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Abstract Mechanical forces cause changes in form
during embryogenesis and likely play a role in regu-
lating these changes. This paper explores the idea that
changes in homeostatic tissue stress (target stress), pos-
sibly modulated by genes, drive some morphogenetic
processes. Computational models are presented to illus-
trate how regional variations in target stress can cause
a range of complex behaviors involving the bending of
epithelia. These models include growth and cytoskel-
etal contraction regulated by stress-based mechanical
feedback. All simulations were carried out using the
commercial finite element code ABAQUS, with growth
and contraction included by modifying the zero-stress
state in the material constitutive relations. Results pre-
sented for bending of bilayered beams and invagination
of cylindrical and spherical shells provide insight into
some of the mechanical aspects that must be considered
in studying morphogenetic mechanisms.

Keywords Growth · Finite elements · ABAQUS ·
Morphogenesis · Invagination

1 Introduction

Morphogenesis, the formation of tissues and organs,
provides a rich source of challenging problems in bio-
mechanics. Typically, these problems involve extremely
large deformations of nonlinear anisotropic tissues
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undergoing active force-generating processes, including
growth and contraction. Although most current research
in development focuses on genetics and molecular biol-
ogy, understanding the four-dimensional process of mor-
phogenesis requires also understanding the mechanics
(Davies 2005, Gordon 2006).

A fundamental question of developmental biology
is how the one-dimensional genetic code is translated
into three-dimensional form. Currently, relatively little
is known about the interactions between genetic and
mechanical factors. Based on many years of experimen-
tal manipulations of embryos, the developmental biol-
ogist L.V. Beloussov has postulated that tissue stress
regulates morphogenesis (Beloussov 1998). He specu-
lates that embryonic tissues respond to perturbations
in stress by actively deforming in such a way as to
return the stress σ toward (and overshooting) a target
value σ ∗ (Fig. 1), eventually producing the final shape
of the embryo. Here, we suggest that genes may regu-
late morphogenesis by regionally controlling the value
of the target stress. Computational models are used to
explore this idea for some fundamental problems in
morphomechanics.

Within the context of this study, we also address the
issue that progress in morphomechanics has been ham-
pered, in part, by the lack of appropriate computational
tools. The advantage of using commercial codes is that
the user does not need to spend time, sometimes years,
developing code. On the other hand, users of custom
codes know just what goes into them and can include
relevant biology at will. For some problems, there is
little choice but to develop a specialized program, but
many problems in morphogenesis can be solved through
appropriate use, and possible modification, of existing
codes.
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Fig. 1 Block diagram illustrating genetic control of morphoge-
netic forces. At any given time, the “stress error”, the difference
between actual stress σ and target stress σ ∗ (set by genes) drives
morphogenetic processes such as growth, cytoskeletal contrac-
tion, and active cell shape changes. Equation (14) captures this
idea mathematically

Here, we show how some commercial finite element
(FE) packages can be used as general-purpose codes to
solve a relatively large range of problems in morpho-
genesis. The models in this paper are based on the pro-
gram ABAQUS (ABAQUS, Inc., Rhode Island), which
is a popular tool for solving nonlinear problems in solid
mechanics. A particularly useful feature of ABAQUS is
the ability to define custom material properties through
the user-supplied subroutine UMAT. Volumetric growth
(and contraction) can be included in UMAT in a rela-
tively straightforward manner.

2 Methods

2.1 Theory for volumetric growth

A number of basic morphogenetic mechanisms can be
simulated numerically using algorithms for volumet-
ric growth (Taber 1995). Examples include differential
and directed growth, cytoskeletal contraction, and active
cell-shape change. From a mechanics standpoint, volu-
metric growth is analogous to thermal expansion. The
approach used in this paper is based on the theory of
Rodriguez et al. (1994), which assumes the existence of
a local stress-free configuration at all times.

Consider a pseudo-elastic body with initial stress-free
state B0 (Fig. 2). Imagine now that B0 is cut into infini-
tesimal pieces each of which undergoes uniform growth.
After growing according to the growth tensor G, the
pieces remain stress-free and collectively make up the
zero-stress configuration B. However, they likely are
no longer geometrically compatible, leading to the non-
zero (residual) stress state BR after reassembly. From
here, external loads are added, giving the final deformed
configuration b.

In the theory of Rodriguez et al. (1994), the total
deformation gradient tensor F is decomposed into the
growth tensor G and the elastic deformation gradient
tensor K, i.e., (see Fig. 2),

Fig. 2 Configurations for growth

F = K · G. (1)

The field equations for the equilibrium problem are writ-
ten in terms of F. However, for zero stress to correspond
to zero strain, the constitutive law should be written in
terms of K. The Cauchy stress tensor is given by (Taber
2004)

σ = J−1K · ∂W
∂ε

· KT , (2)

where J = det K and W(ε) is the strain-energy density
function with ε = 1

2

(
KT · K − I

)
being the Lagrangian

strain tensor for the elastic part of the deformation (rel-
ative to the zero-stress state).

2.2 Considerations for large rotation

In finite-strain problems, modeling anisotropic growth
requires proper consideration of rotation to ensure that
the growth directions follow the material directions as
the body deforms (Rodriguez et al. 1994). The procedure
to correctly handle rotation in numerical simulations is
outlined below.

The variables passed into the ABAQUS subroutine
UMAT include the components of F, and the output
includes the Cauchy stress components. The user manu-
als describe how ABAQUS handles material rotation
but not how this information is passed into UMAT
(ABAQUS 2003). To determine the correct coordinate
basis for F inside UMAT, we conducted a numerical
experiment involving simple uniaxial extension and
rotation of a bar. This indicated that within UMAT, F
is defined relative to a rotated orthogonal basis of unit
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vectors, ei. In dyadic form, with summation implied for
repeated indices, we can write

F = Fij eiej, (3)

where the ei are given by a rigid-body rotation of an
orthogonal local triad of unit vectors, Ei, in the unde-
formed body. In particular, the rotated basis is given by

ei = R · Ei = Ei · RT , (4)

where R is the rotation tensor defined by the polar
decomposition

F = V · R, (5)

in which V is the left stretch tensor (see Appendix A for
the computation of R). Note that R can be expressed in
the dyadic forms (Taber 2004)

R = eiEi = Rij EiEj = Rij eiej,

and, therefore,

Rij = Ei · ej. (6)

The validity of Eq. (3) was confirmed by solving a wide
range of representative test cases, including some that
were also solved using COMSOL Multiphysics (COM-
SOL, Inc., Burlington, MA, USA). Empirical evidence
is provided by the circular shapes of the deformed beams
in later examples, as well as the accompanying longitudi-
nal Cauchy stress distributions, which follow the defor-
med beam contours (see Figs. 3A, B, 4).

As discussed by Rodriguez et al. (1994), it is immate-
rial whether rigid-body rotation is included in K or G.
Here, we include it in K and write

K = Kij eiEj,

G = Gij EiEj. (7)

Most biological tissues contain at least orthotropic sym-
metry. In this case, if growth occurs only along principal
material directions, we can ignore shearing relative to
these directions due to growth and take the special form

G = λg1E1E1 + λg2E2E2 + λg3E3E3. (8)

In this expression, the λgi are growth stretch ratios along
the local directions Ei, which correspond to principal
material directions in the initial stress-free state (B0 in
Fig. 2). We now need to find the appropriate components
of K to use in the constitutive law of Eq. (2).

Substituting Eq. (7) into Eq. (1) and extracting the
components of F defined by Eq. (3) yields

Fij = ei · (Kkl ekEl) · (Gmn EmEn) · ej

= KklGmnδikδlm (En · ej)

= KilGlnRnj. (9)

In these relations, δij = Ei · Ej = ei · ej is the Kronecker
delta, and the last line is given by Eq. (6). In matrix form,
Eq. (9) can be written

[F] = [K] [G] [R] , (10)

where the matrices are populated by the components
defined by Eqs. (3), (6), and (7). Thus, if the Gij and
Rij are known, and with the Fij passed into UMAT, the
elastic deformation gradient components are given by

[K] = [F][R]−1[G]−1. (11)

This matrix equation provides the appropriate compo-
nents of K to be used in UMAT.

2.3 Material properties

Relatively few data are available for the mechanical
properties of embryonic tissues (Forgacs et al. 1998;
Davidson et al. 1999; Zamir et al. 2003; Zamir and
Taber 2004). Some measurements indicate that embry-
onic tissues are more linear than mature tissues, and
some investigators have suggested that embryonic epi-
thelia behave as a viscous fluid during the slow process
of morphogenesis (Forgacs et al. 1998; Beysens et al.
2000). Embryonic tissues contain residual stress, how-
ever, indicating that elasticity cannot be neglected and
that stress-induced deformation is limited (Taber et al.
1993; Beloussov 1998; Zamir and Taber 2004). For sim-
plicity, we herein ignore viscous effects and consider a
mechanically isotropic material characterized by a mod-
ified neo-Hookean strain-energy density function of the
form

W = C
(
Ī − 3

) + 1
D

(J − 1)2 , (12)

where Ī = J−2/3tr K = J−2/3(3 + 2εii) and J = det K =[
det(δij + 2εij)

]1/2 are strain invariants, and C and D are
material constants. For a nearly incompressible mate-
rial, J → 1 and D → 0. Because qualitative behavior is
the focus of this paper, neglecting viscoelasticity should
not significantly affect the main conclusions. In addition,
all quantities are taken in a nondimensional form, and
we take C = 10 and D = 0.1.
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Fig. 3 Cantilever beam with stress feedback. A–A′′′ Bending of
beam to growth equilibrium configuration with stress-modulated
growth in the bottom layer (target stress = σ ∗ = 1); top layer is
passive. A Undeformed and deformed configurations. A′ Beam
curvature (κ) increases rapidly at first and then reaches a steady
state as the target stress distribution is attained. A′′ Transmural
bending stress distribution at two time points. The stress in the
bottom layer (−0.5 < Y/H < 0) approaches the target stress
(σ ∗ = 1). A′′′ Growth stretch ratio (λg) vs. time at top and bottom
of beam. In the growing region (bottom), λg decreases and reaches
steady state as the target stress is attained. B–B′′′ Perpetual bend-
ing of a cantilever beam. Target stresses are specified in the top

layer (σ ∗ = −0.25) and bottom layer (σ ∗ = 0.25). B Undeformed
and deformed configurations. B′ Beam curvature increases mono-
tonically and does not reach a steady-state. B′′ Transmural stress
distribution does reach a steady-state with σ(t) > σ ∗ in the top
layer and σ(t) < σ ∗ in the bottom layer for t > 0.1. B′′′ Growth in
the top layer and atrophy (contraction) in the bottom layer con-
tinue indefinitely. Vertical line in A denotes the section used in
A′′ and B′′. Black rectangles in A indicate the elements at which
time plots for λg are generated (A′′′, B′′′). Colors in A and B indi-
cate longitudinal Cauchy stress distributions relative to deformed
beam geometry

Cytoskeletal contraction is an important generator of
morphogenetic force. Contraction can be simulated by
assuming that an isolated contractile fiber stiffens and
shortens to a new stress-free configuration, analogous to
negative growth. This method for modeling contraction
is analogous to the time-varying elastance concept in
cardiac mechanics (Taber and Perucchio 2000). In this
paper, we simulate contraction by taking λg1 < 1 along
the fiber direction E1. For simplicity, however, the stiff-
ness (depending on the value of C) remains unchanged
unless stated otherwise.

2.4 Growth law

In the embryo, tissues alter their dimensions in several
ways, including growth and contraction. In this paper,
we use the term “growth” to indicate an active adapta-
tion in response to a specified target stress. The response
can include actual tissue growth as well as contraction.

The stress state of a specimen is altered due to growth.
Conversely, growth is influenced by the stress state,
leading to a closed-loop feedback system. In this paper,
we explore a growth law of the form
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DG = Ġ · G−1 = A : [σ (t) − σ ∗], (13)

where DG is the growth rate tensor, A is a fourth-
order tensor of growth coefficients, σ is the Cauchy
stress tensor, and σ ∗ is the target stress, i.e., the stress
at growth equilibrium. The present analysis is based
on tensor components defined by the representations
DG = (DG)ijEiEj, A = AijklEiEjekel, σ = σijeiej, and
σ ∗ = σ ∗

ij eiej.
For simplicity, all of the beam and cylinder models in

this paper consider growth (or contraction) in (say) the
E1 direction only. Then, with A = aE1E1e1e1, Eq. (13)
yields the one-dimensional growth law

DG = λ̇g(t)/λg(t) = a[σ(t) − σ ∗], (14)

where the constant a characterizes the rate of growth
and σ is the normal stress in the rotated e1 direction.
More specifically, growth occurs in the longitudinal (X)
direction for beams and in the circumferential direc-
tion for cylinders. For spherical shells, equal growth is
assumed to occur in the circumferential and meridio-
nal directions. Note that the quantity DG represents the
rate of growth per unit length in the zero-stress state B
(Fig. 2), whereas λ̇g is the growth rate per unit reference
length in state B0. In this paper, a = 1 unless stated
otherwise.

It is important to mention that, in our models, growth
is anisotropic, although the material is taken as initially
isotropic. This potential biological inconsistency should
not influence the overall qualitative behavior of our
models.

Within UMAT, Eq. (14) is discretized as

λg(t + �t) = λg(t) + a
[
σ(t) − σ ∗] λg(t)�t, (15)

where �t is the integration time step. In this qualitative
study, time is an arbitrary parameter and �t is chosen
such that the total time of simulation is divided into at
least 400 increments. Note that Eq. (14) is the mathe-
matical representation of the feedback system shown in
Fig. 1.

2.5 Finite element details

All simulations were run in ABAQUS Version 6.4. In
addition to the Cauchy stress tensor, UMAT also
requires coding for the fourth-order spatial tensor of
elasticities C,1 which contains the derivative of each

1 The tensor C is referred to as the “Jacobian matrix” and “con-
sistent Jacobian” in the ABAQUS manuals. It is also referred to
as the “spatial tensor of elasticities” in Holzapfel (2001) and as

stress component with respect to each strain compo-
nent. The procedure for computing C is described in
Appendix B.

Plane strain analysis was used for problems involving
beams (actually “plates”) and cylinders, while spherical
shells were analyzed using axisymmetry. Second-order
quadrilateral elements were used for the beam problems
(mesh is shown in Fig. 3A, B). Fixed time-step analysis
was used with �t = 0.001 (invagination problems) and
�t = 0.005 (beam-bending problems) and any delay in
the feedback loop was selected such that the delay time,
d, is always a multiple of the simulation step time [please
see Eq. (16)]. This ensures that the delayed system state
at time t − d always coincides with a formerly iterated
equilibrium state and no interpolation is necessary.

The growth law in Eq. (15) was implemented using
solution-dependent state variables within subroutine
UMAT. These state variables allow storage of any var-
iable at any time instant during simulation. This list
includes all stress and strain components, as well as any
other variables (such as λg) that are defined by the user.
Within UMAT, the stored value can then be used in
future time instants, where its value can be optionally
updated or simply left alone. It is important to note that
state variables are fields, just like stress and strain, which
means that at every time instant, there is a unique value
for every integration point. Additionally, state variables
are available to the output database, so that their time
history or field distribution can be plotted.

This feature was used to update λg at each time step
according to Eq. (15). To illustrate how a time delay was
included, consider, for example, the case where d = 3�t.
Initially, the stress at t = 0�t, t = 1�t, and t = 2�t are
stored in three separate state variables var1, var2, and
var3, respectively. At t = 3�t, the value of the delayed
stress, σ(t − 3�t) = σ(0), is directly read from var1. At
t = 4�t, the value of the delayed stress, σ(t − 3�t) =
σ(1�t), is directly read from var2, and so on.

For fluid-filled shells, the cavity was lined with hydro-
static incompressible fluid elements, which maintain a
constant cavity volume and provide a hydrostatic pres-
sure through a Lagrange multiplier. The fluid constitu-
tive model is available as a standard tool in ABAQUS
and, for the large deformation problems considered in
this paper, the introduction of the Lagrange multiplier
did not introduce any numerical instabilities. In addition,
it was verified that the cavity volume did not change dur-
ing simulation. Since the current version of ABAQUS

the “elastic moduli tensor” in Lubarda and Hoger (2002). In addi-
tion, it is referred to as the “continuum tangent operator” in the
inelasticity literature. Here, we use the terminology of Holzapfel
(2001).
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supports only linear fluid elements, the shell simulations
are based on a compatible linear mesh; a very dense
mesh (13,000 elements) was used in these problems to
maintain accuracy.

Note that growth can be implemented in other com-
mercial codes that allow access to constitutive relations
and the components of the deformation gradient tensor.
In fact, as mentioned earlier, several of the models dis-
cussed in this paper were also solved using COMSOL
Multiphysics, and the results were found to be identical.

3 Results

To illustrate the value of ABAQUS in studying morpho-
genesis, we herein consider some representative bending
problems. Bending of epithelia is central to a num-
ber of developmental processes, including gastrulation
(Davidson et al. 1995), neurulation (Clausi and Bro-
dland 1993), and cardiogenesis (Taber 2005). The
emphasis here is on the possible role of mechanical feed-
back. First, to fix ideas, we examine bending of a beam
composed of two layers, which can represent a two-cell-
thick epithelium, e.g., germ layers in an embryo or an
epithelium with attached basal lamina. Then, we extend
the analysis to study invagination in circular tubes and
spheres, with and without an enclosed fluid.

Our basic premise is that genes signal a regional
change in target stress σ ∗, which stimulates a growth
response that alters the stress field. The tissue then
responds by growing or contracting2 in an attempt to
return stresses toward their homeostatic values. For sim-
plicity, external loads other than cavity pressure are
ignored, and all simulations begin with a zero-stress
configuration (with zero pressure); hence, the tissue is
in a homeostatic condition as long as the target stress
remains uniformly zero.

3.1 Stress feedback in a cantilever beam

As in a heated bimetallic strip, differences in growth
or contraction between layers cause a beam to bend.
Here, we consider two problems. In the first problem,
an axial growth law [Eq. (14)] is specified in the bottom
layer with a target stress σ ∗

x ≡ σ ∗ = 1. The top layer is
passive (Fig. 3A). In response to the change in σ ∗, neg-
ative axial growth (or contraction) occurs in the lower

2 Programmed cell death (apoptosis) is an important mechanism
in embryogenesis. In general, however, epithelia alter their form
by contracting, growing through cell multiplication, or changing
shape by cell intercalation. In this paper, we refer to any negative
growth as “contraction.”

layer (Fig. 3A′′′), causing tension that bends the beam
downward.3 Bending ceases when σ ∗ = 1 throughout
the lower layer (Fig. 3A′,A′′). Note that the stress dis-
tribution in the top layer (0 ≤ Y/H ≤ 0.5) changes
dramatically to satisfy equilibrium (Fig. 3A′′), as the
net axial force and bending moment must be zero at
all times. (The local end effects apparent in the defor-
med beams of Fig. 3A,B should not influence the gross
behavior.)

In the second problem, both layers actively respond
to perturbations in target stresses, with σ ∗ = 0.25 speci-
fied in the low layer and σ ∗ = −0.25 in the upper layer
(Fig. 3B). Because this stress distribution satisfies force
but not moment equilibrium, the beam bends perpet-
ually as it chases these target stresses (Fig. 3B′). Inter-
estingly, the bending stress distribution does not change
appreciably as the beam bends and soon reaches a steady
state (Fig. 3B′′). Since the steady-state stress distribution
(Fig. 3B′′, solid line) does not match the target stress dis-
tribution (dash-dot line), the growth stretch ratios con-
tinue to increase in magnitude (Fig. 3B′′′), leading to
perpetual bending (Fig. 3B′).4

3.2 Stress relaxation in a cantilever beam

As mentioned above, some researchers have postulated
that embryonic tissues behave as viscous fluids (Forgacs
et al. 1998; Beysens et al. 2000). In this case, morpho-
genetic shape changes would occur without generating
sustained residual stress, i.e., σ ∗ = 0. The following
example illustrates some consequences of this assump-
tion for a bilayered cantilever beam. The simulation con-
sists of two phases:

Bending phase (0 ≤ t ≤ 1): Axial contraction (negative
growth) is specified in the lower layer (λg drops from
1.0 to 0.95), while the upper layer remains passive.
There is no feedback in this step.

Responding phase (1 < t ≤ 2): An axial growth law
[Eq. (14), with a = 0.175] is assigned to both lay-
ers with the target stress set at σ ∗ = 0. The initial
condition for the contracted layer is λg = 0.95.

The results show that the beam curvature increases
monotonically during the bending phase and remains

3 In all beam problems, curvature was computed near the center
of the beam as described in Appendix C.
4 Eventually, the beam bends all the way around and starts to
self-intersect, as no contact conditions are specified in this simula-
tion. This, however, is unrealistic unless we consider bending that
continues in a different plane.
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Contraction (0<t<1);Growth (1<t<2; σ  = 0) 

Passive (0<t<1); Growth (1<t<2; σ  = 0) *  
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Fig. 4 Stress relaxation in a cantilever beam. Top row shows sche-
matic (left) and undeformed and deformed configurations (t ≥ 1.0,
right). Bottom layer contracts for 0 ≤ t ≤ 1 (bending phase) and
remains at maximum contraction thereafter; both layers grow in
response to stress (σ ∗ = 0) for 1 < t ≤ 2 (responding phase).
Colors indicate longitudinal Cauchy stress distribution relative
to deformed beam geometry. A Beam curvature increases stea-
dily during the bending phase and remains unchanged during the

responding phase. B Bending stresses (at elements indicated by
filled rectangles in schematic) increase in magnitude at top and
bottom of beam during the bending phase and drop to zero dur-
ing the responding phase. C, D Transmural distributions of λg and
σ at start of the responding phase. E, F Distributions of λg and σ

at t = 1.125 (solid line) and at the end of the responding phase
(t = 2.0, dashed line). Please see Fig. 3A for section used in C–F

constant thereafter (Fig. 4A). Due to downward bend-
ing, axial stresses are tensile at the top and compressive
at the bottom of the beam during the bending step, but
drop to zero in the responding step. In other words, the
beam remains bent at the curvature caused by the initial
contraction while the bending stress approaches zero
(the target stress) throughout the beam (Fig. 4B). This
behavior is explained as follows.

Consider the changing growth and bending stress dis-
tributions in the beam (Fig. 4C–F). At the end of the
bending phase (t = 1), both λg and σ are discontinuous
between layers. During the responding phase, according
to the growth law of Eq. (14), growth occurs in regions
of tension to reduce the stress, while contraction occurs
in regions of compression to increase stress. This res-
ponse gradually reduces the stress to zero throughout



84 A. Ramasubramanian, L. A. Taber

the beam (Fig. 4F), as the distribution of λg becomes
continuous and linear (Fig. 4E). Surprisingly, the curva-
ture does not change during this phase because increases
and decreases in λg across the beam effectively cancel
themselves out. In Fig. 4E, for instance, area a = area d
and area b = area c.

3.3 Cantilever beam oscillations

According to classical control theory, a feedback control
system with a delay in the feedback-loop can lead to
oscillations in the controlled variable. Depending on the
delay magnitude, oscillations may be damped, sustained,
or unbounded (Franklin et al. 1997). Because it is likely

that biological systems do not respond instantly to per-
turbed loading conditions, we consider a simple mor-
phogenetic model that includes a time delay.

The simulation in the previous section is repeated
with the modified axial growth law

λ̇g(t)/λg(t) = a[σ(t − d) − σ ∗], (16)

where the delay time d is taken as an integer multiple
of the integration time step �t = 0.005. During the
responding phase, both σ and λg oscillate. Our choice of
delay (d = 0.030, about one-fourth the oscillation per-
iod) leads to damped oscillations (Fig. 5A′). Increasing
the delay magnitude can lead to sustained oscillations

Contraction (0<t<1); Growth with delay (1<t<2; σ  = 0) 

Passive (0<t<1); Growth with delay (1<t<2; σ  = 0) *  

*  H x

Y

Fig. 5 Cantilever beam oscillations. Bottom layer contracts for
0 ≤ t ≤ 1 (bending phase) and remains at maximum contraction
thereafter; both layers grow in response to stress (σ ∗ = 0) with
a time delay for 1 < t ≤ 2 (responding phase). (This model is
the same as that of Fig. 4 except for the delayed response.) A–
A′′ Materially homogeneous beam; stress oscillations occur with-
out bending oscillations. B–B′′ Materially inhomogeneous beam
(modulus of top layer > modulus of bottom layer); both stress and
bending oscillations occur. A, B Beam curvature vs. time. A′, B′

Bending stress vs. time at element indicated by filled rectangle in
schematic. A′′, B′′ Change in transmural distribution of λg during
a small representative time interval (from t = 1.00 to t = 1.02).
For the beam on the left, the increases and decreases in λg cancel
out (area a = area d and area b = area c); hence the curvature does
not oscillate. For the beam on the right, the transmural change in
λg from t = 1.0 to t = 1.02 is not symmetric (B′′:area a �= area d
and area b �= area c), leading to bending oscillations. See text for
details. Please see Fig. 3A for section used in A′′, B′′
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or unstable behavior (results not shown). As in the
previous example, the symmetry in the problem ensures
that changes in λg in the upper and lower layers of the
beam effectively cancel themselves out (Fig. 5A′′, area a
= area d and area b = area c), and hence the beam itself
does not oscillate (Fig. 5A).

This symmetry can be broken by increasing the mod-
ulus of the top layer of the beam relative to the bottom
layer. Accordingly, the ratio of moduli S = Ctop/Cbottom
was increased from 1 to 3. In addition, the delay magni-
tude was decreased to d = 0.015 to get sustained oscil-
lations (see note below). This leads to stress oscillations
as before (Fig. 5B′), but the transmural change in λg is
no longer symmetric (Fig. 5B′′, area a �= area d and area
b �= area c), and the beam starts to oscillate (Fig. 5B).

Here, it is important to note the following. The stress-
only oscillation (Fig. 5A–A′′) and beam oscillation
(Fig. 5B–B′′) simulations use slightly different time
delays. For d = 0.030, the beam oscillation problem was
found to be highly sensitive to the value of S. For exam-
ple, S = 1.3 leads to large unstable oscillations, while

S = 1.25 does not produce any oscillations. On the other
hand, d = 0.015 did not cause any stress fluctuations in
the stress oscillation problem and results were identical
to those in Fig. 4, where d = 0. Overall, it was found that
a large enough delay in the feedback law is sufficient to
introduce stress oscillations without beam oscillations
and that both a delay and S > 1 are needed for stress
oscillations that are accompanied by beam oscillations.
Note that the time period, T, of the induced oscilla-
tions is also different in the two cases (Fig. 5A′, B′) but
T/d ≈ 4.4 in both cases. Note also that bending oscilla-
tions are also produced for S < 1 (results not shown).
Bending oscillations occur whenever the elastic moduli
of the two layers differ.

3.4 Invagination

Invagination, the local infolding of a region of epithelial
cells, plays a vital role in various morphogenetic pro-
cesses during embryogenesis. During neurulation, for
example, a furrow forms and closes off to create the

Fig. 6 Invagination in a
cylindrical shell A–C and
spherical shell (A′–C′).
Undeformed (dotted) and
deformed (solid)
configurations are shown for
empty shells A, A′ and
fluid-filled shells B, B′.
Coordinate directions are as
indicated. Target stresses
indicated in A apply to all
cases: shaded region denotes
contracting region (σ ∗ = 6;
active modulus = 2 × passive
modulus); region immediately
above active region is passive;
growth with σ ∗ = 0
everywhere else. For the
spherical shell, the same
values of σ ∗ are specified in
both the circumferential (θ)
and meridional (φ) directions.
C, C′ Fluid pressure vs. time
for above fluid-filled shells
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neural tube, while sea urchin gastrulation involves the
dimpling of a fluid-filled ball of cells called the blastula
(Gilbert 2006). Here, we illustrate how simple feedback
laws drive invagination in cylindrical and spherical shells
(Fig. 6), which approximate the geometry for a number
of early embryos.

The deformation is assumed to be plane strain for the
cylinders and axisymmetric for the spheres. The regional
material properties and growth laws are effectively the
same for all cases. Contraction is specified through the
growth law (σ ∗ = 6 with active modulus = 2× passive
modulus) in a small region of the outer wall (Fig. 6A).
The wall is passive inward from the contracted region,
and the remainder of the wall grows with σ ∗ = 0. For
the cylinder, growth and contraction occur only in the
circumferential direction (θ); for the sphere, growth and
contraction are equal in the meridional (φ) and circum-
ferential (θ) directions (see Fig. 6A, A′). Results are
shown for shells with and without an enclosed incom-
pressible fluid, which keeps the cavity volume constant
for all time.

The contraction induces a local inward bending. In
the absence of internal fluid, the amount of invagina-
tion in the cylindrical shell is much greater than in the
spherical shell (Fig. 6A, A′). This difference is caused by
circumferential (hoop) stress, which effectively stiffens
the spherical shell.

The introduction of internal fluid dramatically
reduces the amount of invagination in the cylindrical
shell (Fig. 6A, B), while there is only a marginal decrease
in the spherical shell (Fig. 6A′, B′). In the fluid-filled
shell, deformation is resisted by stretching of the shell
elsewhere, which requires significantly more force than
bending and limits the amount of fluid that can be dis-
placed by the invaginating cells. The differences bet-
ween the deformed fluid-filled shells also are significant,
although less dramatic (Fig. 6B, B′). Note that the build-
ing fluid pressure closes the tube that forms at the apex of
the cylindrical shell (Fig. 6B), while the spherical invag-
ination remains open (Fig. 6B′).

Fluid pressure versus time plots are shown for the two
fluid-filled shells (Fig. 6C, C′). For both shells, the onset
of invagination coincides with a sharp rise in pressure, as
the displaced fluid stretches the shell outside the dimple.
The pressure then drops as the shell grows in response
to pressure-induced wall tension. The peak pressure in
the spherical shell is smaller and decays faster than that
of the cylindrical shell.

3.5 Elastic snap-through

Elastic snap-through is sometimes observed during mor-
phogenesis. Examples include inversion in volvox
embryos (Viamontes and Kirk 1977, Viamontes et al.

Y

X

A

B C

passive
σ* = 0

σ* = 25

T

snap
through

Fig. 7 Elastic snap-through during invagination in a spherical
shell (no fluid). A Undeformed (dotted) and deformed (solid)
configurations. Shaded region denotes active region (σ ∗ = 25.0;
active modulus = 10 x passive modulus); region immediately above
the active region is passive; growth with σ ∗ = 0 everywhere else.
Target stresses are specified in both the meridional and circum-

ferential directions. Insert shows the configurations immediately
before (t = 0.009) and after (t = 0.01) snap through. B Vertical
displacement vs. time at node T (indicated in A). C Vertical dis-
placement vs. λg at node T (indicated in A). Arrows in B and C
denote the sudden increase in displacement due to snap through
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1979) and archenteron-formation during gastrulation in
the sea urchin (Davidson et al. 1995). Figure 7 illus-
trates how increased stiffness of the active region can
lead to snap-through (buckling) in a spherical shell.
Compared to Fig. 6B, the active region (σ ∗ = 25) is
expanded slightly and the active modulus is increased
to ten times the passive modulus (Fig. 7A). This leads
to a dramatic jump in deformation during invagination,
accounting for more than 60% of the total amount of
invagination (Fig. 7B, C). During snap-through, the tran-
sition from one geometry to another (insert in Fig. 7A)
is essentially instantaneous.

4 Discussion

Interest in morphomechanics has intensified in recent
years, as increasing numbers of researchers have come
to appreciate the crucial role that mechanics plays in
the development of tissues and organs. In designing
strategies for tissue engineering, both the chemical and
mechanical environment must be considered. Compu-
tational modeling can be a valuable tool in this process.

Although it is generally accepted that development
involves mechanical forces, how these forces are reg-
ulated remains a subject for debate. Some researchers
believe that active force generation merely follows the
instructions of genes and chemical prepatterns. On the
other hand, there is growing evidence that mechani-
cal feedback plays a prominent role in force regulation
(Beloussov 1998). According to the hyper-restoration
(HR) hypothesis of Beloussov (1998), a perturbation
in tissue stress induces an active mechanical response
that is directed toward restoring the initial stress value
(target stress), but generally overshoots to the opposite
side. Each response changes tissue shape and induces a
new stress perturbation, which elicits a new response,
and so on, until the proper form is created. Beloussov
has shown that this idea can explain in qualitative terms
a number of experimental observations for embryos
undergoing various morphogenetic events, including
cleavage, gastrulation, and neurulation (Beloussov
1998).

Here, we have assumed that the target stress is con-
trolled by biology, e.g., the genes. This is a very simple
concept, but our simulations have shown that it can lead
to complex morphogenetic behavior. It is possible that
genetic and molecular signals control the value of σ ∗
at all points in space and time, but this is not likely
or necessary. Changing the target stress in one small
region induces deformation that changes the stress field
in nearby regions, which then respond to this pertur-

bation, and so on. This is the essence of Beloussov’s
hypothesis.

There is debate as to whether embryonic tissues are
viscoelastic solids or viscoelastic fluids. Clearly, embryos
exhibit fluid-like behavior, as they do not return to their
original configuration when external loads are removed.
Moreover, morphogenesis often involves the spreading
of one cell layer over another or the sorting of differ-
ent cell types, behavior similar to that of a mixture of
immiscible liquids (Forgacs et al. 1998; Beysens et al.
2000; Brodland and Chen 2000; Brodland 2002). As
already noted, however, most embryonic tissues con-
tain residual stress (Beloussov et al. 1975; Taber et al.
1993; Beloussov 1998; Zamir and Taber 2004), which a
viscoelastic fluid cannot sustain over large time scales.
This suggests solid-like behavior. The plasticity obser-
ved in developing embryos is likely due to growth and
remodeling rather than liquid-like viscoelastic or plas-
tic flow. The models presented in this paper illustrate
this point, as they change shape permanently without
externally applied loads.

It is important to note that the models presented
here are only for illustration; we have not attempted
to develop a model specific to any particular organism.
We expect that including realistic material properties,
for example, would affect the behavior quantitatively,
but the results likely would be similar qualitatively.

4.1 Relation to previous models for morphogenesis

In the embryo, cells move either individually (mesen-
chyme) or in sheets (epithelia). Mathematical models
have been proposed for both epithelial and mesenchy-
mal morphogenesis.

A pioneering model for mesenchymal morphogenesis
is the Murray-Oster model, which is based on continuum
mechanics for a mixture of cells and matrix and includes
the effects of cell traction (via contraction), cell multipli-
cation, matrix secretion, cell migration, and differential
adhesion (Oster et al. 1983, Murray and Oster 1984).
The governing equations produce a reaction–diffusion
type system similar to those studied extensively in bio-
chemical models of pattern formation (Murray 1993).
Using this theory, Manoussaki et al. (1996) and Namy
et al. (2004) studied two-dimensional models for vascu-
logenesis, while Barocas and Tranquillo (1997) extended
the theory to model the development of cell-populated
collagen gels.

Models for epithelial morphogenesis have been used
to study cell rearrangement, pattern formation,
and invagination (Taber 1995). The classic paper of
Odell et al. (1981) presents an FE model for a blastula
consisting of a circular ring of cells. Each cell is repre-
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sented by a viscoelastic truss-like element, with morpho-
genesis driven by stretch-activated contraction of api-
cal microfilaments.5 For appropriate choices of model
parameters, they obtained deformed shapes consistent
with gastrulation, ventral furrow formation, and neuru-
lation. In some models, they enforced a constant cavity
volume constraint, as in the models of of Fig. 6B, B′.

In a recent paper, Munoz et al. (2006) investigated
invagination with a similar FE model consisting of a
cylindrical ring. Their analysis is based on continuum
mechanics and a decomposition of the deformation gra-
dient tensor like that in Eq. (1). However, whereas we
include only growth without shearing of the unstres-
sed element, they include angle changes in G to allow
the stress-free element to take the shape of a trapezoid
(when the cell apex contracts), similar to the elements of
Odell et al. (1981).6 Their simulations include the effects
of constant cavity volume, as well as a constrained outer
radius due to the presence of the vitelline membrane in
the Drosophila embryo.

A cell ring is a reasonable model for furrow forma-
tion and neurulation. However, our results show that
including spherical geometry is crucial to modeling the
dimpling that occurs during sea urchin gastrulation
(Fig. 6A′, B′). Hoop stress makes invagination a much
more difficult task, possibly explaining the need for sec-
ondary mechanisms, including convergent extension and
bottle cells, to help draw the invaginating region (arch-
enteron) to the opposite side of the embryo (Keller 2003;
Gilbert 2006).

Taking spherical geometry into account, Davidson
et al. (1995) studied the initial phase of sea urchin gastru-
lation using an FE model based on the commercial code
NASTRANS. Their model is similar to our spherical
model without fluid (Fig. 6A′), except that the material
properties were taken as linear. Also similar to our work,
they used isotropic volumetric expansion and shrinkage
to simulate swelling and contraction, respectively. Using
this model, they investigated several possible mecha-
nisms for invagination.

In other related work, Belintsev et al. (1987), Taber
(2000), and Taber and Zahalak (2001) used continuum
models for epithelia to study pattern formation. In addi-
tion, extending an idea presented by Weliky and Oster
(1990), Brodland and colleagues have developed cell-
level models for epithelial morphogenesis (Brodland

5 It is interesting to note that Odell et al. (1981) modeled active
contraction through a change in zero-stress length, similar to the
method used here.
6 In the present work, apical contraction is simulated by repre-
senting the contracting apex and the rest of the cell by separate
element layers.

and Clausi 1994; Brodland and Chen 2000; Chen and
Brodland 2000; Brodland 2002). With adhesive, micro-
filament, membrane, and other cytoskeletal forces lum-
ped into a single equivalent tension at cell boundaries,
these authors have obtained impressive results for neu-
rulation and cell sorting. Our present models do not
account for details at the cell level.

Finally, Ramasubramanian et al. (2006) have pre-
sented a three-dimensional FE model for early heart
development (looping) that was developed in ABA-
QUS using the techniques introduced here. This model
includes simultaneous application of various morphoge-
netic processes such as growth, cytoskeletal contraction,
and active cell-shape changes.

4.2 Development regulated by mechanical feedback

In most of the models discussed above, morphogenetic
forces are prescribed. A notable exception is the model
of Odell et al. (1981), who assume that cells are stretch-
activated, i.e., they contract when deformed beyond a
critical value of stretch. In all of the models included
in this paper, growth and contraction are assumed to
be modulated by the local stress state. For simplicity,
we have assumed that the rate of growth depends line-
arly on the difference between the current stress and a
homeostatic stress [see Fig. 1 and Eq. (14)]. This form
of growth law is consistent with experimental data from
cardiovascular mechanics (Taber 2001), as well as with
Beloussov’s HR hypothesis. Consider, for example, uni-
axial deformation of a bar. If the bar is stretched and held
at a fixed length (σ > σ ∗), it grows to return the stress to
σ ∗. However, if the bar is shortened and held (σ < σ ∗), it
contracts to generate a tension that returns the stress to
σ ∗.7 With the value of σ ∗ specified, presumably by genes,
our results show that the simple growth law in Eq. (14)
can lead to a wide array of morphogenetic behaviors
including controlled bending (Fig. 3A′–A′′′), perpetual
bending (Fig. 3B′–B′′′), stress relaxation (Fig. 4), stress
and strain oscillations (Fig. 5), invagination (Fig. 6), and
elastic snap-through (Fig. 7).

Genetic control of target stress, however, raises the
following question: How do the genes know that the
specified stress field satisfies equilibrium? It is not likely
that genes draw free-body diagrams to determine their
next move. Consider, for example, the beam bending
problems in Fig. 3. Non-equilibrating target stresses are
specified throughout the beam in panel B, and the beam
bends continually. However, the problem in panel A
offers a possible answer to the posed question. Here,

7 In this paper, we ignore any overshoot of the target stress when
the tissue responds to stress perturbations.
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part of the beam remains passive, allowing this region
to adjust its stresses as equilibrium demands (Fig. 3A′′).
The beam bends until the active region reaches the
specified target stress, and then bending stops. Hence,
the presence of a passive region precludes unbounded
changes in form. We speculate that the basal lamina may
furnish such a passive layer for an epithelium.

4.3 Modeling of morphogenetic processes

With certain limitations, the growth theory of Rodri-
guez et al. (1994) can be used to simulate a number of
mechanisms that are fundamental to both mesenchymal
and epithelial morphogenesis. We already have shown
how cytoskeletal contraction can be simulated. Active
cell-shape change caused by elongating microtubules
or growing actin filaments can be modeled similarly by
taking λgi > 1 along the expanding directions with a con-
stant cell volume constraint enforced in the other direc-
tions (λg1λg2λg3 = 1). Cell migration can be simulated
by atrophy in one region and equal growth in another
region. However, these are relatively crude macroscopic
representations of what are certainly complex processes
at the cell level. More detailed modeling of these
mechanisms could be done using multiscale techniques
(Agoram and Barocas 2001).

4.4 Commercial codes vs. custom codes

For some problems in morphogenesis, the best (and
maybe only) option is to develop a customized FE pro-
gram. A good example is the cell-level model used by
Brodland and co-workers to study cell sorting (Brodland
2002). Custom codes, however, can take years to deve-
lop, with significant investment in program development
in addition to problem solving. If phenomenological
modeling is adequate, many morphomechanical prob-
lems can be solved by proper use and modification of
commercial FE codes.

For example, many of the problems in this paper can
also be done using COMSOL Multiphysics. In general,
we have found that ABAQUS is very good in deal-
ing with 3D problems. On the other hand, COMSOL
provides access to the governing equations, making it
generally more flexible than ABAQUS. Currently, how-
ever, COMSOL does not handle 3D problems as well as
ABAQUS.

In this paper, we have shown how ABAQUS can be
extended in a relatively straightforward manner to han-
dle a variety of problems in morphogenesis involving
growth and contraction. The availability of computa-
tional tools such as this should aid efforts to understand
the role of mechanics in tissue and organ development.
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Appendix A: Computation of rotation tensor

The rotation tensor R is computed as follows. First, the
components of the total deformation gradient tensor,
F, which are passed into UMAT are used to compute
the left Cauchy–Green deformation tensor, B = F · FT .
Next, the SPRIND subroutine is called to provide the
eigenvalues (λni, the principal stretch ratios) and the
eigenvectors (ni, the orthogonal principal directions in
the deformed configuration) of B. The left stretch ten-
sor, is then given by (Taber 2004)

V = λn1n1n1 + λn2n2n2 + λn3n3n3, (A1)

and Eq. (5) yields R = V−1 · F. Note that the total
deformation gradient tensor is used to compute R.

Appendix B: Computation of the spatial tensor
of elasticities

In ABAQUS/UMAT, the spatial tensor of elasticities C
is defined through the relation

τ̊ = JC : D, (B1)

where D is the rate-of-deformation tensor, and τ̊ = τ̇ −
�·τ +τ ·� is the Jaumann rate of the Kirchoff stress τ =
Jσ , with � being the spin tensor. For a general ortho-
tropic strain energy-density function, the components
of C are provided in Eq. (11.9) of Lubarda and Hoger
(2002). For an isotropic material, a simplified expres-
sion is given in Eq. (6.193) of Holzapfel (2001). These
components are computed in UMAT.

Appendix C: Computation of beam curvature

The amount of bending for simulations involving can-
tilever beams is quantified by the beam curvature. Let
(X, Y) and (x, y) be the Cartesian coordinates of a point
near the center of the beam before and after defor-
mation, respectively. The nondimensional curvature is
given by (Yang and Feng 1970)
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κ = H

(
wu′ − uw′)

u2
(
u2 − w2

)1/2
, (C1)

where

u = (x′2 + y′2)1/2,

w = x′. (C2)

In these expressions, prime denotes differentiation with
respect to X, and H is the undeformed beam thickness.
To avoid end effects, the curvature was computed near
the middle of the beam.
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