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Abstract In the theory of elastic growth, a growth
process is modeled by a sequence of growth itself fol-
lowed by an elastic relaxation ensuring integrity and
compatibility of the body. The description of this pro-
cess is local in time and only corresponds to an incre-
mental step in the total growth process. As time evolves,
these incremental growth steps are compounded and a
natural question is the description of the overall cumu-
lative growth and whether a continuous description of
this process is possible. These ideas are discussed and
further studied in the case of incompressible shells.

1 Introduction

We consider here the growth of an incompressible elas-
tic body. We use the theory of finite elasticity to describe
the volumetric deformation of the body under mechan-
ical loads and stresses produced through growth. The
main modeling of growth is as follows: one considers
a virtual incremental geometric deformation of a body
which characterizes the process of growth. This process
is described locally at each point and may depend on a
variety of factors such as location, time, stresses, strains,
nutrient concentrations and so on. Since this deforma-
tion is purely local, it takes place irrespectively of how
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neighboring points grow or what the global geometry of
the system is. The result being that points after defor-
mation may overlap or create cavities. Once this vir-
tual deformation has taken place, the integrity of the
body is restored by virtue of elastic strains through an
incremental elastic deformation. These two steps rep-
resent the full process of elastic growth: small growth
deformation followed by a small elastic deformation.
The main problem addressed in this paper is how to
model the cumulative effects of such small incremental
growth steps into a unique growth step followed by a
single elastic deformation.

2 Growth decomposition

The deformation of the material body is given by x =
χ(X, t) where X (resp. x) describes the material coordi-
nates of a point in the reference (resp. current) config-
uration of a body B0(X, t) (resp. B). The main postulate
in morphoelasticity first described in Rodriguez et al.
(1994) is that the deformation gradient F(X, t) can be
decomposed (see Fig. 1) into a product of a growth ten-
sor G(X, t) with an elastic tensor A(X, t) so that

F(X, t) = A(X, t) · G(X, t). (1)

This decomposition is similar to the one used in the
theory of finite elasticity when other anelastic effects,
such as plasticity, are included (Lee 1969; Maugin 2003);
other proposals to model growth can be found in Norris
(1998) and Gleason and Humphrey (2004). While this
decomposition is conceptually clear and appealing, its
time-dependence and actual application needs to be fur-
ther explained. The decomposition is instantaneous, that
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is, it applies continuously with respect to time and as G
evolves in time, A follows. However, in typical biologi-
cal growth or physical swelling, there are actually four
important time scales, the elastic time scale τe of elastic
wave propagation, the viscoelastic time of relaxation τv,
the time scale associated with external loading τl, and
the growth time scale τg. Implicit in the decomposition
is the statement that the growth time scale can be sepa-
rated from the elastic time scale. Moreover, while this is
not implied and there may be regimes of interest when
growth time scales become comparable with other time
scales, it is reasonable to assume that growth time scales
are larger than other relevant time scales, so that

τe � τv � τl � τg. (2)

The main idea underlying this scale ordering is that
as growth takes place on a slow time scale, the elastic
and viscoelastic responses of the material take place on
much shorter time scales (associated with the speed of
sound and the viscous times, respectively) and for time
smaller than τg the material is in elastic static equilib-
rium. Therefore, the only time considered in the process
is the growth time t associated with the evolution law
for the growth tensor:

Ġ ≡ dG
dt

= H(G, A, T, . . . ; X, t). (3)

A priori, the growth tensor can be a function of the
stress tensor T, the deformation tensor A, the material
position, the time, external loads, or other fields such
as nutrient concentration or temperature (see below for
further discussion on the constitutive laws for H).

3 Incremental growth

Now, consider an incremental time step �t such that
τv � �t � τg. The one-step Euler method for (3) yields

G(t + �t) = G(t) + �tH(t). (4)

This relation defines an incremental growth step
G(t + �t) − G(t) = Ginc for which the decomposi-
tion (1) holds, that is if we denote the incremental elas-
tic response by Ainc, the deformation gradient after one
incremental step �t is given by

Finc = Ainc · Ginc. (5)

At each step, for a given Ginc, one computes the elastic
strains and stresses necessary for mechanical equilib-
rium and the new growth increment is computed from
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Fig. 1 The decomposition of finite morphoelasticity. Starting
from a reference configuration B0(X, t), the deformation gradient
F(X, t) is the product of a growth tensor G with an elastic deforma-
tion tensor A(X, t). The intermediate configuration is referred to
as a virtual configuration since compatibility and integrity cannot
be ensured

these strains. To see how the evolution is achieved, con-
sider the first growth step. Before growth, the material
is in a natural configuration that is, it is stress-free and
we denote by G1 the first incremental step computed
from (4) with t = 0 and G(0) = 1 (see Fig. 2). It is pos-
sibly a function of the position X but not of the defor-
mation gradient or the stresses since elastic responses
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Fig. 2 Cumulative growth with two steps, the superscript (k)

denotes the total cumulative deformation after k incremental
steps, whereas a subscript i denotes the incremental step taking
place after the (i − 1)th step
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have not yet taken place. To compute the elastic strain
tensor A1, we assume that the response of the material
(in a natural configuration) is given by a response func-
tion T such that the Cauchy stress tensor is for a general
deformation gradient A given by

T = T (A). (6)

We will further assume that the material is hyperelas-
tic and there exists a strain energy function W = W(A)

from which the stress–strain relation follows, that is, in
the case of our deformation gradient A1:

T1 = J−1
1 A1 · WA1 − p11. (7)

In this relation, T1 is the Cauchy stress in B1, WA1 the
derivative of W(A1) w.r.t. A1, J1 = det(A1) represents
the change of volume due to the elastic deformation.
If the material is incompressible then J1 = 1 and p1 is
the hydrostatic pressure. Otherwise, the material is com-
pressible and p1 = 0. For this discussion, we will only
consider the incompressible case and set J1 = 1; the
compressible case, while more computationally inten-
sive, does not alter our argument on growth laws. Since
we have viscous relaxation taking place on time scales
faster than growth times, there is no time dependence
for the elastic part of the process and the strains and
stresses are determined from the equation for mechan-
ical equilibrium

∇x1 · (T1) = 0, (8)

where the divergence is taken with respect to x1 in the
current configuration B1. The equation is supplemented
with boundary conditions. For instance, if the body is
loaded by fluid pressure P, the boundary condition is
given by the Cauchy stress in the normal direction n of
the boundary

T1 · n = −Pn on ∂B. (9)

We can now perform the second growth step and com-
pute G2 based on the strains and stresses (A1 and T1)
found in the configuration B1 (see Fig. 2). However, this
configuration is not stress-free and we cannot directly
compute the stresses in B2 from a relation such as (7).
Since the material is pre-stressed, the constitutive rela-
tion now depends on T1. The general problem of com-
puting the stresses under loading of a pre-stressed body
has been thoroughly analyzed by Hoger and collabora-
tors in a series of papers (Hoger 1986, 1993; Johnson and
Hoger 1993, 1995) and is discussed briefly in Appen-
dix A. For our particular problem, the residual stress

in configuration B1 is associated with a deformation
gradient A1 from the natural configuration V1 and there-
fore, there are no issue associated with the definition of a
natural configuration and the total deformation gradient
is simply given by

F(2) = F2 · F1 = A2 · G2 · A1 · G1. (10)

The problem is now to write F(2) as a product of a
growth tensor G(2) from a reference configuration with
an elastic tensor A(2) from the grown virtual configura-
tion V(2) to the final configuration B2. That is, we need
to identify correctly, the elastic deformation from the
growth deformation. The problem is that the growth
term can introduce a rotation of the principal axis and
we must therefore remove this rotation. To do so, we
must unload the configuration V2 to remove stress and
obtain a stress-free, possibly incompatible, configuration
V(2). Following (Hoger et al. 2004), this is performed by
requiring that the unloading is performed along the prin-
cipal directions of the Cauchy stress tensor T1. The stress
in V∈ is obtained from the deformation A1 followed by
a possible rotation of the principal axis due to G2. To
isolate the rotation in G2, we use the polar decompo-
sition theorem to write it as a product of a symmetric
tensor and an orthogonal tensor

G2 = V2 · R2. (11)

Therefore, the mapping from V(2) to V2 is simply given
by R2 ·A1 (see Fig. 2). Therefore, we identify the growth
tensor

G(2) = A−1
1 · RT

2 · G2 · A1 · G1, (12)

where we have used the identity (R2 · A1)
−1 = A−1

1 ·
R−1

2 = A−1
1 · RT

2 . Similarly, the elastic tensor is

A(2) = A2 · R2 · A1. (13)

The invertibility of Ai is ensured by the fact that we
consider small growth increments, which implies that
the elastic relaxation Ai is a near-identity tensor whose
deviation from identity is controlled by the step size. The
stress in the configuration B2 is then given by

∇x2 · (T2) = 0, (14)

where

T2 = A(2) · WA(2) − p21, (15)
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WA(2) being the derivative of W(A(2)) with respect to
A(2). The equation for the stress is solved with given
boundary conditions which may include loadings.

4 Cumulative growth

It is now straightforward to generalize the previous
results to k successive incremental deformations of the
form Ai · Gi. We use a superscript index (k) to denote a
state after k incremental deformations. For instance, the
total deformation is given by the product (see Fig. 3)

F(k) = Ak · Gk · Ak−1 · Gk−1 · · · A2 · G2 · A1 · G1, (16)

which we rewrite as a product B(k) = A(k) · G(k) where

G(k) =
(

A(k−1)
)−1 · RT

k · Gk · A(k−1) · G(k−1), (17)

A(k) = Ak · Rk · A(k−1). (18)

The stress in the final configuration is computed as
before. From a computation standpoint, the strain ten-
sors obtained at step k + 1 are obtained from the previ-
ous ones by evaluating Gk+1 based on the tensors in the
configurations Bk, introducing an unknown tensor Ak+1
and defining iteratively the tensors G(k+1) and A(k+1).

Further progress can be made if growth and elastic
tensors commute. This happens for instance when there
is a basis in which the tensors are diagonal. This is the
case, for instance when radial deformations are consid-
ered in a spherical geometry, or in a cylindrical geometry.
It encompasses most of the cases considered in the lit-
erature and is the starting point of a stability analysis.
Therefore, we consider the case when

Ai · Gj = Gj · Ai, for all i, j, (19)

Stress-free

F1

G A

F2

F

FkFinc

Fig. 3 Computation of deformation for a pre-stressed body. First
a stress-free configuration must be obtained from which the total
loading is obtained as a composition of the two deformation
gradients

and the elastic tensors now takes the simpler form

A(k) = Ak · Ak−1 · · · A2 · A1, (20)

G(k) = Gk · Gk−1 · · · G2 · G1. (21)

5 Constitutive laws

Before we study some simple growth laws, it is of inter-
est to review what is known and what has been proposed
for the functional form of the growth rate.

There have been early on attempts to use the mor-
phoelasticity formalism to model simple situations and
understand the effect of growth and the feedback due
to stress. These include the following cases:
Constant growth The simplest choice for G is to con-
sider a constant tensor. A constant diagonal tensor G
has been used in spherical geometry by Hoger and co-
workers (Chen and Hoger 2000; Klisch et al. 2001). This
case is interesting since analytical results can be obtained
corresponding to small increments and explicit values
of residual stress computed for growth without loading.
In Ben Amar and Goriely (2005), the stability of such
growing shell is considered.
Position dependent growth Many growth processes
depend on the location in the material. This effect is
sometimes referred to as differential growth to indicate
that some parts of a tissue grows faster than others. In
morphoelasticity, it implies that G is a function of either
X or x. Both situations are of interest. In the first case,
growth is a function of material points X in the refer-
ence configuration and this dependence assumes that
the material is made out of points that grow at different
rates and keep growing differentially as time goes by. In
the second case, the ability of a tissue to grow depends
on its location at any given time. This is the case, for
instance, when cell reproduction depends on the avail-
ability of some nutrients that diffuse through the bound-
ary. At any given time, the amount of nutrient may be
described by the distance to the boundary as in the case
in the growth of spheroids in tumor experiments. Both
cases will be considered in the spherical geometry in the
following section. The stability analysis of differentially
growing shells was considered in Goriely and Ben Amar
(2005).
Stress-dependence It has been recognized experimen-
tally and theoretically in many systems (such as aorta,
muscles and bones) that one of the main biomechanical
regulators of growth is stress (Hsu 1968; Rodriguez et
al. 1994; Taber 1995, 1998; Fung 1995; Taber and Eggers
1996; Rachev 1997). It has even been suggested that
stresses on cell walls play the role of a pacemaker for the
collective regulation of tissue growth (Shraiman 2005).
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Accordingly, the growth rate tensor should be a function
of the Cauchy stress tensor which could also vary accord-
ing to the position of tissue elements in the reference
configuration. The study of the coupling between stress
and growth remains largely unexplored and no general
relationship for such coupling has been proposed (see,
however, the discussion in Fung 1995).

6 Modeling incremental growth

Growth is an incremental process and its cumulative
effect can be computed by following the procedures out-
lined in the previous sections, but an actual computation
of cumulative growth is in most cases impossible. From
a theoretical perspective, this situation is not satisfac-
tory since it does not provide a tractable way to discuss
parameter changes or the effects of coupling with other
fields. Moreover, for the computation of stability prop-
erties, a finite deformation solution is required. There-
fore, it is advantageous to model the cumulative growth
deformation by a tensor G that captures the relevant
incremental growth process over long periods of time
(or, equivalently, over large changes of volume).

To gain some insight in issues involved in computing
and modeling cumulative growth, we consider radially
symmetric deformations of a growing shell under pres-
sure. Furthermore, we restrict our attention to two cases
of incremental growth where the incremental growth
tensor is a function of the position:
Case I The growth tensor Ginc is isotropic but a func-
tion of the radial position R in the reference configura-
tion, that is Ginc = ginc(R)1. For simplicity, we further
assume that there is no growth at the inner boundary
Ginc(A) = 1. In this case, further analytic progress can
be made since the growth function ginc at the kth step
is a function of the original reference configuration and
we have

g(R)cum = gk
inc. (22)

This case is trivial in the sense that once incremental
growth is given, so is the cumulative growth. A simpler
form can be obtained by noting that since g(A) = 1, we
can write ginc(R) = 1+εf (R−A), where ε = 1/k defines
the size of each incremental growth step and f (0) = 0.
Taking k → ∞, we have an exact continuous version of
the cumulative growth simply given by

g(R) = exp(f (R − A)). (23)

Case II We now consider the case where the growth ten-
sor Ginc is isotropic but a function of the radial position

r in the current configuration, that is Ginc = ginc(r)1.
Again, we assume that there is no growth at the inner
boundary Ginc(a) = 1. In many ways this simple prob-
lem already contains the complexity inherent in any
growth laws since the position r = r(R) of a material
point depends on the boundary stresses. Therefore, by
assuming that incremental growth is a function of the
current configuration, we have an implicit dependence
on the stress tensor which needs to be computed at each
iteration. Since no closed form is available, even for sim-
ple choice of Ginc, we have to find a suitable fit to model
the effect of cumulative growth and suitable for stability
analysis, and write a continuous description of growth in
time (or equivalently as a function of a suitable bifurca-
tion parameter such as volume, or boundary position).

Explicitly, the growth function ginc at the kth step is
now g(R) = ∏k

i=1 ginc(ri) where ri is the current con-
figuration after the i-th deformation. However, the i-th
deformation ri, depends on the elastic strains which has
to be solved at each step through the boundary condi-
tions on the Cauchy stress. To do so, let ri = ri(R) be
the radial position of the material point of initial radial
coordinate R after i incremental steps and we denote
r′

i = dri
dR so that the cumulative deformation gradient in

the usual spherical coordinates after i steps is

Fi = diag
(

r′
i,

ri

R
,

ri

R

)
. (24)

Similarly, let

Ai = diag(α−2
i , αi, αi), (25)

where we have used the incompressibility condition that
imposes det(Ai) = 1 to express the three diagonal ele-
ments λi1, λi2, λi3 in terms of a single variable αi =
λi2 = λi3. For simplicity, we assume that the elastic
shell is made out of a neo-Hookean material , that is
W = µ(λ2

i3 +λ2
i3 +λ2

i3 − 3). Let ai = ri(A) and bi = ri(B)

be the radii in the current configuration. The incom-
pressibility condition is det(Ai) = det(FiG−1

i ) = 1 implies
det(Fi) = det(Gi), that is

r′
ir

2
i

R2 = g3
inc. (26)

This last equation can be integrated explicitly to deter-
mines both the deformation

r3
i = a3

i + 3

ri−1∫

ai−1

g3
inc(ρ)ρ2dρ, (27)
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and the strain αi = ri/(g(R)R), up to the value of ai that
is obtained from the boundary conditions on the Cauchy
stress. The radial component of the Cauchy stress t1 is
a solution of (8), whose only non-vanishing component
reads

∂t1
∂r

+ 2
r
(t1 − t2) = 0, (28)

where t2 = T22 = T33 is the hoop stress. To obtain a
closed equation for the radial stress t1, one first solve
the constitutive relation ship for t2 as a function of t1

t1 = α−2
i

∂W
∂λ1i

− p, (29)

t2 = αi
∂W
∂λ2i

− p. (30)

and substitute the result in (28) to obtain

∂t1
∂ri

= αi

ri
∂αi Ŵ, (31)

where Ŵ = W(α−2, α, α). Furthermore, one can express
t1 as a function of the material variable R and obtain the
differential equation

∂t1
∂R

= ∂αi Ŵ
Rα2

i
, (32)

where (27) is used to express αi = αi(R). This last equa-
tion can be readily integrated to obtain

t1(R) =
R∫

A

∂αi Ŵ
Rα2

i
dR. (33)

The boundary conditions are t1(A) = t1(B) = 0. Once
the radial stress is known, the deformation is completely
determined and the hoop stress is given by t2 = t1 +
αi
2 ∂αi Ŵ. It is important to realize that the computation of

the Cauchy stress must be performed from the unloaded
reference configuration since there is no simple law for
the increase in stress of a preloaded configuration. That
is, to compute the stress from a preloaded configuration,
a completely unloaded configuration must be found and
the total strain between the unloaded configuration and
the new loaded configuration must be computed.

We can now iterate numerically the process and
recompute at each stage the growth tensor needed for
the next iterate

gcum(R) =
k∏

i=1

ginc(ri). (34)

To analyze the effect of cumulative growth, we use a
simple, linear incremental growth law that is, ginc(ri) =
1+µ(ri−ai), (ai = ri(A) is the radial position of the inner
boundary after i − 1 steps). As an example, we choose
A = 1, B = 2 and µ such that the volume increases at
each step by 1% up to a total volume increase of 275%.
The graph of gcum(R) is shown on Fig. 4 and the gen-
eral trend observed is one of a stretched exponential.
However, it is notoriously difficult (and somewhat arbi-
trary) to fit a curve with a stretched exponential and
important features may be lost in the process. The main
problem is that during growth points closer to the outer
boundary grow faster than the ones close to the inner
boundary and accordingly the variable r(R) is stretched
out. Therefore a natural choice to express cumulative
growth is in the current configuration.

As can be seen in Fig. 5, the growth function does
not have exponential behavior and can be easily fitted
by a function of the form g(r) = 1 + h(r − a) where h is
analytic and h(0) = 0. Both linear and quadratic fits are
shown to capture the effect of growth and these func-
tions can be used for the continuous description of the
growth process with a reduced number of parameters.
This is the modeling of cumulative growth that has been
used for stability analysis of a differentially growing or
shrinking shell (Goriely and Ben Amar 2005).

7 Conclusions

In this paper we have addressed a simple question
usually overlooked in the discussion of elastic growth,
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Fig. 4 The cumulative growth function in the reference frame
g = g(R). We consider a growing elastic shell of initial radii R = 1
and R = 2. Growth is linear in the current radius and chosen
such that the inner shell experiences no growth g(R = 1) = 1 and
the total increment in volume is 1% at each step. The cumulative
growth curves are shown for various values of volume increases.
Note the marked super-exponential behaviour of g(R)
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Fig. 5 The cumulative growth as computed on Fig. 4 but now viewed in the current frame, that is, g = g (R(r)). Since the current
configurations expands with growth the cumulative function g(r) can be fitted either with a linear (left) or quadratic fit (right)

namely, how to best analyze and represent the cumu-
lative effect of incremental growth steps. This question
has certainly been answered implicitly in various studies
but to the best of our knowledge no discussion appear
in published scientific papers. There are two main issues
with the problem of cumulative growth. First, growth
and elastic relaxation have to be described in terms of an
unstressed configuration, otherwise stresses cannot be
computed. While the theory is transparent in the case of
one incremental step, it is not quite as clear for repeated
steps where a virtual unstressed configuration needs to
be defined. In the case where growth and elastic relaxa-
tion commute, the situation is much simpler and further
analytical progress can be made. The second issue is a
computational one. The cumulative effect of growth and
relaxation requires the computation of the total growth
and deformation from the unstressed states and depend
at each step on the boundary conditions. Clearly, there
is no hope to obtain a closed-form solution for this prob-
lem (except in simple cases as shown here) and model-
ing cumulative growth in the current configuration may
be a way to circumvent this problem. Hopefully more
powerful tools such as the renormalization group could
be applied to the problem to obtain long-time estimate
and closed-form approximations and henceforth offer a
more satisfactory solution.
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Appendix: Residual stress

The main idea to obtain the stresses from a residually
stressed material under loading is to find a natural con-
figuration and compute the total strains from the natu-

ral configuration to the final configuration with loads by
composition of deformation gradient (see Fig. 6). Let Br,
a body with residual stress. That is, it supports a stress
field Tr with zero traction at the boundary:

∇ · Tr = 0, Tr.n = 0 on ∂Br, (35)

where the divergence is taken in Br. Let T = T (A)

be the constitutive relation in a natural configuration.
Then, assuming the deformation gradient Ar from the
residually stressed body to a natural configuration is well
defined (and this is a delicate point), the stress Tf in the
final configuration is given by

Tf = T (Af · Ar), (36)

which, expressed in terms of the deformation from Br to
Bf and the residual stress Tr, is

Tf = T (Af · T −1(Tr)), (37)

Additional
Loading

Total loading

Unloading to a stress-free 
configuration

Residual
stress

Stress-free

Br

Bn

Bf

Tr

A-1

A=AfAr

Af

Tf

r

Fig. 6 Computation of deformation for a pre-stressed body. First
a stress-free configuration must be obtained from which the total
loading is obtained as a composition of the two deformation
gradients
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where we have assumed that T is invertible. In the
case considered in this paper, invertibility is guaran-
teed by the fact that only incremental (near-identity)
deformations are considered. Further progress can be
achieved for particular material symmetry group and
explicit forms for constitutive relations can be given.
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