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Abstract In this contribution, we develop a theoretical
and computational framework for anisotropic growth
phenomena. As a key idea of the proposed phenome-
nological approach, a fibre or rather structural tensor is
introduced, which allows the description of transversely
isotropic material behaviour. Based on this additional
argument, anisotropic growth is modelled via appro-
priate evolution equations for the fibre while volumetric
remodelling is realised by an evolution of the referential
density. Both the strength of the fibre as well as the
density follow Wolff-type laws. We however elaborate
on two different approaches for the evolution of the fibre
direction, namely an alignment with respect to strain or
with respect to stress. One of the main benefits of the
developed framework is therefore the opportunity to
address the evolutions of the fibre strength and the fibre
direction separately. It is then straightforward to set up
appropriate integration algorithms such that the devel-
oped framework fits nicely into common, finite element
schemes. Finally, several numerical examples underline
the applicability of the proposed formulation.

1 Introduction

The development of appropriate models for biological
tissues that capture at least some of the essential bio-
chemical and biophysical or rather biomechanical effects
is a fundamental task. Both hard tissues, such as bones
and teeth, or soft tissues, such as ligaments, tendons,
muscles, skin and vessels, have attracted study. Several
outstanding monographs document the rapid develop-

ment of this important scientific field of activity; for
example Schneck (1990), Fung (1993), Humphrey (2002)
and Murray (2002), the review articles by Taber (1995)
and Cowin (1999b) or the contributions in Cowin
(2001), Cowin and Humphrey (2000), as well as Hol-
zapfel and Ogden (2003). A typical classification of the
biomechanical behaviour of tissues is thereby introduced
by distinguishing between passive response, active
response and remodelling. One particular property of
the first and second category consists in the assumption
of conservation of mass, while the latter category
assembles effects like growth phenomena and the evo-
lution of internal structures.

The modelling of the passive response of, say, soft
tissues as arteries is highly developed these days; see
Holzapfel (2001) or Holzapfel et al (2000, pp 1–48) and
references cited therein for a detailed outline. Never-
theless, the characterisation of the (fibre-) morphology
of biological tissues remains an elaborate but funda-
mental task in order to link computational models and
in vivo materials; see, for example, the review article by
Zysset (2003) and references cited therein, where special
emphasis is placed on hard tissues—namely bones. The
overall behaviour of commonly considered biological
materials is apparently anisotropic, such that concepts
from classical continuum mechanics, as highlighted in
the contributions in Boehler (1987) and by Spencer
(1984), serve as a convenient backbone; see also Weiss
et al (1996) and Almeida and Spilker (1998) for the
modelling of the anisotropic elastic behaviour of soft
tissues and Cowin (1985), Zysset and Curnier (1995),
Cowin (1998), and Menzel and Steinmann (2001a) for
alternative frameworks. Passive response is however not
at all restricted to non-dissipative processes; in other
words, anisotropic viscoelastic and anisotropic elasto-
plastic behaviour occur—see, for example, the formu-
lation by Holzapfel and Gasser (2001) or Kaliske (2000),
and the contribution by Gasser and Holzapfel (2003).

In contrast to the viscous behaviour within passive
response, one observes that remodelling effects take
place on a different, drastically larger, timescale; see
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Currey (2003) with application to bones. We will
therefore not incorporate viscoelastic constitutive laws
into the formulation developed in this contribution, but
account for remodelling, namely isotropic and aniso-
tropic growth and reorientation. Keeping, say, a soft
tissue in mind, consider an assembly or bundle of col-
lagen fibrils that form fibres; see Silver et al (2003). From
a macroscopic point of view, collections of fibres are
essentially characterised via a representative diameter
and a corresponding orientation or rather direction.
Apparently, the direction naturally evolves such that the
loading capacity of the in vivo material is optimised (the
transcription of this effect in terms of mathematical
equations is a non-trivial task); see, for instance, the
framework developed in Driessen et al (2003), which is
based on probability distributions for fibre directions,
the contribution by Sherratt et al (1992) or Menzel and
Steinmann (2001b, 2003a, b) as well as Menzel et al
(2004), where computational frameworks for inelastic
constitutive relations with evolving axes of anisotropy
are developed, and references cited therein. Moreover, it
is accepted that the fibre diameter increases in response
to mechanical stimuli like stress (which means that the
diameter is correlated with the strength of the fibre), but
that the fibre diameter is also age-dependent. In addi-
tion, initially randomly-distributed fibre directions
(which can easily be modelled within a numerical set-
ting) that later on adapt according to a particular type of
loading path would provide further insight and under-
standing of the mechanical remodelling process of the in
vivo material. Since the temperature of the living tissues
considered is almost constant, thermal coupling is usu-
ally neglected. However, electric effects and stimuli as
well as age dependency should also be
addressed—especially for the modelling of muscle con-
traction; see, for example, Schneck (1992) or Wren
(2003) among others. These properties, as well as
observations like regeneration after injury or surface
growth, as discussed by Skalar et al (1997), are however
not within the scope of the present work, where we
restrict ourselves to purely mechanical stimuli.

From the continuum mechanics point of view, it is an
old but ongoing discussion concerning the adoption of
the theory of porous media or the theory of open sys-
tems for the modelling of growth phenomena; see, for
instance, the early and pioneering contributions by
Truesdell and Toupin (1960), Bowen (1976), Cowin and
Hegedus (1976), and the survey article by Cowin (1999a)
or the monographs by de Groot (1961), Kestin (1966)
and Katchalsky and Curran (1965), where detailed
background information on the underlying theories are
provided. In this contribution, we adopt the latter ap-
proach, as further developed in Epstein and Maugin
(2000) and Kuhl and Steinmann (2003a, b). Numerical
simulations of biological materials, in particular bones,
were initiated more than two decades ago, as reviewed
by Huiskes and Chao (1983). Stable computational
models for the (Wolff-type) adaption of hard tissues,
however, were devised in the late 1980s and early 1990s

by Huiskes et al (1987), Weinans et al (1992) and
Harrigan and Hamilton (1992, 1993, 1994). Based on
these isotropic remodelling formulations, several
numerical approaches were further elaborated; see
Jacobs et al (1995), Nackenhorst (1996), or Kuhl and
Steinmann (2003c, 2004), where in contrast to the pre-
viously cited references, the incorporation and compu-
tational treatment of an additional mass flux term is
developed. For a discussion of various aspects of the
underlying numerical techniques and a comparison of
two different discretisation approaches for the density
field, we refer the reader to Kuhl et al (2003).

Since the response and adaptation of biomaterials is
usually anisotropic, models for anisotropic growth or
anisotropic remodelling were (are) consequently devel-
oped. Even though, at first glance, several proposed
formulations seem similar to well-established frame-
works in computational finite inelasticity, one has to
account for the fundamental difference (compared to
plasticity for instance) that growth contributes to a
transformation which should finally link compatible
configurations. Accordingly, it is common practice to
introduce an additional (linear tangent) map in order to
satisfy this compatibility constraint. The concept of a
growth mapping, as typically represented in terms of a
corresponding linear tangent map or rather growth
tensor, is advocated in the pioneering work by Rodri-
guez et al (1994), and further discussed and elaborated in
Taber (1995) and Cowin (1996) or the recent work by
Lubarda and Hoger (2002), among others. Similar
concepts are based on so-called remodelling or virtual
configurations, which are directly related to the material
setting and therefore allow the incorporation of a (local)
change of the reference state, as proposed by Chen and
Hoger (2000), Ambrosi and Mollica (2002), Imatani
and Maugin (2002), Maugin and Imatani (2003a, b) and
Garikipati et al (2004). Since the development of these
anisotropic growth theories is currently still under
discussion, it is not astonishing that these formulations
are somehow ahead of the set-up of appropriate
computational frameworks. To be specific, most of the
pioneering contributions, that address robust algorithms
in order to simulate anisotropic remodelling within a
finite element setting, are mainly restricted to small
strains and hard tissues; compare Jacobs et al (1997),
Weng (1998) or Krstin et al (2000).

The main goal and contribution of this work consists
in the development of a theoretical and computational
framework, which accounts for anisotropic growth un-
der finite deformations. The adopted concept thereby
diverges from the previously cited works on anisotropic
growth. Practically speaking, we directly introduce an
additional internal variable, which allows the aniso-
tropic growth formulation, rather than introducing any
additional remodelling configuration. Compatibility
constraints of the overall motion are therefore naturally
not additionally addressed. The purely isotropic or
volumetric growth is conveniently modelled via an
(Wolff-type) evolution of the referential density field.
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The remaining task apparently consists of the set-up of a
physically sound evolution equation for the anisotropic
portion of the remodelling process. Following straight-
forward concepts of computational inelasticity, one
usually determines the dual force of the anisotropy
variable, defines an appropriate dissipation potential,
and ends up with a corresponding (possibly associated)
evolution equation; see Menzel and Steinmann (2001b,
2003a, b). The physical interpretation for a biological
tissue would nevertheless be questionable in some way.
This once again motivates the application of a Wolff-
type evolution law, namely an energy-driven format, for
the norm of the anisotropy variable. Concerning the
remodelling of the anisotropy axes, we adopt ideas that
are well-known in the theory of anisotropic elastic solids
(undergoing small strains), namely the assumption of
coaxial stress and strain fields. To be specific, it has been
shown that the strain energy takes an extremum only if
the principal stress directions coincide with the principal
strain directions—see Petersen (1989), Cowin (1994,
1995, 1997), Vianello (1996a, b) and Sgarra and Vianello
(1997) with special emphasis on a finite deformation
setting. Moreover, it has also been proven that orthog-
onal (symmetry) transformations exist, which can be
superposed onto the referential constitutive relation and
thereby enable the construction of coaxial stress and
strain tensors for a generally anisotropic material. Since
energy optimisation or rather minimisation is commonly
considered to be a basic axiom in nature, these ideas are
carried over to the problem at hand. In this context, we
must align the anisotropy variable with the strain field
such that stress and strains finally commute (note that
an alignment of the anisotropy variable with the
appropriate stress field generally results in non-com-
mutative stress and strain tensors). For the numerical
treatment of this reorientation, it is straightforward to
adopt similar algorithms to those applied in viscoelas-
ticity, such that a time-dependent and saturation-type
reorientation is obtained. While this concept of an
energy extremum holds for homogeneous deformations
in general, we are also interested in inhomogeneous
boundary value problems where a general proof is not
obvious. To give an example, the fibre direction at or
even near the surface of a body of interest is usually
fixed; for example, perpendicular or parallel to the sur-
face itself. In this work, however, the fibre direction is
not constrained by any type of boundary conditions.

The paper is organised as follows: after a brief reiter-
ation of the fundamental balance equations in Sect. 2, the
constitutive framework is introduced in Sect. 3. Essential
kinematics, as well as the assumed format of the anisot-
ropy variable are pointed out in detail. The main body of
the paper consists in the set-up of a prototype model in
Sect. 4, where special emphasis is placed on the particular
format of the strain energy and the underlying evolution
equations. Implicit numerical integration techniques, as
well as the overall algorithmic treatment are addressed in
Sect. 5. Several numerical examples show the applicabil-
ity of the proposed framework in Sect. 6, which is docu-

mented for homogeneous deformations and
inhomogeneous deformations within a non-linear finite
element setting. A short summary accompanied by a brief
outlook on future research is given in Sect. 7.

2 Balance equations

For the convenience of the reader, and in order to
introduce the applied notation, we first summarise some
essential kinematics of non-linear continuum mechanics,
and then address the underlying balance equations. In
this context, let X 2 1B0 � E

3 denote placements of
particles of the body B in the reference configuration
and x ¼ uðX; tÞ 2 Bt � E

3 the corresponding non-linear
motion that determines the positions of particles in the
spatial configuration. The underlying motion gradient is
obtained via F=¶Xu. For a detailed outline, we refer the
reader to the monographs by Liu (2002), Haupt (2000)
or Holzapfel (2000).

Next, let q0 characterise the referential density of the
body B atX. Balancing this scalar-valued field introduces
the mass flux R and the mass source term R0, namely

Dtq0 ¼ rX � Rþ R0 ð1Þ

whereby the notation Dt abbreviates the material time
derivative. For conceptual simplicity, we neglect the flux
term in the sequel, RG0, such that Dtq0GR0, which
however does not restrict the proposed constitutive
framework itself. Nevertheless, it is of cardinal impor-
tance for the progression of this work on open systems
that the source term does not vanish as for the standard
mass-conservation approach, which has been denoted as
the passive response in the introduction. Eq. 1 appar-
ently represents isotropic or rather volumetric growth of
the considered biomaterial. It is therefore obvious that
with the mass being a non-conserved quantity, different
(non-standard) representations of the commonly con-
sidered balance laws are obtained. Based on the assumed
representation of the mass-balance, we observe for in-
stance, that an analogous balance relation for linear
momentum (q0Dt/ ) now reads

Dtðq0DtuÞ ¼ rX �Pt þ b0 þ R0Dtu ð2Þ

with Pt and b0+R0Dtu denoting the momentum flux
(first Piola–Kirchhoff stress) and source, respectively.
We similarly obtain the correlation

Dtðq0 eÞ ¼ Pt : DtF�rX �Qþ Q0 þ R0e ð3Þ

for the balance of internal energy (q0�), whereby -Q
represents the flux of non-mechanical energy and
Q0+R0e characterises the non-mechanical source term.
Furthermore, the balance of entropy (q0 g) is denoted as

Dtðq0 gÞ ¼ �rX �Hþ H0 þ R0gþ c0 ð4Þ

with -H and H0+R0 g denoting the entropy flux and
source whereas c0‡0 abbreviates the entropy production.
Next, by introducing the absolute temperature h>0 such
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that the volume specific free Helmholtz energy takes the
format w _¼e� hg; we obtain, after some straightforward
transformations, the well-established Clausius–Duhem
inequality as

hc0 ¼ Pt : DtF� q0Dtw� q0gDth� hC0

� h�1Q � ½rX � h�>0:
ð5Þ

Thereby the relations H _¼h�1Q as well as
H0Gh�1Q0+C0, respectively, have been assumed and
the connection wDtq0=R0��hR0g stems from the
incorporated version of the balance of mass. In fact, the
additional term C0, which is additively decomposed into
C0 _¼q0C0 þkA

C0 þnA
C0 as this work progresses, accounts

for the entropy supply caused by the ambient material of
the considered particle or rather local chart.

3 Constitutive framework

In this contribution, we develop a framework for mod-
elling the adaptation of soft tissues—typically ligaments,
tendons, different types of muscles, skin, vessels as, for
example, arteries, and so on (the same framework can
however also be applied to hard tissues, such as bones,
without loss of generality). It is therefore obvious that
the timescale considered for the underlying remodelling
process is far beyond those commonly taken into ac-
count for the formulation of visco- and thermoelastic or
inertia effects. In what follows, we adopt the viewpoint
that any applied load or boundary condition represents
an assembly of driving effects averaged over time.

In this context, let the free Helmholtz energy be a
function of the absolute temperature h, the referential
density q0, the deformation gradient F and an additional
vector, say a 2 B0; whose direction characterises a fibre
of the considered body and so defines the underlying
material symmetry class, namely transversal isotropy.
With these arguments in hand, it is the principle of
invariance under superposed rigid body motions in
combination with the dependency of the response
functions on the direction of a (but not the orientation
of a) that imposes the following representation

w ¼ wðh; q0; F; a; XÞ _¼wðh; q0; C; A; XÞ ð6Þ

whereby the right Cauchy–Green tensor C and a (sign-
independent) symmetric rank one structural tensor A
have been introduced

C ¼ Ft � F ¼
X3

i¼1
kC

i n
C
i �nC

i ;

A ¼ a� a ¼ kAnA � nA;

with nC
i � nC

j ¼ dij; nA � nA ¼ 1;

kA ¼ a � a; kC
i jt0 ¼ kAjt0¼

:
1:

ð7Þ

Conceptually speaking, kA herein denotes the norm of
the structural tensor or the fibre diameter to the power

of two, and the fibre direction is characterised by the
(sign-independent) contribution nA�nA. Since w is
assumed to represent an isotropic tensor function with
respect to its arguments, we consequently obtain a set of
12 scalar-valued functions, which determine the free
Helmholtz energy

h; q0; Ii ¼ I : Ci;

Iiþ3 ¼ I : Ai ¼ ½kA�i for i¼ 1; 2; 3;

I7 ¼ C : A; I8 ¼ C : ½A �C�;
I9 ¼ A : ½C �A�; I10 ¼ C : ½A �C �A�;

ð8Þ

note that I denotes the second order material identity
and that A is not restricted to remaining constant during
a deformation process.

Based on these arguments, the dissipation inequality
as highlighted in Eq. 5 reads

hc0 ¼ ½Pt � q0@Fw� : DtF� ½q0gþ q0@hw�Dth

� q0@q0
wR0 � q0@Aw : DtA

� h½q0C0 þkA

C0 þnA
C0� � h�1Q � ½rX � h�>0

ð9Þ

and, adopting the standard argumentation of rational
thermodynamics, we introduce the hyperelastic formats

½Pt � q0@Fw�¼
:
0! Pt ¼ q0@Fw;

½q0gþ q0@hw�¼: 0! g¼: � @hw:
ð10Þ

From the list of tensorial arguments that enter the free
Helmholtz energy, namely C(F) and A(kA,nA), we first
observe the well-established relation

@Fw ¼ @Cw : @FC ¼ 2F � @Cw; ð11Þ

whereby use of the symmetry of ¶Cw has been made.
This representation suggests the introduction of a
symmetric stress tensor (second Piola–Kirchhoff), and
allows the convenient set-up of a spectral decomposi-
tion

F�1 �Pt ¼ 2q0@Cw¼: S ¼
X3

i¼1
kS

i n
S
i � nS

i ; nS
i � nS

j ¼ dij:

ð12Þ

Moreover, its energetically conjugate or rather dual field
takes the well-known format 1

2[F
tÆDtF]

sym = 1
2DtC. The

second remaining contribution in Eq. 9, which refers to
the structural tensor, may be rewritten as

�q0@Aw :DtA!�q0@kAwDtk
A�q0@nAw �Dtn

A

with @kAw¼ @Aw : ½nA�nA�;
@nAw¼ 2kA@Aw �nA: ð13Þ

With these relations in hand, the dissipation inequality
Eq. 9 allows representation in terms of the reduced
format
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hcred0 ¼ h �q0C0 � h�1q0@q0
wR0

� �

þ h �kA

C0 � h�1q0@Aw : ½nA � nA�Dtk
A

h i

þ h �nA
C0 � 2h�1q0k

AnA � @Aw �Dtn
A

h i

þ h �h�2Q � ½rX � h�
� �

¼: h q0c0 þkA

c0 þnA
c0 þhc0

h i
>0:

ð14Þ

For the course of this work, we adopt the commonly
applied (reduced) ansatz that each individual contribu-
tion is non-negative, so that q0c0;

kA
c0;

nA
c0;

hc0>0 whereby h2 hc0>0 is established as Fourier’s
inequality. Conceptually speaking, the entropy supply
terms q0C0;

kA
C0 and

nA
C0 compensate for stiffening

and remodelling effects of the biomaterial due to iso-
tropic growth (Dtq0 „ 0), growth of the fibre diameter
(Dtk

A „ 0) and fibre reorientation (Dtn
A „ 0), respec-

tively.

4 Prototype model

For the subsequent prototype model, as well as for the
subsequent numerical examples, we restrict ourselves to
an isothermal setting, so that h¼: const ! rX � h ¼ 0;
and consequently hc0 ¼ 0 which allows us to cancel out
the temperature field from the list of arguments that
enter the free Helmholtz energy. In the following, the
commonly applied additive split of the free Helmholtz
energy into a purely isotropic contribution and an
additional anisotropic part is adopted. Moreover, the
referential density is assumed to weight the free Helm-
holtz energy via

wðq0;CðFÞ;AðkA; nAÞ;XÞ

¼: q0

q�0

� �n

wisoðq0;C;XÞ þ waniðq0;C;A;XÞ
� �

ð15Þ

with 1 £ n £ 3.5, which is a well-established ansatz,
whereby q0*>0 denotes some fixed initial value for the
density field. We choose in particular

q0w
nh¼: l

2
½I1 � 3�;

q0w
iso¼: q0w

nh � l lnðJÞ þ k
2
ln2ðJÞ;

q0w
ani¼: a

2b
expðb½I7 � I4�2Þ � 1
h i

; ð16Þ

with k, l, a, b, J>0 as well as
J=det(F)= 1

3I3 � 1
2I1I2 þ 1

6I
3
1

� �1=2
: The anisotropic con-

tribution has been adopted in analogy to Holzapfel et al
(2000), see also remark 1. Setting up appropriate evo-
lution equations for the referential density q0 and the
structural tensor in terms of kA and nA, respectively,
remains to be completed.

4.1 Referential density evolution

Concerning the evolution of the density field, it has been
proven by Harrigan and Hamilton (1992, 1993, 1994)
that the evolution equation

Dtq0 ¼ R0¼: ½1� qq0
� q0

q�0

� ��m

q0w�q0 w�0

� �
ð17Þ

for the referential density guarantees (for an isotropic
and small strain setting) existence and uniqueness of a
global minimum of the stored energy if m>n, see also
remark 5, whereby q0w�0 > 0 denotes a fixed initial value
for the free Helmholtz energy or rather density stimulus
and qq0

2 ½0; 1� is a constant scaling factor. When
choosing the ansatz q0C0¼: h�1½1� n�wR0 for the extra
entropy supply, we observe that the density contribution
to the dissipation inequality as highlighted in Eq. 14
disappears, namely q0c0 ¼ �q0C0 � h�1q0@q0

wR0 ¼
�q0C0 þ h�1½1� n�wR0 ¼ 0: Practically speaking, any
q0C0

_6� h�1q0@q0
wR0 satisfies this particular fraction of

the dissipation inequality; in other words q0c0>0:

4.2 Fibre strength evolution

In analogy to the density contribution, we now intro-
duce a constitutive equation for the length, diameter or
the strength of the fibre a, respectively, which is directly
related to the norm of the structural tensor A, in other
words kA. It is therefore obvious that an increase of kA

stiffens the material, while decreasing kA characterises
degradation. In order to set up an ‘‘energy-driven’’
evolution equation, we define the projected right
Cauchy-Green tensor

AC¼: Iþ ½nA � C � nA � 1�nA � nA

¼ Iþ ½kA��1I7 � 1
h i

nA � nA ð18Þ

which accounts solely for the stretch (to the power of
two) along the direction of the fibre, and determines a
modified Neo–Hookean contribution Awnhðq0;

A C;XÞ in
the sequel. Based on this projected kinematic field, we
choose

Dtk
A¼: ½1� qkA � a

2b
expðb½I7 � I4�2Þ þ

l
2

I7

� ��l
"

� q0

q�0

� �n

q0½Awnh þ wani� �kA

w�0

�
ð19Þ

with l>1, see remark 5, and the constant scaling factor
qkA 2 ½0; 1�: Adopting the previously applied approach
once more, one obtains from kA

C0¼: � 2bh�1q0I
�1
4 ½I7 �

I4�2½q0

�
q�0�

n½wani þ 1�Dtk
A; a vanishing contribution of

kA to the dissipation inequality in Eq. 14, in other words
kA

c0 ¼ �kA
C0 � h�1q0@Aw : ½nA � nA�Dtk

A ¼ 0;; see also
Eq. 23 below for the derivation of this particular ansatz.
Nevertheless, any kA

C0
_6� h�1q0@Aw : ½nA�nA�Dtk

A

apparently guarantees kA
c0>0:
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4.3 Fibre direction evolution

Finally, emphasis is placed on the evolution of the fibre
direction of the material, which is characterised by the
unit vector nA. Due to the nature of elements of unit
spheres, the evolution boils down to a rotation and the
correlated velocity allows representation as

Dtn
A ¼ x� nA ¼ ½�e � x� � nA ð20Þ

whereby x and e denote the underlying angular velocity
and the permutation tensor of third order, respectively.
For a small strain setting, it has been shown that the
stored energy takes an extremum if the principal stress
directions coincide with the principal strain directions;
see the references cited in the introduction. In this con-
text, we observe that the symmetric stress tensor as
introduced in Eq. 12 takes the general representation

S ¼ 2q0½S1Iþ 2S2Cþ 3S3C
2 þ S7Aþ 2S8½A �C�sym

þ S9A
2 þ 2S10A �C �A� ð21Þ

for the problem at hand, whereby the scalars S1,2,3,7,...,10

are functions of the scalar-valued fields and polynomial
invariants highlighted in Eq. 8. It is therefore obvious
that appropriate stress and stretch or rather strain fields
commute if the anisotropy axis a shares its direction with
one of the principal strain directions. This motivates the
alignment of the fibre vector nA with the eigenvector n3

C

of the right Cauchy–Green tensor, with k1
C £ k2

C £ k3
C.

We consequently choose

x¼: ½1� qnA � p
2t�

nA � nC
3

and if nA � nC
3\0 then � nC

3 7!nC
3

� �
ð22Þ

whereby t*>0 acts in a similar way to a relaxation time
parameter in viscoelasticity and the interval of the con-
stant scaling factor qnA 2 ½0; 1� being obvious (recall that
the considered eigenvectors are independent of sign); see
also remark 4 in this context. For equal eigenvalues, in
other words k1

C<k2
C=k3

C or k1
C=k2

C=k3
C (but not

k1
C=k2

C<k3
C), any evolution of the fibre direction is

neglected by simply setting Dtn
A
G0. Concerning the

dissipation inequality, we first compute the derivative

@Aw ¼ 2b½I7 � I4�
q0

q�0

� �n

½wani þ 1�½C� I� ð23Þ

and then observe from nAÆDtn
A=0 that the assumption

nA
C0¼: � 4kAbh�1q0½q0

�
q�0�

n½I7 � I4�½wani þ 1�nA � C �DtnA
results in nA

c0 ¼ �nA
C0 � 2h�1q0k

AnA � @Aw �DtnA ¼ 0:
However, any choice with nA

C0
_6� 2h�1q0k

AnA � @Aw �
DtnA satisfies the reorientation part in the dissipation
inequality, as highlighted in Eq. 14.

Remark 1 The anisotropic part of the chosen free
Helmholtz energy, as highlighted in Eq. 16, incorporates
the difference of the invariants I7 (trace of the product of
the right Cauchy–Green tensor and the structural ten-
sor) and I4 (trace of the structural tensor). The incor-
poration of I4 instead of some constant value, typically

one as applied in Holzapfel et al (2000), stems from the
fact that the structural tensor itself is not constant for
the proposed framework. The assumed format appar-
ently guarantees a stress free setting after unloading
since I7 fi I4 for F fi I. However, if I4 is replaced, for
instance, by the constant I4 t0j one might end up with a
convenient model that allows the formulation of residual
stresses stemming from the remodelling of the fibres
(softening and strengthening); see also the outlook in the
Sect. 7.3.1.

Remark 2 The anisotropic contribution of the chosen
format for the free Helmholtz energy in Eq. 16 cannot
(as yet) be proven to fulfil the condition of polycon-
vexity; see Ball (1977), Ciarlet (1988) and Šilhavý (1997)
or Dacorogna (1989) and Giusti (2003) for general sur-
veys. The specific case with a=const and kA=1 is dis-
cussed by Schröder and Neff (2003); see also the
discussion on convexity and material stability in the
contribution in Holzapfel and Ogden (2003, pp 65–108)
and Merodio and Ogden (2003). To the knowledge of
the author, however, there is no analysis available to
date (and moreover not in the focus of this work) that
provides polyconvex functions within the present con-
text, in other words kA „ const and nA „ const. In view
of the application of relaxation techniques to the prob-
lem at hand we refer the reader to Conti et al (2002) or
Dolzmann (2003) and references cited therein.

Remark 3 The computation of a symmetric spatial
stress field that enters the balance of linear momentum is
straightforward and based directly on the pushforward
of the stress tensor highlighted in Eq. 21. In this context,
the Cauchy stress tensor r ¼ J�1F � S � Ft reads

r ¼ 2q0J�1½S1bþ 2S2b
2 þ 3S3b

3 þ S7aþ 2S8½a � b�sym

þ S9a � b�1 � aþ 2S10a2�
ð24Þ

whereby b=FÆFt denotes the Finger tensor and the
abbreviation a ¼ F � A � Ft¼: kana � na; with naÆna=1
such that k a=kA nAÆCÆnA=I7, has been applied; for a
detailed outline on the formulation of anisotropic hy-
perelasticity with respect to the spatial setting, we refer
the reader to Menzel and Steinmann (2003c).
Remark 4 An alternative but reduced ansatz for the
anisotropic constitutive equation is based on the idea
that appropriate stress and strain fields commute during
the entire deformation process. The corresponding uni-
versal representation then reads

S¼: 2q0

X3

i¼1
siC

i�1; r¼: 2q0J�1
X3

i¼1
sib

i; ð25Þ

see Beatty (1987) or Imatani and Maugin (2002) with
application to isotropic elasticity and anisotropic
growth, respectively. The scalars si remain functions of
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the scalar-valued fields in Eq. 8. The assumed type of
evolution Eq. 22 apparently results for tƒ¥ in a for-
mulation that can be boiled down to the representation
in Eq. 25.
Remark 5 The Wolff-type law, as highlighted in
Eq. 17, guarantees a saturation-type evolution of the
density field for m>n. Practically speaking, the rate of
the referential density (the mass source term) must
vanish at a biological equilibrium state. Since q0w
embodies the referential density to the power of n, see
Eq. 15, it is obvious that the saturation effect sought can
only be obtained by scaling q0 w with q0 to the power of
a factor which is smaller than �n, in other words m>n;
recall that q0w�0 ¼ const: Even though the particular
representation of the evolution of kA looks rather
lengthy at first glance, it is the same concept as for the
density adopted in Eq. 19 and thereby, the range of the
exponent l is also restricted.

Moreover, the assumed evolution type for q0 and
kA is very convenient on the one hand but also ele-
mentary on the other hand since a simple difference
relation serves as the basic connection between the
correlated driving forces and (constant) stimuli. The
incorporation of so-called dead zones, however, is
frequently applied in the literature and naturally ex-
tends the proposed framework. In addition, a different
remodelling response for an increasing/decreasing
density field or tension/compression loading of the
fibres, respectively, can be modelled—a particular
ansatz being the case where fibres under compression
are not considered by simply setting Dt kAG0,
Dtn

A
G0 or even kAG0 if k3

C<1 or k3
S<0,

respectively; see Reese et al (2001) or De Hart et al
(2004) for a similar approach. Since the incorporation
of these additional enhancements and constraints is
somehow straightforward, we do not focus on these
side aspects in the present work.
Remark 6 The orthogonality of Dtn

A and nA is clearly
monitored by applying the ‘ed-rule’ with respect to
Eqs. 20, 22, which results in

Dtn
A¼: 1� qnA½ � p

2t�
nC
3 � nC

3 � nA
� �

nA
� �

! Dtn
A � nA ¼ 0:

ð26Þ

An alternative format is provided if one aligns the fibre
vector nA with the principal stress direction nS3 instead
of nC3. Indeed, appropriate stress and strain fields in
general no longer commute for this ansatz (even for
tƒ¥).
Remark 7 As previously mentioned in the introduc-
tion, standard formulations in computational inelastic-
ity are commonly based on internal variables, which are
driven by their dual forces. In this context, the driving
force of the structural tensor is determined by Eq. 23 for
the problem at hand, see for instance Menzel and
Steinmann (2003b) for a comprehensive discussion in the
context of anisotropic multiplicative elastoplasticity. We

however chose an alternative approach in this work,
which enabled us to separately address the evolution of
anisotropic growth in terms of fibre strengthening and
reorientation.

5 Constitutive integrator

Implicit integration schemes are applied throughout
whereby the simple Euler backward rule serves for the
density q0 as well as for kA, while the set-up of an
exponential integration scheme enables us to obtain the
classical Euler–Rodrigues formula for the rotation of the
direction nA; for an overview, refer to the textbook by
Ascher and Petzold (1998) as well as Angeles (1988) and
references cited therein.

5.1 Implicit integration techniques

Let the considered time interval of interest be divided
into several subintervals T ¼

SK
k¼0 ½tk; tkþ1� with

DtGtk+1�tk>0 being obvious. The Euler backward
scheme applied to the density field now yields

q0 ¼ q0k þ ½1� qq0
�Dt q0

q�
0

h i�m
q0w

h
�q0w�0

�

¼ q0k þ ½1� qq0
�Dt q0w0½ �q0w�0

� ð27Þ

or rather

n ¼ nk þ 1� qq0

� �
Dt n1�mw

�
� 1

q�
0

q0 w�0

i

¼ nk þ 1� qq0

� �
Dt n1þn�m wisoþwani

� ��
� 1

q�
0

q0 w�0

i

ð28Þ

with nGq0 /q0* denoting the, say, (referential) relative
density. The additional index k+1 has been neglected; in
other words non-indexed (‘‘time-dependent’’) fields
commonly refer to the actual state tk+1 in the sub-
sequent algorithmic setting. Concerning the integration
of kA, we consequently obtain

kA¼ kA
k þ 1�qkA

� �
Dt

� a
2bexpðb½I7� I4�2Þþ l

2 I7
h i�l

nnq0½Awnhþwani�
�

�kA
w�0

i

¼ kA
k þ 1�qkA

� �
Dt

� kA
w0

h
�kA

w�0

i
:

ð29Þ

As previously mentioned, the integration for nA is per-
formed by an exponential scheme, namely

nA ¼ expð�Dte � xÞ � nA
k ¼ RðDtxÞ � nA

k ð30Þ

where the proper orthogonal tensor R possesses a closed
form representation, taking, for example, the format
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RðDtxnxÞ ¼ cosðDtxÞIþ ½1� cosðDtxÞ�nx � nx

� sinðDtxÞe � nx ð31Þ

with x ¼ xnx and nxÆnx=1 being obvious. Alterna-
tively, the rotated vector can be directly written as

nA ¼ cosðDtxÞnA
k þ ½1� cosðDtxÞ�½nx � nA

k �nx

þ sinðDtxÞnx � nA
k : ð32Þ

5.2 Algorithmic tangent operators

Based on the previously advocated integration tech-
niques, we obtain a system of non-linear equations
typically solved via a Newton-type algorithm. The
residual format of Eqs. 28, 29, 32 consequently reads

rn¼n�nk� 1�qq0

� �
Dt n1þn�m wisoþwani

� �
� 1

q�0

q0w�0

� �
;

rkA ¼kA�kA
k � 1�qkA

� �
Dt

a
2b

exp b½I7� I4�2
� 	

þl
2

I7

� ��l
"

�nnq0
Awnhþwani
� �

�kA

w�0�;
rnA ¼nA�cosðDtxÞnA

k � 1�cosðDtxÞ½ �
� nx �nA

k

� �
nx�sinðDtxÞnx�nA

k :

ð33Þ

While the corresponding linearisation for the two scalar-
valued equations is straightforward, one must guarantee
that nA remains a unit vector. Practically speaking, one
can either introduce an additional Lagrange term, which
accounts for the normalisation constraint

rnA þ 1½nA � nA � 1�7!rnA ; ð34Þ

see Betsch and Steinmann 2002, or perform the lineari-
sation with respect to the appropriate manifold (in terms
of generalised coordinates often denoted as rotation
parameters). In order to keep the formulation as concise
and efficient as possible, we choose a parametrisation of
the unit vector nA in terms of spherical coordinates, say
J1,2 or h1,2, that refer to a space-attached Cartesian
frame {e1,2,3}, for example

parametrisation 1 :nA

¼ sinð#1Þ sinð#2Þe1 þ cosð#2Þe2þ cosð#1Þsinð#2Þe3;
parametrisation 2 :nA

¼ cosðh1Þ sinðh2Þe1þ sinðh1Þsinðh2Þe2þcosðh2Þe3:
ð35Þ

The first parametrisation is chosen throughout as long
as tol <J2<[p�tol] with 0<tol>1; the second para-
metrisation is applied otherwise (a third parametrisation
is possible but not needed). For a general survey of the
numerical treatment of finite rotations we refer the
reader to Betsch et al (1998) and references cited therein.

With these relations at hand, the set-up of the (local
monolithic) system of linear equations, which is solved
for any iteration step, results in

@nrn @kA rn @#1rn @#2rn

@nrkA @kA rkA @#1rkA @#2rkA

@nr#1 @kA r#1 @#1r#1 @#2r#1
@nr#2 @kA r#2 @#1r#2 @#2r#2

2

664

3

775 �

Dn
DkA

D#1
D#2

2

664

3

775 ¼

�rn

�rkA

�r#1
�r#2

2

664

3

775

ð36Þ

with (it is obvious that the residuals r#1;2 take different
formats if parametrisation 2 in terms of h1,2 is ap-
plied)

r#2 ¼#2 � �#2ð#1;2; :::Þ; r#1 ¼#1 � �#1ð#1;2; :::Þ;
#2¼: arccosðnA

2 Þ; #1¼: arccosðnA
3 Þ= sinð#2Þ;

�#2¼: arccosð�nA
2 Þ; �#1¼: arccosð�nA

3 Þ= sinð �#2Þ;
nA¼

P3
i¼1 nA

i ei; �nA¼: nA � rnA ¼
P3

i¼1 �nA
i ei:

ð37Þ

The (local) Jacobian itself is, however, not evaluated
analytically, but rather approximated numerically by a
first order perturbation scheme, for instance

ne ¼ nþ e; rne
¼ rnðneq

�
0;C;A;XÞ;

1

e
½rne
� rn�7!@nrn; :::

ð38Þ

with e>1. We do not give further details of the approach
at this stage, but refer the reader to the contributions by
Miehe (1996), Pérez-Foguet et al (2000a, b) and Fellin
and Ostermann (2002) or Dennis and Schnabel (1996)
for a general overview.

The same perturbation algorithm is adopted within a
finite element context for the computation of the (global)
algorithmic tangent; the exact evaluation for an isotro-
pic setting being highlighted in, for example, Kuhl et al
(2003). For convenience of the reader, we briefly sum-
marise the numerical scheme and, following the outline
in Miehe (1996), obtain the approximated algorithmic
tangent operator as (i,j,k,l=1,2,3)

Fe¼Fþ e
2

�ek�½�el �F�þ �el�½�ek �F�½ �;

rðklÞ
e ¼rðklÞ q0;Fe �Ft

e;a;X
� �

;

algoeijðklÞ
e ¼ 1

e
rijðklÞ

e �rij
h i

�1

2
½dikrjlþdilrjkþrikdjlþrildjk�;

ð39Þ

where �e1;2;3

 �

characterises an orthonormal frame, e>1;
recall Eq. 24 for a representation of the Cauchy stress r.

6 Numerical examples

For the subsequent numerical examples, a homogeneous
deformation in uniaxial tension as well as 3-D finite
element settings are considered. We therefore adopt the
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formulation of enhanced eight node bricks (Q1E9) as
advocated by Simo and Armero (1992) and do not place
further emphasis on the finite element method itself; the
reader is referred to the monographs by Oden (1972) or
Belytschko et al (2000) and references cited therein.

The choice of appropriate material parameters is a
non-trivial task and constitutes future research. In this
(first) work we choose similar data to that applied in
Holzapfel et al (2000) for the free Helmholtz energy
density, namely k=147, l=3 (which corresponds to
E=8.94, m=0.49), a=2, b=1 and q0|t0=q0*=1. The
previously mentioned stability criterion is satisfied by,
for instance, the exponents n=2, m=4 and in view of
the fibre evolution we assume l=2.5. The initial stimuli
are chosen as q0w�0 ¼ 2 and kA

w�0 ¼ 0:1: Concerning the
evolution or rather rotation of the fibre direction,
t*=100 is assumed such that the relation Dt >t* holds
for a typical time step size of Dt=1. Finally, we mention
that the perturbation parameter takes the value
e=10�8, where the selected machine precession accounts
for 16 decimal points.

In order to visualise that two second order tensors do
not commute, a scalar-valued field called the ‘‘anisot-
ropy measure’’ is introduced, which takes the following
format

dðC � SÞ ¼ jj½C � S� � ½C � S�
tjj

jjC � Sjj : ð40Þ

6.1 Uniaxial tension

To set the stage we first discuss a homogeneous defor-
mation in uniaxial tension, in other words
FGI+[k3

U�1]e1�e1. The scalar k3
U obviously denotes

the longitudinal stretch and the chosen loading path is
determined by k3

U=1.15 for t2(0,25] and k3
U=1.30 for

t2(25,50]. The initial fibre (direction) takes the repre-
sentation ajt0 ¼ 0:866e1 þ 0:5e2 such that the initial an-
gle between ajt0 and the Cartesian axis e1, say
/a=\(a,e1), corresponds to /ajt0 ¼ p=6. In analogy to
/a, we also monitor the angles /C=\(n3

C,e1) and
/S=\(n3

S,e1) in the following. Moreover, r11 ¼
e1 � r � e1 denotes the component of the Cauchy stress in
the longitudinal direction, see remark 3. In order to get a
more pronounced view of the behaviour of the devel-
oped framework, we first focus on the separate evolution
of q0, kA and nA and second, address combinations
thereof (conveniently realised via the parameters
qq0; kA; nA ).

6.1.1 Referential density evolution

Placing emphasis solely on the evolution of the refer-
ential density, in other words qq0

¼ 0 and qkA ¼
qnA ¼ 1; we observe an initial decrease, and later on, an
increase in the (referential) relative density field n under
the applied load levels, see Fig. 1. The driving term q0w0

Fig. 1 Uniaxial tension: density
evolution ðqq0

¼ 0; qkA ¼
qnA ¼ 1Þ
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(recall Eq. 27) adapts to the stimulus q0w�0 and the free
Helmholtz energy converges towards a plateau. Both the
anisotropy measure d(CÆS) as well as the stress compo-
nent r11 clearly monitor the block-type loading path.

6.1.2 Fibre strength evolution

Now, with the fibre strength being the only additional
field that underlies an evolution, qkA ¼ 0 and qq0

¼
qnA ¼ 1; we obtain a qualitatively similar response for
kA as for n in the previous setting (even though the final
fibre strength is constantly below its initial value),
compare Fig. 2. The adjustment of the driving term kA

w0

(recall Eq. 29) with the stimulus kA
w�0; in other words the

cessation of the evolution of kA, is clearly visualised.
Once more, the free Helmholtz energy shows a plateau-
type response. It is obvious for the considered model-
type that the anisotropy measure d(CÆS) is directly
related to the processing of kA. The stress component r11

is however still aligned with the block-type loading path.

6.1.3 Fibre direction evolution

We first highlight the evolution of the fibre direction nA

aligned with the principal strain direction n3
C; with

qnA ¼ 0 and qq0
¼ qkA ¼ 1: Since n3

C=e1 holds

throughout for the considered type of deformation
(/C=0), we consequently observe that /a is monotoni-
cally decreasing while /S increases, see Fig. 3. The graph
of the free Helmholtz energy again shows a plateau-type
response, whereby convergence from the bottom is
observed. This effect is due to the fact that the fibre
rotates until /a=0 and so stiffens the material. Conse-
quently, the free Helmholtz energy increases during this
process. In analogy to /a, the anisotropy measure
d(AÆA|t0 ), which underlines the non-commutativity of the
actual and initial (referential) structural tensor, is
monotonically increasing, while d(CÆS) reflects the
combination of block-type stress response (r11) and the
adaptation of nA with n3

C=e1(/a!0 for tƒ¥).
Second, let the evolution of the fibre direction nA be

aligned with the principal stress direction n3
S; with

qnA ¼ 0 and qq0
¼ qkA ¼ 1: We consequently obtain a

monotonically increasing response of /a as /Sƒp/2 for
tƒ¥, see Fig. 4. Plotting the free Helmholtz energy, one
observes a plateau-type result with convergence from the
top. The rotation of the fibre apparently softens the
material since the principal strain directions are fixed
and the angle between nA and n3

C is monotonically
increasing. The anisotropy measure d(AÆA|t0 ) demon-
strates the evolution of the structural tensor and d(CÆS)
nevertheless highlights the tendency towards the coaxi-
ality of stress and strain.

Fig. 2 Uniaxial tension: fibre
strength evolution
ðqkA ¼ 0; qq0

¼ qnA ¼ 1Þ
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Fig. 3 Uniaxial tension: fibre
direction evolution, aligned
with nC

3 ðqnA ¼ 0; qq0
¼ qkA ¼ 1Þ

Fig. 4 Uniaxial tension: fibre
direction evolution, aligned
with nS

3 ðqnA ¼ 0; qq0
¼ qkA ¼ 1Þ
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6.1.4 Evolution of the referential density, the fibre
strength and direction

In order to complete the discussion of the homogeneous
deformation in uniaxial tension, let all three arguments,
q0 or n, kA and nA develop during the deformation
process; with qnA ¼ qq0

¼ qkA ¼ 0: Fig. 5 monitors
the results for nA following n3

C in analogy to the
previous figures. We observe in particular that n and kA

first decrease and then increase. The driving terms for
their evolution align with the corresponding stimuli and
the free Helmholtz energy results once again in a

plateau-type graph. Monotonically decreasing proper-
ties characterise the evolution of /a and the anisotropy
measures as well as the longitudinal stress level result in
similar diagrams as for the previous examples.

Finally, let nA evolve with n3
S; with qnA ¼ qq0

¼
qkA ¼ 0: Fig. 6 presents the results obtained in analogy
to Fig. 5. Placing emphasis on only two properties of
this computation, we point out the fact that the free
Helmholtz energy, as well as the longitudinal stress (r11),
address smaller values as for the previous setting, com-
pare Fig. 5, which agrees with the conclusions in
Sect. 6.1.3.

Fig. 5 Uniaxial tension:
evolution of the density, the
fibre strength and direction,
aligned with nC

3 ðqnA ¼
qq0
¼ qkA ¼ 0Þ
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6.2 Specimen under tension

In analogy to the previous examples in Sect. 6.1, where a
homogeneous deformation in uniaxial tension has been
documented in detail, we now focus on a 3-D finite
element setting. For comparison reasons, we first discuss
a specimen under tension (e1 once more corresponds to
the loading direction). Some material parameters, how-
ever, are slightly modified; k=32, l=3.3 (such that
E=8.94 and m=0.4), m=3, l=1.1, t*=0.5>Dt=0.05,
q0w�0 ¼ 1 and a t0j =0.5 e1+0.866 e2. All remodelling
fields therefore evolve throughout, namely the density as
well as the fibre strength and direction, which is aligned

with the strain field ðqq0
¼ qkA ¼ qnA ¼ 0Þ: The discreti-

sation of the considered specimen with dimensions
1·1·0.1 is performed by 10·10·2 eight node bricks, see
Fig. 7, where the boundary and loading conditions are
highlighted. In particular, note that the loading direction
and the initial fibre direction are not coaxial, such that
the stress state is highly inhomogeneous from the outset.
In fact, we incrementally increase a longitudinal force
(F1, as represented by a constant loading tensile stress
with respect to the reference configuration) within five
time steps and then fix this force for another 45 time
steps. Moreover, due to the chosen fibre direction, one
observes that the maximal longitudinal displacements

Fig. 6 Uniaxial tension:
evolution of the density, the
fibre strength and direction,
aligned with nS

3 ðqnA ¼
qq0
¼ qkA ¼ 0Þ
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(u1
max) occur constantly at the bottom right and top left

corner of the body, respectively, see the plots in Fig. 7.
Since the remodelling process (here) stiffens the material,
the displacements increase at first and then decrease,
which is clearly shown in Fig. 8 where the deformed
mesh is highlighted at different time steps. Completing
this example, Figs. 9 and 10 highlight the contribution
of the density, the fibre strength, the anisotropy measure
and the reorientation of the fibre (with respect to the
initial, undeformed, mesh) at different time steps. The
temporal evolution of these fields is therefore clearly
apparent, especially the alignment of the fibres accord-
ing to the loading direction.

6.3 Specimen under shear

Similar to the above specimen under tension-type loading,
we now discuss a 3-D finite element setting under shear.
Identical dimensions (1·1·0.1) are adopted, the same
discretisation (10·10·2 eight node bricks, Q1E9) is cho-
sen and the material parameters likewise coincide with
those given in Sect. 6.2, except for t*=5	Dt=0.05.
Moreover, the initial fibre direction has been aligned with
the moving direction of the upper edge; in other words
a t0j =e1, see Fig. 11 where the boundary and loading
conditions are documented (note in particular that the
bottom edge is clamped). The overall deformation process
is therefore highly inhomogeneous right from the start.
Once more, all remodelling fields are active
ðqq0
¼ qkA ¼ qnA ¼ 0Þ and the fibre direction aligns with

the predominant principal strain direction. Practically
speaking, the top edge is constrained such that all relevant
finite element nodes are subjected to the same displace-
ment field. The resultant force in the horizontal direction
of these nodes (F1) is incrementally increased within five
time steps and then held constant for another 45 time
steps. As a result, we observe that the maximal horizontal
displacements (u1

max), which are located constantly at the
top edge, first increase during the first five time steps and
then decrease. This effect stems from the stiffening of the
remodelling process; see Figs. 11 and 12 where the
deformed mesh is represented at different time steps. In

analogy to the previous example, the contributions of the
density, the fibre strength, the anisotropy measure, and
the reorientation of the fibre are visualised at different
time steps, see Fig. 13 and 14. The results clearly show
that the specimen tends to stiffen (both q0 and kA) along
the diagonal in the x-y plane. The anisotropy measure
d(CÆS) apparently also takes its peak values in the same
domain and, moreover, the visualisation of the fibre
direction underlines the alignment with respect to the
predominant principal strain direction.

6.4 Specimen with surface cut

Finally, we discuss a specimen with a surface cut, which
is again subject to tension-type loading. The denomi-
nation of this example as a ‘‘cut’’ might be somehow
misleading, since many additional responses are
involved when biological tissues are disrupted. For
conceptual simplicity, however, we refer to this setting as
a cut, even though the overall behaviour rather reflects
the effect of wound healing.

The dimensions of the specimen are chosen as
2·1·0.5, and the discretisation is performed with 16·8·4
eight node bricks (Q1E9); see Figs. 15 and 16. To be
specific, the force-driven loading conditions correspond
to initially uniform axial stresses at the top and bottom
sides. For notational simplicity, let this longitudinal
loading direction be aligned with the Cartesian axis e1
(such that the initial configuration of the body lies in the
domain {�1 £ X1 £ 1, �1

2 £ X2 £ 1
2, 0 £ X3 £ 1

2}). The
initial (closed) surface cut is however perpendicular to
the loading direction, collinear with e2ð/cutjt0 ¼
\ðcut, e2Þjt0 ¼ 0Þ, and its dimensions are correlated with
half of the width and thickness of the specimen,
respectively. Even though the underlying material is
anisotropic, it is sufficient to constrain the degrees of
freedom of just a few nodes. In particular, the dis-
placements of just three nodes, namely the mid-nodes
under the bottom of the cut, are controlled; in other
words upr1;2;3jX¼14e3 ¼ 0 and upr

1;2jX¼18e3;0 ¼ 0: Moreover,
the material parameters incorporated are identical to the
set formerly applied in Sect. 6.3 with q0w�0 ¼

Fig. 7 Specimen under tension:
geometry and boundary
conditions (left), maximal
longitudinal displacement u1

max

and loading history F1 (right)
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0:5 and kA
w�0 ¼ 0:05 being the only exceptions. The

initial fibre direction is chosen as a|t0=0.866e1+0.5e2
and, in analogy to the previous settings, all remodelling
fields are active ðqq0

¼ qkA ¼ qnA ¼ 0Þ:
Besides the chosen boundary conditions, Fig. 15

additionally highlights the entire load versus displace-
ment curve in terms of the longitudinal force (F1) and
the maximal longitudinal displacement, which refers
constantly to the top left (�u1max) and bottom right
nodes (u1

max). It is clearly apparent that the chosen
loading path corresponds to a linear increase in the
resultant longitudinal force within a period of ten time
steps while this force is held constant for the subsequent
40 time steps. In analogy to the numerical examples
discussed above, we observe that the maximal longitu-
dinal displacement first increases with increasing load,
but, due to the remodelling of the material, decreases in
the progression. This stiffening effect is shown in Fig. 16,
where deformed meshes for different time steps are
highlighted. Similar to the numerical examples in
Sects. 6.2 and 6.3, Figs. 17 and 18 visualise the contri-
butions of the density, the fibre diameter, the anisotropy
measure, and the fibre direction for different time steps.
As expected, one observes on the one hand that the
material stiffens at the tips of the cut, where q0 and kA

take their peak values. On the other hand, it is apparent
that the material softens in the areas on the left and right
sides of the edges of the cut. From a medical point of
view, this cut orientation is therefore often disadvanta-
geous since the cut is not collinear with the dominant
principal stress (or strain) direction; in other words it is
not collinear with respect to the corresponding (Lan-
ger’s) cleavage lines. Finally, the graphical representa-
tion of the anisotropy measure and the fibre direction
itself in Fig. 18 underlines that the stress field, or the
fibre respectively, aligns with the strain field (in time).

The influence of a deviation in the orientation of the
cut is displayed in Fig. 19. Even though the overall

response, namely the longitudinal force versus maximal
longitudinal displacement curve, turns out to be almost
independent of the chosen orientation of the cut (here /
cutjt02{�p/6, 0, p/6}), we obtain different density and
fibre contributions.

7 Discussion

7.1 Summary

This work aimed at the development of a theoretical and
computational framework that describes the remodelling
of biological tissues. Typical examples of such adapta-
tion processes are growth phenomena and rearrange-
ments of internal microstructures. In this context,
isotropic growth has been addressed via a Wolff-type
evolution law for the referential density, where the
additional mass flux term has been neglected for con-
ceptual simplicity. We introduced the underlying
microstructure of the tissue via the well-established
ansatz of the incorporation of a fibre direction. This
framework apparently resulted in an anisotropic
response function for the linear momentum flux; to be
specific, the material is modelled as transversely isotro-
pic. The direction and the strength or diameter of the
fibre were not constrained to remain constant during the
deformation of the considered body. We adopted a
Wolff-type law for the fibre strength as well, in analogy
to the density field, which accordingly possessed similar
saturation-type characteristics as the density evolution.
It is then the combination of both contributions which is
consequently classified as isotropic and anisotropic
growth or simply as anisotropic growth. Moreover, the
reorientation of the fibre is in general of cardinal
importance. Following the idea that the stored energy,
with respect to an anisotropic material body, takes an
extremum if the principal axes of stress and strain

Fig. 8 Specimen under tension:
initial mesh and deformed
meshes after 1-, 3- and 16 time
steps
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coincide, we set up a relaxation-type evolution equation
for the rotation of the fibre.

7.2 Conclusions

The advantage of the proposed formulation is the
opportunity to separately address the anisotropic
growth, or rather the strengthening and the reorienta-
tion of the fibre. Furthermore, issues of implementation
are developed, such that the theoretical framework is
especially suited for numerical applications, like those
based on the finite element method. As an interesting
side aspect, the proposed formulation fits nicely into
common finite element codes since the standard frame-
work of internal variables has been adopted.

There are nevertheless still several (known) factors left
that apparently influence the remodelling process but are
not addressed here, including electric stimuli, age depen-
dency, damage effects after peak loads or particular
healing mechanisms, even though a number of remodel-
ling effects are captured by the proposed framework. The
applied format of the Wolff-type evolution laws seems to
be quite powerful in the present context. Their particular
representation, however, could be extended in order to
include so-called dead zones and different response
characteristics for increase and decrease; in other words
growth and shrinkage. Other types of evolution laws
should be compared with the Wolff-type ansatz adopted
in this work. The proposed type of evolution equations, as
well as the concept of an energy extremum, are widely
accepted for themodelling of hard tissues. The simulation
of soft tissues, however, could also be based on more
general concepts. Any evaluation and validation of dif-
ferent models should of course rest upon biological rea-
soning and experimental data.

Fig. 9 Specimen under tension: relative density n (left) and fibre
diameter kA (right) after 1, 3, and 16 time steps
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7.3 Outlook

7.3.1 Incorporation of residual stresses

As previously mentioned in remark 1, a minor modifica-
tion of the (anisotropic part of the) weighted free Helm-
holtz energy density enables us to capture a particular
format of residual stress, Sres ðsuch that SjC¼I ¼
SresjC¼IÞ or rres ðrjb¼i ¼ rresjb¼iÞ; respectively; recall that

an equilibrated body with vanishing surface traction and
vanishing body forces might exhibit residual stress, while
initial stresses might occur in equilibrated bodies with
non-zero surface traction and non-zero body forces. A
classical and enlightening survey on this topic is given by
Biot (1965). The reader is also referred to the contribu-
tions on initial stress by Green et al (1952), Truesdell
(1966), Truesdell and Noll (2004), Iesan (1989), Ciarletta
and Iesan (1993) or Haupt et al (1992) as well as the

Fig. 10 Specimen under
tension: anisotropy measure
d(CÆS) (left) and fibre direction
nA (right) after 1, 3, and 16 time
steps

Fig. 11 Specimen under shear:
geometry and boundary
conditions (left), maximal
horizontal displacement u1

max

and loading history F1 (right)
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elaborations on internal constraints in Antman (1995) or
Podio-Guidugli (2000). The pioneering work on residual
stresses by Hoger is documented in a series of papers
(mainly in the Journal of Elasticity), for instance Hoger
(1993a, b, c, 1996, 1997); see also the contribution by
Skalar et al (1996). The main idea within a finite strain
framework consequently relies on the incorporation of
the (symmetric) residual stress field as an additional
argument into the free Helmholtz energy density; see, for
instance, the contributions in Boehler (1987) or Antman
(1995) for an overview of the underlying representation
theorems. Apparently, the overall material response then
turns out to be anisotropic since the residual stress is
generally not aligned with the subsequent loading path; in
this context, note that, for elastoplastic behaviour, effects
like (anisotropic) kinematic hardening as represented by a
modified yield function allow similar interpretations to
the incorporation of a residual stress into the free Helm-
holtz energy density.

Recalling the particular prototype model as devel-
oped in Sect. 4, one consequently obtains from wani=
wani (q0,I7, I4; X) and Sani=2q0¶Cwani, the (rank one)
stress contribution

Sani ¼ 2q0@Cwani ¼ S7A; rani ¼ J�1S7a

with S7 ¼ 2a
q0

q�0

� �n

½I7 � I4� expðb½I7 � I4�2Þ: ð41Þ

A slight modification of wani enables us to motivate a
residual stress relation, which is solely driven by the fibre
evolution. To be specific, the variation wani (q0, I7, i4; X)
suggests the relation wres (q0, I4, i4; X) such that, for
example, Sres

G2¶Cwres with i4Gconst. To be specific, we
end up with the following format for the reactive or
residual stress (which is deformation-induced here, but
please note that unloading might take place on a dif-
ferent, for instance, smaller timescale)

Sres ¼ SresA with Sres

¼ 2a
q0

q�0

� �n

I4 � i4½ � exp b I4 � i4½ �2
� 	

;

rres ¼ rresa with rres ¼ J�1Sres and

rx � rres ¼ rx � rresk
a½ � þ rresk

arx½ � � na½ �i
þ rresk

arx � na� � na¼: 0 in Bt;

rres � n ¼ rresk
a na � n½ �na¼: 0 on @Bt; ð42Þ

which stems from [I7–i4] „ 0 for C=I; here n denotes the
outward surface normal (with nÆn=1), the spatial second
order identity is introduced via i, additional body or
volume forces are neglected, and the reader is referred to
remark 3 for further notational details. Transverse
isotropy actually turns out to be the simplest symmetry
group that supports residual stresses. From Eq. 42 we
immediately observe that Sres and rres respectively
(symmetric, rank one, no spherical contributions) pre-
serve the underlying material symmetry group. Please
note that this representation is obtained by a constitu-
tive law and that the evolution equation for the fibre
diameter and direction should be adjusted for the
problem at hand. Moreover, residual stresses subject to
some body of interest are always inhomogeneous due to
the constraints highlighted in Eq. 42, which result (with
the residual stress being symmetric) in
Z

Bt

rresdv¼
Z

@Bt

½rres � n� � xda

�
Z

Bt

rx � rres½ � � xdv¼ 0; ð43Þ

see for instance Ogden 1997 or Chadwick 1999. Fur-
thermore, the initial residual stress vanishes for the
particular ansatz i4=||A||t0 . For physical reasons

Fig. 12 Specimen under shear:
initial mesh and deformed
meshes after 5, 25, and 50 time
steps
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however, the choice i4 ‡ ||A||t0 seems to be appropriate
since the strengthening of fibres then causes residual
stresses, which are related to tension and not to com-
pression.

7.3.2 Extension to orthotropic symmetry

It turned out that the formulation of reorienting fibres is
still manageable and that the corresponding implemen-
tation is somewhat straightforward. The next step con-
sists of the extension of the transversely isotropic
behaviour to an orthotropic material. It seems natural,
at first glance, to introduce a second fibre direction,
a2 2 B0; in addition to the first fibre direction, a1 2 B0;
with a1·a2 „ 0, such that these vectors define two inde-
pendent structural tensors of rank one, A1=a1�a1 and

A2=a2�a2. Even though the purely elastic response for
A1, A2=const and the set-up of appropriate evolution
equations for kA1 ¼ a1 � a1 ¼ I : A1 and kA2 ¼
a2 � a2 ¼ I : A2; respectively, are self-evident as based on
the framework developed in this contribution, the
modelling of the reorientation of these two sets of
fibres remains a non-trivial task. One promising
approach for future research might consist in the
incorporation of only one structural tensor of rank two;
in other words

A12 ¼ a1 � a1 � a2 � a2 and

jjA12jj2 ¼ ½kA1 �2 � 2½a1 � a2�2 þ ½kA2 �2 > 0;
ð44Þ

where a1Æa2‡0 is assumed; see Zheng (1993) and Zheng
and Spencer (1993) or Papadopoulos and Lu (2001),
where special emphasis is placed on anisotropic elasto-
plasticity. This ansatz is apparently less flexible than the
introduction of two separate structural tensors A1 and
A2, since the fibres are now either constrained to be

Fig. 13 Specimen under shear: relative density n (left) and fibre
diameter kA (right) after 5, 25, and 50 time steps
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constantly perpendicular or to have identical properties.
Besides the set-up of a reasonable evolution equation for
kA1 and kA2 or ||A12||, respectively, the remaining prob-
lem is the formulation of a physically motivated reori-
entation of the fibres. Practically speaking, we seek a
particular representation of jjA12jj�1A12 ¼ RðDtxÞ �
½jjAk12jj�1Ak12� � RtðDtxÞ; see also Sgarra and Vianello
(1997), and recall Eq. 30. Following the ideas presented
in this work, the (non-commutative) vector x should

therefore characterise the rotation, which maps the
orthogonal frame nA1 ; nA2 ; nA3


 �
onto the principal

directions of the appropriate strain field; with

nA1 ¼ kA1
� ��1

2a1; kA2
� ��1

2a2; nA3 ¼ nA1 �nA2 ð45Þ

and a1Æa2=0 being obvious. If a1Æa2 „ 0 and
a1Æa1=a2Æa2GkA, we can replace the corresponding
non-orthogonal frame nA1 ;nA2 ;nA3


 �
by the orthogonal

Fig. 14 Specimen under shear:
anisotropy measure d(CÆS) (left)
and fibre direction nA (right)
after 5, 25, and 50 time steps

Fig. 15 Specimen with surface
cut, /cut=0: geometry and
boundary conditions (left),
maximal longitudinal
displacement u1

max and loading
history F1 (right)
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system �nA1 ; �nA2 ; �nA3

 �

defined via

2�nA1 ¼ nA1 þ nA2
� ��

cosðcÞ; 2�nA2 ¼ nA2 � nA1
� ��

sinðcÞ;
�nA3 ¼ �nA1 � �nA2 ¼ nA3

ð46Þ

where 2c ¼ nA1 � nA2; see Spencer (1984) and also note
the correlations nA1 ¼ cosðcÞ�nA1 � sinðcÞ�nA2 and nA2 ¼
cosðcÞ�nA1 þ sinðcÞ�nA2 ; respectively. Based on this, we
obtain (after some straightforward trig and algebra) the
following alternative representation of the rank two
structural tensor as an interesting side aspect

�A12 ¼ �a1 � �a1 � �a2 � �a2½ �
¼ kA �nA1 � �nA1 � �nA2 � �nA2

� �

¼ kA nA1 � nA2 þ nA2 � nA1 � cosð2cÞnA1
�

� nA1 � cosð2cÞnA2 � nA2 � � 1� cos2ð2cÞ
� �

:

ð47Þ

7.3.3 Inverse problems

Finally, we almost do not need to mention that experi-
ments will be of cardinal importance for extending the
understanding of remodelling processes and to motivate
at least some material parameters. Although such elab-
orate and complex experimental settings are rather dif-
ficult to implement, they appear to promise great
benefits; for instance for tissue engineering applications
as one practical example of the modelling of (hard and
soft) biomaterials. A powerful framework is provided by
the theory of (the corresponding) inverse problems, as

addressed by Govindjee and Mihalic (1996, 1998) for
example, where special emphasis is placed on hyper-
elasticity.
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Pérez-Foguet A, Rodriguez-Ferran A, Huerta A (2000b) Numeri-
cal differentiation for non-trivial consistent tangent matrices: an
application to the MRS–lade model. Int J Numer Meth Eng
48:159–184

Petersen P (1989) On optimal orientation of orthotropic materials.
Struct Optim 1:101–106

Podio-Guidugli P (2000) A primer in elasticity. J Elast 58(1):1–103
Reese S, Raible T, Wriggers P (2001) Finite element modelling of

orthotropic material behaviour in pneumatic membranes. Int
J Solids Struct 38(52):9525–9544

Rodriguez EK, Hoger A, McCulloch D (1994) Stress-dependent
finite growth in soft elastic tissues. J Biomech 27(4):455–467

Schneck DJ (1990) Engineering principles of physiological func-
tion. New York University Biomedical Engineering Series. New
York University Press, New York

Schneck DJ (1992) Mechanics of muscle, 2nd edn. New York
University Biomedical Engineering Series. New York Univer-
sity Press, New York
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