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Abstract While traumatic joint injuries are known to in-
crease the risk of osteoarthritis (OA), the mechanism is not
known. Models for injurious compression of cartilage may
identify predictors of injury that suggest a clinical mecha-
nism. We investigated the relationship between peak stress
during compression and glycosaminoglycan (GAG) loss after
injury for knee and ankle cartilages. Human cartilage explant
disks were harvested post-mortem from the knee and ankle
of three organ donors with no history of OA and subjected
to injurious compression to 65% strain in uniaxial uncon-
fined compression at 2 mm/s (400%/s). The GAG content of
the conditioned medium was measured 3 days after injury.
After injury of knee cartilage disks, damage was visible in
18 of 39 disks (36%). Three days after injury, the increase
in GAG loss to the medium (GAG loss from injured disks
minus GAG loss from location-matched uncompressed con-
trols) was 1.5±0.3 µg/disk (mean±SEM). With final strain
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and compression velocity held constant, we observed that
increasing peak stress during injury was associated with less
GAG loss after injury (P < 0.001). In contrast, ankle carti-
lage appeared damaged after injury in only 1 of 16 disks (6%),
there was no increase in GAG loss (0.0 ± 0.3 µg/disk), and
no relationship between peak stress and increase in GAG loss
was detected (P = 0.51). By itself, increasing peak stress did
not appear to be an important cause of GAG loss from human
cartilage in our injurious compression model. However, we
observed further evidence for differences in the response of
knee and ankle cartilages to injury.

1 Introduction

Osteoarthritis (OA) is a mechanical and functional failure
of an articular joint that leads to pain and disability for a
significant portion of the population. Degradation of the
articular cartilage is one of the hallmark features of osteoar-
thritis. An interplay between mechanical forces and cellular
responses that leads to excessive degradative activity is there-
fore thought to be crucial to understanding the pathogenesis
of osteoarthritis (Radin et al. 1991; Felson et al. 2000; Aigner
et al. 2002). In particular, the aggrecan molecules of the car-
tilage matrix, maintained by resident chondrocytes, provide
much of the equilibrium compressive stiffness of the tissue
due to electrostatic repulsion between the highly charged and
closely packed aggrecan glycosaminoglycan (GAG) chains
(Buschmann and Grodzinsky 1995). In addition, cartilage dy-
namic stiffness is primarily associated with interstitial fluid
pressurization (Soltz and Ateshian 2000), due largely to the
high resistance to fluid flow provided by aggrecan GAGs
within the matrix (Maroudas 1979). Importantly, it is now
well established that loss of aggrecan from the cartilage is
a critical event in osteoarthritis (Sandy et al. 1992; Glasson
et al. 2005; Stanton et al. 2005).

Along with risk factors such as age, obesity, and joint
alignment, it has been observed that a traumatic joint injury
leads to a higher risk for development of osteoarthritis in that
joint (Roos et al. 1995; Felson et al. 2000; Gelber et al. 2000;
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Wilder et al. 2002). The increased risk was once thought to
be primarily due to the mechanical joint instability resulting
from the damage to the ligaments or meniscus during injury,
but it now appears that even though joint instability is a risk
factor for OA, joint repair surgery may not reduce the risk
of post-traumatic OA (Feller 2004; Lohmander et al. 2004;
von Porat et al. 2004). This suggests that early events after
the injury have long-term effects on the cells and tissues of
the joint. For example, within 24 h after anterior cruciate lig-
ament injury, a dramatic increase in the concentration of the
inflammatory cytokines IL-1β and TNF-α has been observed
in the synovial fluid of the injured knee (Irie et al. 2003), and
inflammatory changes in the synovial fluid appear to be sus-
tained above normal levels for months to years (Lohmander
et al. 1993; Cameron et al. 1997).

To investigate these processes under defined conditions,
in vitro models for injurious mechanical compression of the
cartilage have been developed by a number of investigators
[reviewed in Patwari et al. (2001), Borrelli and Ricci (2004)].
These models may be useful for identifying the mechanical
parameters of loading that are most responsible for damage to
the cartilage matrix as well as for injury to the chondrocytes.
This information could lead to a clinically useful character-
ization of the tolerances of the cartilage cells and matrix, and
could also give insights into the mechanisms of mechano-
transduction that are responsible for the effects of an injury.

Several researchers have suggested that there may be a
threshold level of peak stress that separates injurious from
harmless loads to the cartilage (Repo and Finlay 1977; New-
berry et al. 1998; Torzilli et al. 1999; Clements et al. 2001).
At the same time, others have observed associations of car-
tilage injury with loading parameters such as the final strain
(Loening et al. 2000; Ewers et al. 2001) and the rate of load-
ing (Chen et al. 1999; Kurz et al. 2001; Quinn et al. 2001).
Since these loading parameters (peak stress, peak strain, and
rate of loading) are interdepedent, further conclusions about
the significance of these loading parameters individually will
require experiments to measure and consider all of the param-
eters simultaneously.

We report here the results of experiments subjecting nor-
mal articular cartilage from post-mortem human knee–ankle
pairs to injurious compression. Since the pattern of osteoar-
thritis in the knee and ankle joints is different, with a lower
incidence of OA in the ankle joint (Muehleman et al. 1997),
investigation of the differences in biomechanical and bio-
chemical differences between the two joint tissues may lead
to insights into the pathogenesis of osteoarthritis. Previous
studies have demonstrated that the ankle cartilage is stiffer,
has a higher GAG content, and resists catabolic stimuli (re-
viewed in Kuettner and Cole 2005). In addition, an initial
analysis of cartilage from a post-mortem knee–ankle pair sug-
gested a major difference in the response of the two cartilages
to injurious compression, and to the combination of injurius
compression and exogenous cytokines (Patwari et al. 2003).

We therefore compared the results of injurious compres-
sion, which was defined here as unconfined compression to
65% strain at a velocity of 2 mm/s, between knee and ankle

cartilage explants from multiple donor joints. Since this com-
pression protocol applied a fixed final strain at a fixed com-
pression velocity, we analyzed the data to determine whether
the effect of peak stress applied to the cartilage during injuri-
ous compression was independently associated with the loss
of proteoglycan from the cartilage matrix after injury.

2 Methods

2.1 Tissue harvest

All research was approved by the Office of Research Af-
fairs at Rush-Presbyterian-St. Luke’s Medical Center and by
the Committee on the Use of Humans as Experimental Sub-
jects at the Massachusetts Institute of Technology. Tissue
harvest, culture, and injurious compression were identical
to the methods described in detail in our initial report (Pat-
wari et al. 2003). Knee and ankle joints from the same limb
were obtained post-mortem from two additional adult human
organ donors with no history of OA and joint surfaces rated
grade 2 or less on a modified Collins scale (Kuettner and
Cole 2005) from the Gift of Hope Organ and Tissue Donor
Network (Elmhurst, IL, USA). All results presented here are
for a cumulative analysis with three donors.

Bone-cartilage cylinders (9 mm in diameter) were har-
vested from knee (femoropatellar groove and tibiofemoral)
and ankle (talotibial) joint surfaces [Fig. 1a–d and as shown
previously (Treppo et al. 2000)]. To create slices of constant
thickness, the cylinders were fixed in place and a microtome
was used to first create a level surface (generally removing
the superficial zone of the cartilage) and then cut either one or
two 0.5-mm-thick slices, as allowed by the depth of the carti-
lage layer. The cut slices were measured by calipers to verify
that the thickness was within 10% of 0.5 mm. From each slice,
four smaller disks (3 mm in diameter) were then punched and
equilibrated in culture for 3 days with DMEM plus 10% fetal
calf serum, 1 mM HEPES, non-essential amino acids, pro-
line, ascorbate, penicillin, streptomycin, and amphotericin
B. In separate sections, cell viability was verified by incuba-
tion of slices with fluorescein diacetate and ethidium bromide
(Fig. 1e–f) (Kurz et al. 2001).

2.2 Injurious compression

Each cartilage disk was paired with another disk punched
from the same 9-mm-slice, and thus from the same joint
location and depth. The thickness of each disk was mea-
sured again just prior to injury. From each pair, one disk was
subjected to injurious compression and one remained uncom-
pressed as a control (Fig. 2a). Injurious compression consisted
of uniaxial compression, in a radially unconfined geometry,
to 65% strain at a velocity of 2 mm/s, in an incubator-housed
loading instrument (Fig. 2b–c), as previously described in
detail (Patwari et al. 2003). Displacement was continuously
measured by a linear variable differential transformer, and
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Fig. 1 Donor knee and ankle joint harvest. Knee joint cartilage was harvested from the femoropatellar groove and femoral condyles (a) and from
the tibial plateau (b). Ankle cartilage was harvested from the talar dome (c). The joints pictured here were from a 60-year-old male and were
scored as modified Collins grade 1 (knee) and 0 (ankle). Bone-cartilage cylinders were then drilled, avoiding areas of fibrillated cartilage (d). To
ensure live tissue explants after harvest, viable cells (cells stained green) and dead cells (nuclei stained red) were assessed in sections of ankle
(e) and knee femoropatellar groove (f) cartilage

the load during compression was acquired at a rate of 200
samples per second from a load cell (Frank et al. 2000).
Strain was calculated based on a measurement of thickness
just prior to injury and stress based on the area of the disk be-
fore compression. After injury, cartilage damage was graded
by visual inspection as unchanged (0) (Fig. 2d), deformed
to a non-circular or non-cylindrical shape (1) (Fig. 2e–f), or
grossly fractured (2). Injured and control disks were returned
to culture in fresh medium for three more days, after which
the conditioned medium was collected and analyzed for sul-
fated GAG content by the dimethylmethylene blue assay.

2.3 Statistical analysis

The primary measure of effect for this study was the differ-
ence of GAG loss from injured disks minus GAG loss from
the location-matched control disks. The difference in GAG
loss was defined such that positive values indicate an increase
in GAG loss after injury compared to control cartilage. The
main independent variable was peak stress. Generalized lin-
ear mixed-effects regression models for correlated data (Dig-
gle et al. 1994) were used to assess the relationship between
peak stress and difference in GAG loss after injury. These
regression models account for the correlation in the data due
to multiple measures taken from the same subject.

We considered original anatomical location of the car-
tilage disks and the score for damage (dichotomized as 0
vs. >0) observed after injury as potential confounders in the
analyses. Location of the cartilage disks was measured using
the following four factors: (1) medial vs. lateral aspect of the
articular surface, (2) position in the anterior–posterior plane
(from proximal to distal along the femur and from anterior to
posterior on the tibia), (3) the depth of the slice from which the
cartilage disk was punched (top vs. bottom), (4) femoral sur-
face vs. tibial plateau (knee analyses only). Separate regres-
sion models were fit for the knee and ankle. In knee analyses,
adjusted models were fit that included all potential covariates.

Fig. 2 Schematic of injurious compression methods and results. From
each 9-mm-diameter cartilage slice, we obtained four 3-mm-diameter
cartilage disks. Two were assigned to receive injury and two to remain
unloaded (a). For injury, a single disk was placed in a loading chamber
(b) and was subjected to uniaxial unconfined compression in an incu-
bator-housed loading apparatus (c). Compared to unloaded controls,
which retained a normal round and cylindrical shape (d), injured disks
displayed a range of damage including bulges (e, lower right and f,
upper left) and elliptical shapes (f)

In addition, interaction terms were included to assess whether
damage score modified the relationship between peak stress
and difference in GAG loss. Ankle analyses were adjusted
for medial vs. lateral aspect and depth but not damage due to
the lack of variation in damage score. All analyses were con-
ducted using two-sided tests and a significance level of 0.05.

3 Results

Injurious compression experiments were performed on knee
and ankle cartilage tissue from three organ donors (two male
and one female) whose ages ranged from 60 to 72 years. A
total of 78 disks were harvested from the knee joint articular
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surfaces, which were rated Collins grade 1 to 2. During equili-
bration in culture, the change in thickness, calculated as final
minus initial thickness normalized to initial thickness, was
minimal (−3.2±7.1%, mean±SD). Injury of knee cartilage
disks produced peak stresses of 13.5±4.6 MPa (mean±SD)
and damage (damage score of 1 or 2) was observed in 18 of 39
disks (46%) (Fig. 3a). Injured and control disks were replaced
in fresh medium for three more days, after which the GAG
content of the conditioned medium was measured. Uncom-
pressed control cartilage released 8.4±0.6 µg GAG per disk,
while injured cartilage released 9.9 ± 0.5 µg/disk (mean ±
SEM) (Fig. 3b). GAG loss was higher from injured carti-
lage compared to location-matched controls (mean increase,
1.5 µg/disk; SEM = 0.3; P < 0.001 by paired t test, N = 39).
For reference, the total GAG content of these specimens is
typically 125µg per disk.

Cartilage from the ankle joint (a total of 32 disks) was
harvested from surfaces all rated Collins grade 0. During
equilibration in culture, the change in thickness was minimal
(−3.2±6.5%, mean ± SD). Injury produced peak stresses of
13.9 ± 4.6 MPa (mean ± SD) and damage was observed in
only 1 of 16 disks (6%) (Fig. 3a). Three days after injury, the
control cartilage had released 8.2±1.0 µg GAG/disk and in-
jured cartilage had released 8.2±0.9 µg/disk (mean±SEM)
(Fig. 3b). No difference was observed in GAG loss from in-
jured cartilage compared to location-matched controls (mean
difference, 0.0 µg/disk; SEM = 0.3; P = 0.97 by paired t test,
N = 16).

We first examined the unadjusted linear relationship be-
tween the peak stress during injury and the increase in GAG
loss after injury (Fig. 4). In knee cartilage, GAG loss sig-
nificantly decreased with increasing peak stress (coefficient:
−0.25 ± 0.06 µg/MPa, P < 0.001) (Table 1). In the ad-
justed analysis, peak stress remained a significant predictor
of GAG loss (coefficient: −0.22±0.06 µg/MPa, P = 0.001).
No significant interaction was observed between peak stress
and damage score. In contrast, in ankle cartilage, we did not
detect an association between peak stress and GAG loss in
either the unadjusted or the adjusted analysis (Table 1).

4 Discussion

In adult human knee cartilage from normal post-mortem
donors, increasing peak stress during injury, with final (peak)
strain and velocity held constant, was associated with less loss
of proteoglycan from the tissue. This unexpected result may
reflect a type of tissue yielding due to microstructural damage
during loading, and emphasizes the importance of consider-
ing which compression parameters are held constant when
interpreting this type of analysis. Nevertheless, peak stress,
by itself, does not appear to be the critical determinant of
proteoglycan loss in this injurious compression model. Sec-
ondly, in striking contrast to the results in knee cartilage, we
observed that in ankle cartilage the same level of injurious
compression caused little visible damage and had no signifi-
cant effect on proteoglycan loss. These results significantly
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Fig. 3 Damage score and GAG loss following injurious compression.
Immediately following injury, injured ankle and knee cartilage disks
from three donors were scored for visible damage (a). Injured and
uncompressed control disks were replaced in fresh culture medium,
and three days later the sGAG content of the conditioned medium was
measured (b). Injury of knee cartilage resulted in an increase in GAG
loss to the medium after injury compared to location-matched controls
(P < 0.001 by paired t test), whereas there was no observed difference
after injury of ankle cartilage (P = 0.97)

add to the evidence that knee and ankle cartilages, whether
by design or adaptation, respond differently to mechanical
and biological stimuli.

The concept of a threshold for cartilage injury is
interesting for its implications both in understanding chon-
drocyte mechanotransduction and in clinical practice
(Newberry et al. 1998; Torzilli et al. 1999; Loening et al.
2000). In one of the first in vitro investigations of this phe-
nomenon, Torzilli et al. (1999) showed evidence for a thresh-
old level of injury in terms of cell death and collagen damage
in their injury model using adult bovine occipital joint car-
tilage. However, since the experiments involved loading that
varied both peak stress and strain, these data were consis-
tent with either a threshold in peak stress or in peak strain.
Subsequently, investigators have also demonstrated the
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Fig. 4 Relationship of peak stress to the increase in GAG loss after injury. The increase in GAG loss after injury was defined as the GAG loss from
an injured disk minus the GAG loss from a location-matched uncompressed control disk. In knee cartilage (a) there was a statistically significant
negative relationship between peak stress and increase in GAG loss (P < 0.001, 39 observations from 3 donors). In ankle cartilage (b), there was
a positive association between peak stress and difference in GAG loss after injury that was not statistically significant (P = 0.51, 16 observations
from 3 donors)

importance of other injury parameters such as compression
velocity (Chen et al. 1999; Kurz et al. 2001).

It is therefore critical to consider that the observed effect
of any one loading parameter is dependent on how the other
loading parameters are varied in the experiment. For exam-
ple, Ewers et al. (2001) have reported the counter-intuitive
result that higher peak stress during injury was associated
with less damage and cell death, and explained the seeming
paradox by focusing on the rate of loading. Since compres-
sion was applied under load control, the specimens were not
all loaded at the same velocities. The cartilage disks loaded to
higher peak stress were loaded at higher velocities and, there-
fore, generated higher intratissue pressures more quickly. As
a result, the higher peak stress was generated by compression
to a lower strain than the cartilage loaded to the lower peak
stress. Consideration of these results, therefore, suggests that
the peak strain of injury can be more important than the peak
stress for causing cartilage damage and chondrocyte death.
Similarly, over a full range of velocities, Morel and Quinn
(2004) showed quite clearly that loading cartilage to a fixed
peak stress can cause much higher cell death at slower load-
ing rates due to the very high final strain and accompanying
water loss that results.

In the experiment reported here, cartilage was compressed
to one fixed strain (65%) at one fixed velocity (2 mm/s, cor-
responding to a strain rate of approximately 400%/s), allow-
ing us to examine the effects of variation in the peak stress
generated by the cartilage during injury. We did not observe
a threshold level of peak stress for injury, and instead ob-
served a statistically significant negative association of peak
stress with GAG loss. These observations are supported by a
recent analysis of data from injurious compression of new-
born bovine articular cartilage by several of the current au-
thors (DiMicco et al. 2004), in which the peak stress during
injurious compression was not associated with GAG loss af-
ter injury. This lack of a positive association in data from
both adult human and immature bovine tissue supports the

Table 1 Analysis of the relationship between peak stress and the in-
crease in GAG loss after injury by a generalized linear mixed-effect
regression model

Unadjusted estimate Adjusted estimate
Coefficient P value Coefficient P value

Human knee cartilage
Peak stress −0.25 ± 0.06 < 0.001 −0.22 ± 0.06 0.001

Human ankle cartilage
Peak stress 0.043 ± 0.064 0.51 0.015 ± 0.065 0.82

hypothesis that the peak stress is not directly responsible for
matrix damage under these loading conditions.

We hypothesize that the negative association between
peak stress and GAG loss observed in knee cartilage here re-
flects the generation of unvisualized microstructural damage
in the cartilage matrix during the injury and the association
of GAG loss with such damage. Since the tissue was loaded
to a fixed strain and velocity, the variations in peak stress
observed in this experiment reflect variations among carti-
lage samples in mechanical properties such as stiffness and
permeability. Thus, damage to matrix mechanical properties
during the injury would be expected to cause a decrease in
the peak stress generated by the tissue.

This hypothesis therefore proposes that rather than peak
stress, the cause of proteoglycan release under these loading
conditions is simply macro-or microstructural damage to the
cartilage matrix. In support of this hypothesis, we have previ-
ously reported in newborn bovine tissue that GAG loss in the
first 3 days after injury is not affected by inhibition of cell bio-
synthesis and is not strongly affected by inhibition of MMP
and aggrecanase proteolysis (Patwari et al. 2003; DiMicco et
al. 2004), suggesting that the mechanical forces directly cause
most of the initial GAG loss after injury. For the current study,
this suggested that the relation between peak stress and GAG
loss would change depending on whether the matrix sustained
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damage during injury, so we tested an interaction between
peak stress and damage score. The interaction was not found
to be significant and therefore not included in the final model.
However, since the matrix could be significantly damaged at
the molecular level even if gross fractures and alterations in
shape are not observed after injury, the ability of the cur-
rent analysis to detect an interaction between peak stress and
matrix damage may be limited. On the other hand, the lack of
a relationship between peak stress and GAG loss in the ankle
cartilage, where there was little observed damage, is con-
sistent with this hypothesis. Finally, we would note that the
relationships among peak stress, GAG loss, and damage are
likely to change under different loading regimes and condi-
tions that would be expected to produce different mechanisms
of damage (Quinn et al. 2001; Milentijevic and Torzilli 2005).

The second major observation of this study was the strik-
ing difference between injury to the knee cartilage and injury
to the ankle cartilage with the same compression protocol and
similar peak stresses. In the ankle cartilage, despite compres-
sion to 65% strain, injury damaged only 6% of the cartilage
disks and the mean increase in GAG loss after injury was less
than 0.1µg per disk, suggesting that the matrix of the ankle
cartilage is substantially more resistant to mechanical injury
than the matrix of the knee cartilages. There was in addition
no observed relation between peak stress and GAG loss in the
ankle, probably due to the limited range of GAG loss and/or
damage to the ankle disks. This analysis of joint cartilages
from three donors is still limited in power by the small sam-
ple size. However, these cumulative results provide important
evidence to confirm and extend our initial report of similar
results from the first donor tissues (Patwari et al. 2003).

Since the pattern of OA is different in these two joints,
with OA affecting the ankle joint less often, we have previ-
ously hypothesized that there may be aspects of the ankle car-
tilage matrix and cells that provide it with resistance to OA.
Prior studies have documented differences in the ankle com-
pared to the knee cartilage in both the properties of the matrix
and the responses of the cells, including higher compressive
stiffness and proteoglycan density (Treppo et al. 2000), lower
matrix degradation (Aurich et al. 2005), and less response
to catabolic stimuli such as IL-1 and fibronectin fragments
(Eger et al. 2002; Dang et al. 2003). Therefore, the relative
resistance of ankle cartilage to damage in our in vitro model
for traumatic joint injury is not only consistent with these
prior reports but also suggests an additional explanation for
the resistance of the ankle matrix itself to OA beyond the
differences in overall joint mechanics.
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