to be solved by the finite element
method. The other equations could be solved locally i.e., on
element level.

Following the weighted residual method, Eqs. (1) and (2)
are multiplied with arbitrary vector functions wm and wf

from H1
0 (where H1

0 is a standard Sobolev space, which pro-
vides that the function can be integrated along with its first
derivatives and vanishes on the boundary) and integrated over
the whole domain. Assuming that there are no applied cell
fluxes on the boundary (as the later are not used in the sim-
ulation), we obtain

∫

�

wT
m

[
dcm

dt
− Dm∇2cm − Pm(1 − ctot)cm

+F f (1 − c f )cm − Fc(1 − cc)cm

+ Fb(1 − cb)cm

]

d� = 0, (B.1)
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∫

�

wT
f

[
dc f

dt
−D f ∇2c f −Pf (1 − ctot)c f −F f (1 − c f )cm

+ Fc(1 − cc)c f + Fb(1 − cb)c f

]

d� = 0. (B.2)

First we apply Greens theorem to the diffusion terms to
eliminate the divergence operator. Furthermore we introduce
finite element approximation by dividing the domain into
finite elements and approximating the cellular densities cm

and c f within the elements by the product of the element
nodal values cm and cf and approximating shape functions
N, i.e., cm = Ncm and c f = Ncf . By applying Galerkin’s
method, the weighting functions wm and wf are replaced by
the interpolating shape functions N. The resulting equations
on element level are:

C
dcm

dt
+ Kmcm −

[

Pm[1 − cc − cb] − F f

− Fc[1 − cc] − Fb[1 − cb]
]

Ccm

+[Pm − F f ]pmix(cm, cf ) + Pmpn(cm) = 0,

(B.3)

C
dcf

dt
+ Kf cf −

[

Pf [1 − cc − cb]

− Fc[1 − cc] − Fb[1 − cb]
]

Ccf

−F f Ccm + [Pf + F f ]pmix(cm, cf )

+Pf pn(cf ) = 0, (B.4)

with

C =
∫

Vel

NTN dVel, (B.5)

Ki =
∫

Vel

∇NT Di∇N dVel, i = m, f , (B.6)

pn =
∫

Vel

NT(ciN)2 dVel, i = m, f , (B.7)

pmix =
∫

Vel

NT(cmN)(cf N) d Vel. (B.8)

Next we apply time discretization. First, we replace the
time derivatives with the finite differences: dcm

dt = �cm
�t =

(cmn+1− cmn )

�t and dcf
dt = �cf

�t = (cfn+1− cfn )

�t . Then, in each
equation of the system, a variable is solved implicitly (taken
at the yet unknown time step n + 1) only if that equation
represents the rate of that variable. More specifically, in
Eq. (B.3) cm is replaced with cmn+1 and in Eq. (B.4) cf is
replaced with cfn+1 . All the other variables are taken with
index n (hence, they are known). We obtain:

C
(cmn+1 − cmn)

�t
+ Kmcmn+1

−
[

Pm[1 − ccn − cbn ]

− F f − Fc[1 − ccn ] − Fb[1 − cbn ]
]

Ccmn+1

+[Pm − F f ]pmix(cmn+1 , cfn) + Pmpn(cmn+1) = 0,

(B.9)

C
(cfn+1 − cfn)

�t
+ Kf cfn+1

−
[

Pf [1 − ccn − cbn ] − Fc[1 − ccn ] − Fb[1 − cbn ]
]

Ccfn+1

−F f Ccmn + [Pf + F f ]pmix(cmn , cfn+1)

+ Pf pn(cfn+1) = 0. (B.10)

The motivation for this is to have a maximum number of
terms calculated implicitly while still maintaining symme-
try of the element stiffness matrix and avoiding additional
degrees of freedom that can not be solved on element level.
Although a fully implicit formulation of the system would
provide better stability and accuracy of the solution, all vari-
ables in the nonlinear system would be unknown (all cell
concentrations and tissue fractions in (B.9) and (B.10) would
be taken at time point n + 1) and the linearization and sub-
sequent iterations should be performed with respect to all
the unknown variables. This would make the stiffness matrix
nonsymmetric and not allow the solution of cc, cb, m f , mc

and mb on element level. Besides, the presented formulation
was successfully tested against an one-dimensional Matlab
solution.

Due to the fact that some non-linear terms, namely vectors
pn, include unknown variables, the system is still non-linear.
Therefore, the solution is obtained via a Newton scheme.
Equations (B.9) and (B.10) are linearized and the linearized
system is solved iteratively during the same time step until
some convergence criterium is met. The corresponding line-
arized iterative system is

[
Kmstiff 0

0 Kfstiff

]{
δcmn+1

δcfn+1

}

=
{

FIm

FIf

}

(B.11)

where

Kmstiff = C + �t

[

Km − (
Pm[1 − ccn − cbn ] − F f

− Fc(1 − ccn )− Fb(1 − cbn )
)

C + [Pm − F f ]

×∂pmix(cmn , cfn)

∂cmn

+ Pm
∂pn(cmn)

∂cmn

]

(B.12)

Kfstiff = C + �t

[

Kf − (
Pf [1 − ccn − cbn ] − Fc(1 − ccn )

−Fb(1 − cbn )
)

C + [Pf + F f ]
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×∂pmix(cmn , cfn)

∂cfn

+ Pf
∂pn(cmn)

∂cfn

]

, (B.13)

FIm = C�cmn + �t
[
Kmcmn − (

Pm[1 − ccn − cbn ]
−F f − Fc(1 − ccn )−
−Fb(1 − cbn )

)
Ccmn + [Pm − F f ]

× pmix(cmn , cfn) + Pmpn(cmn)
]
, (B.14)

FIf = C�cfn + �t
[
Kf cfn − (

Pf [1 − ccn − cbn ]
−Fc(1 − ccn )− Fb(1 − cbn )

)
Ccfn − F f Ccmn

+[Pf +F f ]pmix(cmn , cfn) + Pf pn(cfn)
]
,

(B.15)

∂pn(cin)

∂cin
= 2

∫

Vel

NTN(Ncin)dVel, i = m, f

(B.16)

∂pmix(cmn , cfn)

∂cin
=

∫

Vel

NTN(Ncjn)dVel,

i = m, f j = f, m. (B.17)

As was mentioned before, due to the fact that Eqs. (3)–(7)
do not contain any divergence operators, it is quite con-
venient to solve them on element level, without the need
for additional degrees of freedom. Applying the previously
mentioned consideration for time discretization to (3) and
regrouping the terms around c2

cn+1
and ccn+1 , (3) is presented

as

�t Pcc2
cn+1

+ [
1 − (Pc(1 − cmn − c fn − cbn ) − Fc(cmn + c fn )

− Fb(1 − cbn ))�t
]

ccn+1

−(Fc(cmn + c fn )�t + ccn ) = 0 (B.18)

Using (B.18), ccn+1 is calculated during every iteration as a
root of a second order equation. In case of a 4-node tetrahe-
dral element, that was developed for this study, we assumed
values cc, cb, mb, mc and m f to be constant within the ele-
ment, while cm and c f are linearly interpolated between the
nodes. So, in (B.18) and further cm and c f are the magni-
tudes, interpolated in the center of the element.

Similarly, osteoblast density, bone, cartilage and fibrous
tissue volume fractions are found from the following equa-
tions. Osteoblast density cbn+1 :

�t Pbc2
bn+1

+ [
1 − (Pb(1 − cmn − c fn − ccn )

− Fb(cmn + c fn + ccn ))�t
]

cbn+1

−Fb(cmn + c fn + ccn )�t − cbn = 0, (B.19)

bone matrix volume fraction mbn+1 :

mbn+1 = �t Qbcbn + mbn

1 + �t Qbcbn

, (B.20)

cartilage volume fraction mcn+1 :

�t Dbcbn m2
cn+1

+ [1 + �t (Qcccn + Dbcbn (mbn + m fn ))]
× mcn+1 − (mcn + �t Qc(1 − mbn )ccn ) = 0, (B.21)

and fibrous tissue volume fraction m fn+1 :

�t (Dbcbn + Dcccn )m
2
fn+1

+ [1 + �t (Q f c fn

+(Dbcbn + Dcccn )(mcn + mbn ))]m fn+1

−(m fn + �t Q f (1 − mcn − mbn )c fn ) = 0. (B.22)
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