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Abstract A multiscale approach (periodic homogenization)
is carried out to model osteon’s behaviour, and especially the
coupled phenomena that govern its interstitial fluid move-
ment. Actions of electro-osmotic and osmotic motions in
addition to the classical Poiseuille flow are studied at the
mesoscale of the canaliculus and within the micropores of the
collagen-apatite matrix. Use of this fully coupled modelling
leads to a comparison of these different effects. Limitation
of a classical Darcian description of the fluid flow at the two
scales is so studied. For each of these studies a special atten-
tion is given to the pore’s geometry influence and to their
electrical and hydraulic properties.

1 Introduction

Cortical bone is a saturated porous tissue composed of a
solid matrix, cells and a fluid phase. Its behaviour is gov-
erned by different effects due to many driving forces, such as
hydraulic, chemical, electrical and mechanical. The move-
ment of the fluid phase within the pores or spaces of the solid
matrix is referred to as interstitial fluid flow. Although much
is suspected on the role of fluid movement on cell behaviour,
relatively little is known about the characteristics of pores
through which fluid flows or about the flow characteristics
under in vivo conditions. Despite this lack of information
on interstitial fluid movement in bone, its role in physiologi-
cal processes like adaptation and repair mechanisms has been
recognized to be essential in the literature (Cowin 2002). The
difficulty to understand interstitial fluid biological effects is
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due to different causes. Indeed, it is quite difficult to carry
out measurements to describe phenomena governing bone’s
response to a given stimulus. Moreover different existing
models, which need experimental data to be realistic, require
to make significant simplifications to represent such living
materials behaviour. To illustrate this complexity, if electric
phenomena have been observed in the bone since the fifties
(Yasuda 1964; Basset and Becker 1962), their physiological
origin is still debated (Pollack 2001).

Furthermore, an important property inherent to the one’s
pores walls is the negative charge present on their surface.
The resulting electric potential is compensated by the adsorp-
tion of cations on the surface forming the inner compact layer
commonly referred to as the immobile Stern layer. Neverthe-
less, most of the cations are located in the electrolyte aqueous
solution. They form a diffuse layer made of mobile charges.
In general, the equilibrium structure of completely disso-
ciated electrolytes next to the walls is modelled by classi-
cal electrostatics equations, where charge distribution and
electrical field are governed by a Poisson–Boltzmann equa-
tion (Israelachvili 1991). When advected by the streaming
velocity of the fluid, the excess in mobile charge popula-
tion in the counter-ion atmosphere leads to macroscopically
observed electrokinetic phenomena, such as streaming cur-
rents. To conserve charge, the movement of the net charge
generates an electric potential, often referred to as stream-
ing potential, which may give rise to other macroscopically
electrokinetic phenomena. Spatial variations of this stream-
ing potential can also force mobile charges to move, causing
an electro-osmotic seepage because of the viscous drag inter-
action between ions and water (Hunter 1981). In addition to
theses electrokinetic phenomena, a flow driven by chemi-
cal-osmotic effects can also occur when the salinity varies
spatially (Gu et al. 1998).

In addition to these electro-chemical phenomena other
factors, such as hormonal action or exercices, can have an
effect on the interstitial fluid flow. The present model does
not consider explicitly all these related factors. This study is
mainly focused on hydro-electro-chemical couplings. Never-
theless, some of these factors are implicitly studied here. For
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instance, ageing influences geometry and chemical properties
of bone tissues. Variations of these two parameters are taken
into account in our study.

Classical mechanical descriptions of cortical bone use
poroelasticity theory (Pollack et al. 1984; Cowin et al. 1995;
Mak and Zhang 2001; Rémond and Naili 2004; Gururaja
et al. 2005) deriving from Biot’s works (Biot 1941). Elec-
tro-chemical effects are not always accounted for in these
models. Some authors, using a zero charge flux assumption,
are able to identify the streaming current with the fluid flow
evaluated from a Darcy’s law or Brinkman’s equation (Cowin
2001). Doing this, the generated streaming potential is only
seen as a consequence of the flow, whereas it also acts as a
driving force on the fluid movement.

The aim of this work is to clarify the role of electro-chemi-
cal couplings in the interstitial fluid movement. Cortical bone
is a multi-scaled medium where multi-physical phenomena
can occur. Since the key elements of couplings are located at
the pore scale, the strategy proposed in the present work is
to obtain the fluid movement by upscaling the local descrip-
tion. Periodic homogenization is the technique used to prop-
agate physical informations to the upper scale. As exposed in
the following section, cortical medium can be characterized
by three levels of porosity. Cowin (2001) suggested that the
porosity that may play a significant role in the mechanotrans-
duction processes is either the lacuno-canalicular porosity or
the micropores of the collagen-apatite matrix. At these two
scales the solute movement can be described by coupling the
Stokes and Poisson–Boltzmann equations. Thus, a compari-
son between hydraulic, electro-osmotic and osmotic contri-
butions to the total fluid transport is proposed and compared
at each structural level.

In summary, in the present work, the solid matrix of the
cortical bone is assumed to be characterized by a porous
medium regularly structured with three levels of porosity.
Each level of porosity is supposed to be spatially uniform.
The interstitial fluid is represented by a saline solution. It
is accepted that the movement of this fluid is only due to
hydraulic, chemical, electrical and mechanical driving forces.
Moreover, the movement of this fluid is only studied in the
extravascular spaces of the canaliculi and micropores inside
the solid matrix.

After this introduction on the rationale for studying
coupled phenomena in bone fluid flow, geometry and fluid
descriptions are given in Sects. 2 and 3. The changes of vari-
ables used in the homogenization method are then described
in Sect. 4. Section 5 deals with the upscaling procedure of
the homogenization method. Solutions for fluid flow at each
scale are given in Sect. 6. Results and their implications on
coupling phenomena occurring in bone fluid flow are dis-
cussed in Sect. 7. Finally, a conclusion is drawn in Sect. 8.

2 Geometrical configuration and levels of porosity

Cortical bone tissue presents a well organized structure com-
posed of mineralized cylinders called osteons. These osteons,

which present diameters of a few hundreds of micrometers,
are centered on Haversian canals (Fig. 1). These osteonal
canals and other large transverse pathways in the bone matrix
(Volkmann canals) contain the vasculature, the nerves and
interstitial fluid. In addition to those channels, other smaller
pathways exist through which fluid can flow. The aim of this
section is to describe this multi-scale organization and in par-
ticular to model geometry of different interstitial flow path-
ways. Mineral composition and microstructure of the osteon
are supposed to be spatially uniform.

Spaces within bone have size that can vary from visible
cavities to very small pores. Their sizes stretch over sev-
eral orders of magnitude. At each of these spatial scales,
pore sizes correlate with different structural components. As
bone permeability is highly dependent on this microstructure,
measurements of this parameter often cover a large range of
values (Arramon and Nauman 2001).

Three main levels of porosity inside bone are commonly
distinguished. From the largest to the smallest, there are the
vascular spaces (Haversian and Volkmann canals), the spaces
associated with the lacuno-canalicular system and the colla-
gen-apatite matrix pores. In the present work, the scale for
each level of porosity is respectively referred to as the mac-
roscale (osteon’s transversal size, Fig. 1a), the mesoscale
(canaliculus transversal size, Fig. 1b) and the microscale
(collagen-apatite matrix pores transversal size, Fig. 1c).

In cortical bone, the pathways of transport from the blood
supply to the osteocytes are due, on one hand, to the vessels of
the vascular system and, on the other hand, to the extravascu-
lar fluid spaces comprising the lacuno-canalicular system and
the collagen-apatite matrix pores. The function of Haversian
capillaries might be to alternatively serve as either pathways
for nutrient transport or as drainage canals, regulated by vaso-
motor function of the sphincter at the arterial end. Thus, the
interstitial fluid may flow faster in one region and slower in
another. In the present study, the attention is only focused on
the fluid movement in the extravascular pores. As a conse-
quence, variations of the flow in the vascular macropores are
not considered and can only interfere through the boundary
conditions in term of pressure or velocity variations.

Concerning the canaliculus, it can be considered as a
capillary (with circular cross-section) whose diameter of a
few hundreds of nanometers is noted as 2RC . The osteocyte
cell process is located along the canaliculus axis. It can be
seen as a cylinder whose circular cross-section has a radius
RM around 50 nm. Moreover, geometrical perturbation intro-
duced by the presence of the lacunae is not taken into ac-
count. Micropores of the collagen-apatite matrix are not yet
well known. They correspond to spaces between collagen and
crystallites of the mineral apatite. The characteristic size Rm
of micropores has been measured by Holmes et al. (1953)
and it varies between 5 and 12.5 nm. In the present model,
micropores are assumed to be cylinders with circular cross-
section. As a consequence, equations developed in the present
model at the mesoscale and at the microscale can be treated
with cylindrical coordinates. No matter which scale is con-
sidered, the fluid flow develops in the longitudinal direction
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Fig. 1 Schematic representation of an osteon: the three levels of porosity. a Macroscale of the osteon; b Mesoscale of the canaliculus; c Microscale
of the pores in the collagen-apatite matrix (adapted from Buckwalter et al. (1995))

of the pore (coordinate z) whereas its local fields (electric
potential, ionic concentrations, velocity ...) may also vary in
the radial direction (coordinate r ). For that reason, equations
are formally similar at both scales (mesoscale and micro-
scale) but the boundary conditions are not, and problems at
the canaliculus scale and in the micropores are independently
treated. Although notations of the coordinates at each scale
are the same, they describe coordinates for each given scale.

3 Description of the fluid

The aim here is to describe locally the fluid. Its material
properties are identical at any level of porosity. We consider
that pores are saturated by an aqueous solution consisting of
water and an entirely dissociated salt with monovalent elec-
trolytes (typically sodium and calcium ions). For simplicity
we neglect steric and hydration effects assuming the liquid

phase as structureless dielectric electrolyte solution with ions
treated as point charges.

3.1 Electrostatics

When effects of the magnetic field are neglected, Maxwell’s
equations reduce to the Poisson equation (Hunter 2001):

�φ = − F

εε0
(n+ − n−), (1)

where φ is the electric potential in the fluid phase, n+ and n−
the cationic and anionic concentrations, respectively, ε0 the
vacuum permittivity, ε the relative dielectric constant of the
solvent, F the Faraday constant and� the Laplace’s operator.

In the canaliculus, boundary conditions are obtained by
imposing the electric potential continuity on its wall and on
the osteocyte process surface. In the collagen-apatite matrix,
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these boundary conditions result from the electric potential
continuity on the wall and the assumed axisymmetric prop-
erty of pores.

The different surface potentials (walls of the calcified
matrix and cell membrane) do not have the same origins. If
the negative surface charge of the cell membrane is due to
the presence of fatty acids, charge deficiency of the calcified
matrix might result from different phenomena. That is why
surface potentials are a priori different from one surface to
the other. Moreover, estimation of the information associ-
ated with the electrical effects is difficult to obtain. For this
reason, the zeta potential, potential at the slip line separat-
ing adsorbed ions from diffuse ones, gives a good estimate
of the surface’s electrical potential. Measurements of zeta
potentials within bone vary because of different experimen-
tal conditions. Thus, Berreta and Pollack (1986) proposed
a value of −3.55 mV whereas Kim et al. (2002) measured
zeta potentials of −20 mV. Influence of these dispersions on
phenomena described in the present work will be studied.

3.2 Movement of the electrolyte solution

The electrolyte solution is assumed to be incompressible and
Newtonian. Its movement is governed by electrohydrody-
namics. Neglecting gravity, convective and inertial effects,
the Stokes flow is given by (Landau and Lifshitz 1960):

µ f�v − ∇ p = −F(n+ − n−)E, (2)

where v is the fluid velocity, p the hydraulic pressure, E the
electrical field, µ f the fluid dynamic viscosity and ∇ the
gradient operator. Moreover fluid mass conservation is given
by:

∇ · v = 0, (3)

where the divergence operator is noted ∇·. Corresponding
boundary conditions are provided by the assumption that the
fluid adheres to the wall.

3.3 Ions transport

Ionic concentrations are assumed to be small enough to
neglect interactions between ions so that diffusion can be
described by a double binary diffusion cations/water and an-
ions/water. Ion movement is due to three contributions: (1)
Brownian diffusion characterized by diffusion coefficients
in water D+ and D− for cations and anions; (2) convective
transport with the solvent; (3) and electromigration resulting
from the electric field. Thus, the two ionic transport equations
are written as follows:

∂n±

∂t
+ ∇ · (n±v) = ∇ ·

(
D±n±

RT
∇µ±

)
, (4)

where µ± are the electrochemical potentials of cations and
anions, T is the absolute temperature (constant in vivo con-
dition) and R the gas constant of ideal gas. Accepting the

infinitely diluted solution assumption (Lyklema 1995), the
electrochemical potentials can be expressed by:

µ± = ±Fφ + RT ln(n±)+ f (T, p), (5)

where ln is the natural logarithm function.
The function f a priori depends on the pressure, but it is

often accepted to change slowly with this parameter. Combin-
ing Eqs. (4) and (5), the Nernst–Planck equation is obtained
(Samson et al. 1999):

∂n±

∂t
+ ∇ · (n±v) = ∇ · (D±(∇n± ± n±∇φ̄))

= ∇ · (D± exp(±φ̄∇(n± exp(±φ̄)))), (6)

where the reduced electric potential φ̄ = Fφ/RT is
introduced.

4 Change of variables in the fluid

An innovative approach of this paper consists in the use of a
change of variable in the fluid based on the fictive solution
concept. Such an approach is sometimes used to describe
coupled transport in electrically charged porous media and
has been used with success, for instance, in clay modelling
(Dormieux et al. 1995; Moyne and Murad 2002a; Lemaire
et al. 2002; Lemaire 2004). Expressing the problem in terms
of new fictive variables, it will be possible to distinguish be-
tween variables, called fast and slow variables for the micro-
scale and macroscale, respectively, through an upscaling pro-
cedure. Theses variables might vary at the pore scale.

4.1 Notion of equivalent bulks

At a given point, the fluid corresponds to an equivalent bulk.
It is a virtual solution verifying electroneutrality. Thus, we
can write for each point occupied by the fluid phase:

n+
b = n−

b = nb, (7)

where n+
b and n−

b are the bulk concentrations respectively of
the cations and the anions.

As proposed by the approach of Sasidhar and Ruckenstein
(1981), the streaming potential, which is the electric potential
that develops in order to maintain electroneutrality, corre-
sponds to the electric potential inherent to the species of a
bulk solution locally constructed at thermodynamic equilib-
rium with ions. Thus, equalling electrochemical potential of
ions of the solute and the virtual bulk phase, we obtain two
relations for the anions and the cations:

µ±
b =µ± =±Fφ+RT ln(n±)=±Fψb+RT ln(nb). (8)

The difference between the electric potential φ and the
bulk electric potentialψb introduces a third potentialϕ, which
represents the electric measurement of the electrical distance
between the point of the solution and its corresponding vir-
tual bulk. This last electric potential can be identified as the
consequence of the electrical double-layer effects. Indeed



Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone 43

Eq. (8) leads to the classical Boltzmann distributions of the
ionic species (Israelachvili 1991):

n± = nb exp(∓ϕ̄), (9)

where the double-layer electric potential ϕ has been reduced
as done before ϕ̄ = Fϕ/RT .

4.2 Virtual bulk pressure

A virtual bulk pressure pb can be similarly defined using ther-
modynamical equilibrium of the solvent. Electric neutrality
of water leads to the following equilibrium equation:

p

ρl
+ RT

Mw

ln

(
nw

nw + n+ + n−

)

= pb

ρl
+ RT

Mw

ln

(
nwb

nwb + 2nb

)
, (10)

where ρl is the mass density of the solution, nw and nwb are
the molar concentrations of water in the solution and in the
virtual bulk, respectively, and Mw the volumic molar mass
of water. As ionic concentrations can be neglected in com-
parison with solvent concentration, the mass density of the
solution can be approximated by:

ρl � nwMw � nwb Mw. (11)

Combining Eqs. (10) and (11), we have:

pb = p − RT (n− + n+ − 2nb). (12)

According to Donnan (1924), the osmotic pressure defined
by the van’t Hoff relation π = RT (n− + n+ − 2nb) allows
us to decompose hydraulic pressure in a bulk term and an
osmotic one:

pb = p − π. (13)

4.3 Reformulation of the equations

Using the precedent change of variables, we can reformu-
late the problem in terms of bulk variables. The Poisson
Eq. (1) written in term of reduced electric potential is changed
thanks to Boltzmann distributions of ionic species (Eq. (9))
and becomes thus the classical Poisson–Boltzmann equation:

�(ψ̄b + ϕ̄) = 1

L2
D

sinh ϕ̄, (14)

where the Debye length characterizing the diffuse double-
layer L D = √

εε0 RT/2F2nb (Hunter 2001) is introduced.
To reformulate the Stokes Eq. (2), we first transform

the gradient of hydraulic pressure using the decomposition
(Eq. 13):

∇ p = ∇ pb + ∇π. (15)

The osmotic pressure gradient is then expressed by using the
Boltzmann distributions of the ions (Eq. (9)) in the van’t Hoff
relation:

∇π = ∇(2RT nb(cosh(ϕ̄)− 1))

= 2RT (cosh(ϕ̄)− 1)∇nb + 2RT nb sinh(ϕ̄)∇ϕ̄. (16)

Substituting Eqs. (15) and (16) in Stokes Eq. (2), recall-
ing that φ̄ = ϕ̄ + ψ̄b, we finally obtain the Stokes equation
in terms of bulk variables:

µ f�v − ∇ pb − 2RT (cosh ϕ̄ − 1)∇nb

+2RT nb sinh ϕ̄∇ψ̄b = 0. (17)

In this expression, we can clearly identify the three con-
tributions for the fluid transport corresponding to gradients
of: (1) virtual bulk pressure (hydraulic part, second term); (2)
virtual bulk concentration (osmotic part, third term); (3) vir-
tual bulk electric potential (electro-osmotic part, last term).

Considering the Boltzmann distributions of the ions
Eq. (9), the chemical gradient of the Nernst–Planck Eq. (6)
can be rewritten. The electric potential of the fluid is decom-
posed as before, and the new form of the Nernst–Planck equa-
tion is:

∂(nb exp(∓ϕ̄))
∂t

+ ∇ · (nb exp(∓ϕ̄)v)
= ∇ · (D±(exp(∓ϕ̄)(∇nb ± nb∇ψ̄b))). (18)

5 Upscaling procedure in the cylindric geometry

Since canaliculi and micropores ideally present the same
cylindrical geometry, the upscaling procedure carried out is
the same at these two levels of porosity. For this reason, this
section only describes the general approach (homogeniza-
tion) used to upscale the local description to the flow’s scale.
Specific results for each scale will be presented in the fol-
lowing part. One has to be careful: in this section, adjectives
microscopic and macroscopic correspond to the local scale
(pore scale) and the flow’s scale, respectively. They do not
correspond to the considered level of porosity. In what fol-
lows, the variables associated with the microscopic and mac-
roscopic scales are designated respectively as fast and slow.

The goal is not here to repeat some results that are prop-
erly demonstrated elsewhere Moyne and Murad (2002a,b),
but to show advantages of using bulk variables in this
upscaling method. Readers interested in the homogeniza-
tion method are invited to consult appropriate references,
for instance, Sanchez-Palencia (1980), Hornung (1997) and
Auriault (1991).

5.1 Use of periodic homogenization

In this framework, the medium is idealized as a bounded
domain with a periodic structure. A microscopic character-
istic length-scale l associated with the unit “cell” and a mac-
roscopic length-scale L related to the overall dimensions of
the medium are introduced. If the characteristic length l is
very small in comparison with the macroscopic length L , we
can introduce a small parameter ε defined by:

ε = l

L
� 1. (19)
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One feature of the chosen geometry presented in Sect. 2
is that the macroscopic length L is in the order of magni-
tude of the longitudinal coordinate whereas the microscopic
length l is related to the radial coordinate no matter what the
considered scale is (microscale or mesoscale). For this con-
figuration the scale separation assumption associated with
Eq. (19) corresponds to a coordinate separation property too.
Thus, we can define appropriate dimensionless variables:

z∗ = z

L
, r∗ = r

l
. (20)

All the functions h are then expanded in the form of an
asymptotic development in terms of the perturbation param-
eter ε:

h(r∗, z∗) =
∞∑

k=0

εkhk(r
∗, z∗). (21)

An essential feature inherent to any upscaling technique
is proper scaling of the dimensionless quantities that appear
in the microscopic description. It is necessary to rewrite first
the model at the microscale in dimensionless form before esti-
mating the set of non-dimensional numbers, which character-
ize the local description. Moyne and Murad (2002a) propose
such a discussion dealing with coefficients order of magni-
tude. Using scaling laws for coefficients proposed by these
authors, the local mechanical model can be rewritten. Then,
we are able to collect different terms with the same order of
magnitude.

5.2 Slow and fast variables

Results of Moyne and Murad (2002a) lead to a distinction
between slow variables, which are independent of the fast
coordinate r , and fast variables, which may vary with r and
z. In the fluid, slow variables are the bulk pressure pb, the
bulk concentration nb and the bulk electric potentialψb. Fast
variables are the fluid velocity v and the double-layer electric
potential ϕ. Using these results in the considered geometry,
different equations established in Sect. 4.3 can be simplified.

Poisson–Boltzmann Eq. (14) does not appear at the flow’s
scale and is transformed in:

d2ϕ̄

dr2 + 1

r

dϕ̄

dr
= 1

L2
D

sinh ϕ̄. (22)

In the Debye–Hueckel approximation, that is to say if
Debye length is small in comparison with pore scale (rel-
evance of this approximation will be discussed in the next
section), this equation can be linearized. After simplification
by RT/F , this equation becomes:

d2ϕ

dr2 + 1

r

dϕ

dr
= 1

L2
D

ϕ. (23)

Concerning the fluid movement in steady state, the veloc-
ity is longitudinal and only depends on the radial coordinate r :

v = u(r)z, (24)

where z designates the unit vector of the longitudinal direc-
tion and u(r) the component of the fluid velocity v along the
z-axis.

By introducing this relationship in Stokes Eq. (17), we
obtain:

µ f

(
d2u

dr2 − dpb

dz
+ 1

r

du

dr

)
− 2RT (cosh ϕ̄ − 1)

dnb

dz

+2RT nb sinh ϕ̄
dψ̄b

dz
= 0. (25)

Finally, Nernst–Planck Eq. (18) is modified in:

∂(nb exp(∓ϕ̄))
∂t

+ ∂(nb exp(∓ϕ̄)u)
∂z

= ∂

∂z

(
D± exp(∓ϕ̄)

(
∂nb

∂z
± nb

∂ψ̄b

∂z

))
. (26)

Thus, we have been able to rephrase the local description
of the fluid at the flow’s scale. Now we have to apply this
physical description in both levels of porosity.

6 Solution at the two scales

The new upscaled description for the fluid obtained from the
precedent change of variables is now written in the two levels
of porosity. First, we intend to discuss Poisson–Boltzmann
Eq. (22).

6.1 Discussion on the Poisson–Boltzmann equation

Solution of Poisson–Boltzmann Eq. (22) is necessary to eval-
uate the double-layer potential appearing in Stokes Eq. (25)
that determines the fluid flow. For this reason, we have to find
a solution for Nernst–Planck Eq. (26) at each scale.

If the reduced electrical double-layer potential remains
small, the Debye–Hueckel approximation (Eq. (23)) is gen-
erally used (Hunter 2001). This case corresponds to large
radii of the pores in comparison with Debye thickness (typ-
ically about a few nanometers). Since this approximation is
no more efficient for small pores, semi-analytical approx-
imations (Philip and Wooding 1970; Kang et al. 2002) or
numerical computations are needed to obtain the potential
distribution in cylindrical geometry from Poisson–Boltzmann
Eq. (22). In the latter case, a finite volume scheme has been
carried out to evaluate the double-layer potential.

Figure 2 illustrates the discrepancies between computa-
tional solutions of Poisson–Boltzmann Eq. (22) and closed-
form analytic expressions obtained from Debye–Hueckel
relation (Eq. (23)) for three values of the ratio of the pore
radius to the Debye length. These profiles are plotted for a
capillary pore with a radius RP for an electrical potential of
the solid wall of −3.55 mV (value of the zeta potential pro-
vided by Berreta and Pollack (1986)). When the double-layer
thickness is small in comparison with the geometrical charac-
teristic (see Fig. 2c for RP/L D = 50), the Debye–Hueckel
approximation is good. However, as shown in Fig. 2a, 2b,
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Fig. 2 Variations of ϕ̄ versus r/RP . Comparison of the computational solution of the Poisson–Boltzmann equation (solid line) with the Debye–
Hueckel approximation (dotted line) in capillaries of different sizes: a RP = L D ; b RP = 10L D ; c RP = 50L D

this trend changes when the ratio RP/L D decreases. Then,
the Debye–Hueckel approximation tends to overestimate the
absolute value of the double-layer potential.

However, we need to work with geometrical lengths that
are not too small to respect the continuum mechanics treat-
ment of the problem. Curves obtained for a pore radius of the
same order of magnitude as the Debye length are only illus-
trative. Indeed, nanometric dimensions corresponding to this
case would need another method to analyse the fluid move-
ment and would require another description of the physical
behaviour of the electrolyte. For example, hydration forces,
steric effects and Van der Walls forces cannot be neglected
anymore at the molecular scale. In the present study, smallest
pores are the intra-matrix ones. They are assumed to be large
enough.

Annulus geometry of the mesoscale As numerical com-
putations are rather time consuming, we prefer using the
Debye–Hueckel approximation for large pores of the canalic-
uli. Thus the double-layer potential is analytically obtained
from Eq. (23):

ϕ(r) = a1 I0

(
r

L D

)
+ a2 K0

(
r

L D

)
, (27)

where In and Kn designate respectively the modified Bessel
functions of the first and second kinds of order n; constants
a1 and a2 are determined with the continuity condition of the
electrical double-layer potential on the wall of the canaliculus
(r = RC ) and the osteocyte process membrane (r = RM ).
So we have at the mesoscale:

ϕ(r) = ϕ(RC )(I0(
r

L D
)K0(

RM
L D
)− I0(

RM
L D
)K0(

r
L D
))+ ϕ(RM )(I0(

RC
L D
)K0(

r
L D
)− I0(

r
L D
)K0(

RC
L D
))

I0(
RC
L D
)K0(

RM
L D
)− I0(

RM
L D
)K0(

RC
L D
)

. (28)
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The radial coordinate r here refers to the canaliculus
radius (mesoscale).

Cylindrical geometry of the micropores In the small pores
of the collagen-apatite matrix, which are assumed to be
capillaries, a finite volume scheme has to be implemented to
evaluate the double-layer potential variation with the micro-
scopic radial coordinate. Corresponding boundary conditions
are given by the axisymetric property of the problem and
Dirichlet condition on the pore’s wall.

6.2 Modified Darcy law

Since we know the double-layer potential in each level of
porosity, solution of Stokes Eq. (25) describes the fluid flow.
In this equation, three driving mechanisms for fluid flow are
clearly distinguished. The first two terms are characteristics
of a Poiseuille flow. The next term, where the chemical gradi-
ent appears, corresponds to the osmotic part of the whole fluid
movement. Finally, the term with electric gradient is identi-
fied as the electro-osmotic flow. If Stoke’s equation presents
the same form when it is written in the mesopores or the
micropores, we insist on the fact that the different coordi-
nates (radial or longitudinal) refer to each structural level
and should not be confused.

6.2.1 Poiseuille velocity

Using linearity of the problem, the velocity u is decomposed
into three parts resulting from each precedingly mentioned
effect:

u = u P + uC + uE . (29)

At each scale, the Poiseuille velocity u P is the solution
of the following equation:

−dpb

dz
+ µ f

(
d2u P

dr2 + 1

r

du P

dr

)
= 0. (30)

Moreover, no-slip conditions on boundary walls are assumed.
At each pore scale, it is possible to average each veloc-

ity profile on the corresponding transverse cross-section S
leading to:

< u P >= 1

S

∫
S

u P dS = −K P
dpb

dz
, (31)

where K P = kP/µ f is the Poiseuille permeability (kP is the
intrinsic permeability of Poiseuille). As a consequence, the
Poiseuille permeability is a parameter depending only on the
pore geometry and the fluid viscosity.

Annulus geometry of the mesoscale For this geometry and
this scale, the non-slip conditions (u P [RM ] = u P [RC ] = 0)
lead to:

u P(r) =
r2ln

(
RM

RC

)
+ R2

M ln

(
RC

r

)
+ R2

C ln

(
r

RM

)

4µ f ln

(
RC

RM

) dpb

dz
,

(32)

where RC and RM are the canaliculus and the osteocyte pro-
cess radius, respectively.

Using relation (31) with S = π(R2
C − R2

M ), the Poiseuille
permeability K P in the mesopores is obtained as:

K P = 1

8

R2
C

(
ln

(
RC

RM

)
− 1

)
+ R2

M

(
ln

(
RC

RM

)
+1

)

µ f ln

(
RC

RM

) , (33)

Cylindrical geometry of the micropores For this geome-
try and this scale, assuming a non-slip condition leads to a
classically parabolic velocity profile:

u P(r) = − R2
m

4µ f

[
1 − r2

R2
m

]
dpb

dz
, (34)

where Rm is the micropore radius.
Using relation (31) with S = πR2

m , the Poiseuille perme-
ability K P in the microporosity is obtained as:

K P = R2
m

8µ f
. (35)

6.2.2 Electro-osmotic velocity

In an analogous way, the electro-osmotic flow is the solution
of:

2RT nb sinh ϕ̄
dψ̄b

dz
+ µ f

(
d2uE

dr2 + 1

r

duE

dr

)
= 0. (36)

Using Poisson–Boltzmann Eq. (22), the term with the
hyperbolic sine function can be replaced by the Laplace oper-
ator applied to the double-layer electrical potential:

d2g

dr2 + 1

r

dg

dr
= 0,

where g(r) = 2RT nb L2
D

dψ̄b

dz
ϕ̄(r)+ µ f uE (r). (37)

This last equation allows us to express analytically the
function g(r).

As done before, the two electro-osmotic profiles can be
averaged on the corresponding transverse section, in order to
give an expression of the electro-osmotic permeability KE
for each level of porosity:

< uE >= 1

S

∫
S

uE dS = −KE
dψ̄b

dz
. (38)

As a consequence, this parameter quantifies electro-
osmotic part of the transport and depends on pores geom-
etry, electrical conditions on their walls and Debye length.

Annulus geometry of the mesoscale At the mesoscale, a
closed-form analytic solution of the electric double-layer
potential is obtained using the Debye–Hueckel approxima-
tion. Using non-slip conditions at the osteocyte process and
the canaliculus wall (uE [RM ] = uE [RC ] = 0), the electro-
osmotic velocity in the canaliculus is deduced.
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Thanks to the Debye–Hueckel approximation, an analytic
expression of the permeability defined from Eq. (38) can be
provided at the mesoscale:

KE = − RT nb L2
D

µ f ln( RM
RC
)(R2

M − R2
C )(I0(

RC
L D
)K0(

RM
L D
)− I0(

RM
L D
)K0(

RC
L D
))

×
[
ϕ̄(RC )R

2
C ((1 + 2 ln(
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RC
))I0(

RC

L D
)K0(
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L D
)

+ (−1 + 2 ln(
RC
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))I0(
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L D
)K0(
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L D
))

+ ϕ̄(RM )R
2
M ((1 + 2 ln(
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RM
))I0(

RC

L D
)K0(

RM

L D
)

+ (−1 + 2 ln(
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RC
))I0(
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L D
)K0(
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L D
))

+ ϕ̄(RC )R
2
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L D
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+ 4ϕ̄(RC )RC L D(I1(
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) ln(
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]
.

Cylindrical geometry of the micropores At the microscale,
non-slip (uE [RC ] = 0) and symmetry conditions associated
with the numerically evaluated double-layer potential helps
us to obtain a closed-form solution of electro-osmotic veloc-
ity in the micropores.

Unfortunately, an analytical solution for the electro-osmotic
microscale permeability cannot be provided since there is no
a closed-form analytic solution of the double-layer potential
in the micropores.

6.2.3 Osmotic velocity

To complete this study, the problem of osmotic flow is written
at each scale:

−2RT (cosh ϕ̄ − 1)
dnb

dz
+ µ f

(
d2uC

dr2 + 1

r

duC

dr

)
= 0. (40)

Knowing the electrical double-layer potential, this equa-
tion is numerically solved in the mesopores and in the
micropores.

Resulting osmotic velocity profiles can be averaged on
the transverse section to obtain two equations introducing
osmotic permeability KC :

< uC >= 1

S

∫
S

uC dS = −KC
dnb

dz
. (41)

Finally, using a parallel resolution of the Stoke’s prob-
lem, we have been able to describe the averaged fluid flow
in the canaliculi (mesopores) and in the micropores inside
the collagen-apatite matrix with two independent modified
Darcy laws of the form:

< u > = < u P > + < uE > + < uC >

= −K P
dpb

dz
− KE

dψ̄b

dz
− KC

dnb

dz
. (42)

Different permeabilities have to be evaluated at each scale. It
will then be possible to quantify the contribution of hydrau-
lic, electro-osmotic and osmotic effect on fluid flow at each
level of porosity.

7 Results and discussion

For the two levels of porosity that are of interest in this study,
a modified Darcy law (42) has been proposed to describe the
fluid movement. Advantage of these laws is that it allows us
to estimate the role of the three driving effects governing the
interstitial fluid movement at the canaliculus scale and inside
the solid matrix.

For all presented results, the virtual bulk concentration
is fixed to 0.01 mol/l. The electrolyte is characterized by its
relative permeability of 75.34 (Cowin et al. 1995) and its
viscosity of 0.65 cPo (0.65 × 10−3 Pl).

At each level of porosity, the corresponding modified
Darcy law (Eq. (42)) is used to determine the magnitude
of Poiseuille, electro-osmosis and chemo-osmosis effects on
the fluid flow.

7.1 Study at the mesoscale: fluid movement in the canaliculi

In this section, we intend to study the electrolyte movement
in the canaliculus. To achieve this objective, it is necessary to
choose suitable orders of magnitude of hydraulic, electrical
and chemical variations at the flow scale. This scale corre-
sponds to the flow distance, that is to say the osteon radius
δz = 160 µm (Piekarski and Munro 1977), where δ desig-
nates the magnitude of variation of the variable. Concern-
ing the hydraulic gradient, bibliographic references treat it in
terms of hydraulic pressure whereas the hydraulic gradient
appearing in the modified Darcy law (Eq. (42)) of the present
model corresponds to the virtual bulk pressure. We have to
first check that the Donnan osmotic pressure introduced by
Eq. (13) can indeed be neglected. For concentrations phys-
iologically observed (between 0.01 and 0.5 mol/l), osmotic
pressure is such thatπ ∼ 0.1 bar (104 Pa). As a consequence,
the pressure decomposition (Eq. (13)) reduces to p = pb if
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hydraulic pressure is greater than a thousands of pascals. By
referring to precedent studies dealing with the fluid move-
ment within the canaliculi, pressure variations are not well
described, and are often estimated from a flow modelling.
Recently Gururaja et al. (2005) showed that fluid pressures
depend on both the magnitude of the loading applied to the
bone, and the cyclic frenquency of such loading. If Wang
et al. 2003 worked with pressures about 0.1 bar (104 Pa) (typ-
ically corresponding to the blood pressure), Piekarski and
Munro (1977) identified pressure variations of about 1 bar,
which remains small in comparison with values of several
bars from Zhang et al. (1998). On the other hand, streaming
potential variations are estimated with respect to measure-
ments with micro-electrodes of Starkenbaum et al. (1979):
δψ̄b = (F/RT )δψb = (F/RT )×0.002 V. Moreover chem-
ical variations for the flow’s scale are taken to be 0.01 mol/l.

Use of Eqs. (31), (38) and (41) provide the order of mag-
nitude of the Poiseuille effect (|< u P >|= K P [δpb/δz]),
electro-osmosis effect (|< uE >|= KE [δψ̄b/δz]) and chemo-
osmosis effect (|< uC >|= KC [δnb/δz]).

Sensitivity of the geometry In a first approach, influence of
the geometry is studied with an electrical potential of can-
aliculus walls fixed at −3.55 mV from Berreta and Pollack
(1986).

Figure 3 presents for a given radius of the osteocyte
(RM = 55 nm) the evolution of the three parts of the flow
with an increasing ratio R̄C = RC/RM with the bulk pressure
variations of Wang et al. (2003). If the osmotic effect remains
always almost zero, electro-osmotic flow is a few percent for
small annular spaces. But it soon becomes not significant as
the ratio R̄C = RC/RM reaches 1.5. Considering a small

value of the double-layer electrical potential in the frame of
Debye–Hueckel approximation, the hyperbolic cosine
appearing in the osmotic Eq. (40) is developed into a se-
ries. Only a second-order term is kept. As a consequence, the
resulting osmotic flow is weak. On the other hand, the hyper-
bolic sine function of electro-osmotic Eq. (36) appears as a
first-order term. This explains why even though the osmotic
term can be neglected at the mesoscale, the electro-osmotic
effect may have a little influence on fluid flow.

Figure 3 seems indeed to indicate that Poiseuille effect
is the most important driving force at the mesoscale. Indeed
the Poiseuille permeability only depends on the pore size and
for classically observed canaliculi radii (You et al. 2004), this
parameter is the major one when compared with osmotic and
electro-osmotic ones.

Aim of Fig. 4 is to confirm this trend with various hydrau-
lic gradients and two sets of wall electric potential (−3.55 and
−20 mV). For this figure, osmosis has been neglected. Two
cases are studied for a fixed geometry (RM = 50 nm): (1)
R̄C = 1.5; and (2) R̄C = 2.5. This second case corresponds
to averaged sizes of the osteocyte process and the canalic-
ulus as observed by You et al. (2004). Curves of this figure
conform to those presented in Fig. 3. Indeed electro-osmosis
effect remains weak when the reduced radius of the canalic-
ulus becomes large. Increase in electro-osmotic effect with
increase of wall electrical potential or decrease in hydraulic
gradient is observed, but this phenomenon remains insignifi-
cant.

Considering these results at the mesoscale, the Poiseuille
effect seems to be the most important driving effect in fluid
movement. As a consequence, use of classical Darcy law is
sufficient to describe fluid flow within the canaliculi.
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Influence of the presence of microfibers Before studying
what happens at the microscale, we discuss microfibres pres-
ence in the annulus space between canaliculus and osteocyte
cell process. Presence of such microelements have been taken
into account in the model of Cowin et al. (1995) and observed
by You et al. (2004) 9 years later. Geometrical organization
of these microfibres is described by their radius RF (0.6 nm
for Cowin et al. (1995) and 3.65 nm for You et al. (2004))
and the inter-fibers space dF (7 nm for Cowin et al. (1995)
and 25 nm for You et al. (2004)). Using the flow model of
Tsay and Weinbaum (1991) and Weinbaum et al. (1994),
Cowin et al. (1995) were able to obtain lower Poiseuille per-
meabilities than those calculated here. Consequently, taking
into account the presence of such microfibers could slightly
change the comparison between electro-osmotic and hydrau-
lic effects. For this reason, it is necessary to analyse the influ-
ence of presence of microfibers. That is the purpose of Fig. 5.
In this figure, the ratio between the Poiseuille flow calculated
with the Cowin et al. (1995) approach and the same flow cal-
culated in the present model without microfibres is plotted
versus the reduced canaliculus radius for two values of the
osteocyte process under consideration.

Introduction of microfibres results in a smaller Poiseuille
flow. However, this decrease remains very weak considering
the geometrical characteristics of You et al. (2004). Indeed,
fibres density is not sufficient to significantly disturb Poiseu-
ille flow. Concerning the fibrous net modelled by Cowin et al.
(1995), it generates a remarkable decrease of the Poiseuille
effect for large values of the reduced radius of the canalic-
ulus R̄C . Nevertheless, such changes of the Poiseuille per-
meability are not strong enough to radically modify results

shown by the two precedent figures. Indeed, the most favour-
able situation for having a lower Poiseuille effect because
of the microfibres (high values of R̄C ) corresponds to the
worst configuration for having an important electro-osmotic
effect, and vice versa, the less favourable situation for hav-
ing a lower Poiseuille effect as the microfibres (small values
of R̄C ) correspond to the best configuration for having an
important electro-osmotic effect.

7.2 Study at the microscale: fluid movement inside the
collagen-apatite matrix

In this section, a similar approach is conducted to study fluid
flow within micropores inside the collagen-apatite matrix.
As said in Sect. 2, which deals with geometrical configura-
tion, the size of these pores is not well known. According
to measurements of Holmes et al. 1953, the radius of the
micropores Rm varies between 5 and 12.5 nm. We assume
that they present a capillary geometry. The length of the mi-
cropores is not known, but it is assumed to be large in compar-
ison with their radius, so that the scaling separation property
given by Eq. (19) can be verified to apply the same modelling
procedure. Electrical potential of the micropores walls and
different physical variations at the flow scale are assumed to
be the same as those used in Sect. 7.1. Since the length of
the flow scale, which corresponds to the longitudinal length
of the micropores, is not explicitly given, the three driving
gradients are expressed as a variation along this length.

Results are presented in three figures showing the differ-
ent parts of fluid flow for: (1) a small value of the wall’s
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electrical potential (−3.55 mV) and hydraulic variations cor-
responding to blood’s pressure data of Wang et al. (2003),
Fig. 6a); (2) a high value of the wall’s electrical potential
(−20 mV) and hydraulic variations corresponding to blood
pressure’s order of magnitude (Fig. 6b); and (3) a high value
of the wall’s electrical potential (−20 mV) and hydraulic
variations about 1 bar (105 Pa, Fig. 6c). For each of these
figures, influence of micropore radius Rm is analysed.

Concerning Fig. 6a, if hydraulic effect is still the most
important part, influence of electro-osmosis and osmosis can-
not be neglected as the micropore’s radius decreases. Never-
theless, this trend would not be noticeable for higher values of
hydraulic gradients. In Fig. 6b, 6c, role of the wall’s potential
is emphasized. Indeed, for higher values of this parameter,
electro-osmotic and osmotic effects are close to the hydraulic
effect corresponding to blood pressure variations, and they
cannot be neglected for small micropores, even for higher
hydraulic gradients.

Thus, our results seem to indicate that, contrary to
observations at the mesoscale, coupled phenomena are not
insignificant in the micropores. The smaller are the pores or
the highest are the wall’s potentials, the most necessary it is
to include electro-osmosis and osmosis effects in the descrip-
tion of fluid flow.

7.3 Limitations of the study

The present study puts into light the important role of the elec-
tro-chemical effects at the microscale. Furthermore, it is nec-
essary to include phenomena occurring in the microstructure

to describe more accurately the fluid movement within bone
at the macroscopic scale. Fluid flow can also depend on other
factors, such as ageing, hormonal expressions or physical ex-
ercices. For instance, influence of ageing can be accounted
for through variations of the microstructure, the mineral con-
tent of the bone matrix and the dimensions of pores. How-
ever, biochemical variations are not modelled but could be
introduced through new boundary conditions and exchanges
between porosity levels. For example, the role of the Haver-
sian system concerning interstitial fluid influx could be inte-
grated in the boundary conditions as explained in Sect. 2.
Adding mass exchange terms between the different porosity
levels could be a significant amelioration of this model. A
suitable description of neural, hormonal and metabolic influ-
ences could complete the proposed model to better describe
bone fluid flow.

8 Conclusion

A multiscale modelling of the osteon has been proposed
to analyse hydro-electro-chemical couplings governing fluid
movement within the bone. This modelling is derived for
a cylindrical geometry with circular cross-section using a
change of variables resulting from the introduction of a vir-
tual bulk solution. Two levels of porosity have been studied:
the mesopores of the canaliculi and the micropores inside
the collagen-apatite matrix. At the mesoscale, fluid move-
ment is caused essentially by the hydraulic gradient, even if
fibers are present in the canalicular spaces. As a consequence,
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Fig. 6 Comparison between the three driving effects in the microporosity (electro-osmosis in grey, osmosis in black and Poiseuille effect in
white): a for a low wall’s potential of −3.55 mV and pressure variations of 0.08 bar (8 × 103 Pa); b for a high wall’s potential of −20 mV and
pressure variations of 0.08 bar (8 × 103 Pa); c for a high wall’s potential of −20 mV and pressure variations of 1 bar (105 Pa)

classical Darcy law is suitable to describe interstitial fluid
velocity through the mesopores. However, this law becomes
less efficient in these phenomena description at the micro-
scale.

In its first form, this work is a good tool to understand
the role of each scale in the multiphysical transport of fluid
movement. It will also be useful to include in the model
the biochemical effects. At this stage, these results are still
somewhat qualitative, but they provide a new way to analyse
osteon’s mechanical response.
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