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Abstract Brain biomechanics has been investigated for more than 30 years. In particular, finite
element analyses and other powerful computational methods have long been used to provide quan-
titative results in the investigation of dynamic processes such as head trauma. Nevertheless, the
potential of these methods to simulate and predict the outcome of quasi-static processes such as
neurosurgical procedures and neuropathological processes has only recently been explored. Some
inherent difficulties in modeling brain tissues, which have impeded progress, are discussed in this
work. The behavior of viscoelastic and poroelastic constitutive models is compared in simple 1-D
simulations using the ABAQUS finite element platform. In addition, the behaviors of quasi-static brain
constitutive models that have recently been proposed are compared. We conclude that a compressible
viscoelastic solid model may be the most appropriate for modeling neurosurgical procedures.

1
Introduction
The mechanical behavior of brain tissue is one of the most demanding and complicated to model.
Depending on the application, viscoelastic (Miller 1999; Mendis et al. 1995; Wang and Wineman 1972),
poroelastic (Paulsen et al. 1999; Miga et al. 1998a; Subramaniam et al. 1995; Kaczmarek et al. 1997;
Pena et al. 1999; Nagashima et al. 1990; Tenti et al. 1999; Basser 1992) and even purely elastic
(Kyriacou et al. 1999; Kyriacou and Davatzikos 1998; Takizawa et al. 1994; Ferrant et al. 2000) models
have been used in different analyses. The characteristic time scale is very important for choosing the
material model. Impact usually is modeled with viscoelasticity, while long term processes like hy-
drocephalus can be modeled using poroelasticity or mixture theory due to the need to account for
interstitial fluid movement. In applications like brain image registration, even a purely elastic model
may suffice.

Simulating the mechanical behavior of the human brain will be an important milestone in neu-
rosurgery. One example is the following: neurosurgical retraction provides traction forces at the
surface of the brain to provide a better field of view during microsurgical treatments such as clipping
of skull base aneurysms. A complication of the retraction, however, may be neurological impairment
due to a retractor-induced injury to the tissue (Yundt et al. 1997). Thus, a reasonably accurate
simulation tool to predict the level of stress within the tissue would be of high value. More specifically,
a biomechanical model of brain anatomy could be used to optimize retractor-applied pressure and
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retractor-position to achieve an adequate field of view while avoiding injury to tissue from retraction
strains.

In this paper, we discuss and propose solutions to important questions concerning the quasi-static
biomechanical behavior of brain tissues. Some of the issues considered are: poroelastic vs. viscoelastic
and compressible vs. incompressible material behavior, a fluid vs. solid approach, differentiating
between gray and white matter properties, the effect of tissue weight, fluid filled cavities (ventricles,
subarachnoid space) and falx/tentorium, and the issue of mesh generation. Also, different constitutive
models are compared under various simple 1D simulations.

2
Modeling Issues

Brain anatomy and physiology
The human brain is a soft yielding structure that is not as stiff as a gel or as plastic as a paste (Ommaya
1968; Goldsmith 1972; Akkas 1979). The soft tissue consists of gray matter, containing neuronal cell
bodies, and white matter, containing interconnecting fibers between areas of gray matter (Fig. 1). The
soft tissue is covered by the dura, arachnoid, and pia membranes, with the space between the
arachnoid and pia (subarachnoid space) filled with the cerebrospinal fluid (CSF), a clear, colorless
fluid. The subarachnoid space communicates with the four ventricles which are cavities filled with
CSF.

Constitutive models for brain tissue
Constitutive models are attempts to quantify the behavior of materials under different loading
conditions. Decisions on which specific model to use must be based on observed responses to
these loading conditions as well as on our knowledge of structure and histology. As we already
mentioned, the mechanical behavior of brain tissue may be modeled in different ways based on
the specific conditions of interest and in particular on the magnitude of the strain rate. Hence,
different constitutive relations may be needed for the same material depending on the particular
condition.

We will restrict our discussion to elastic, viscoelastic, and poroelastic (or mixture theory) con-
stitutive relations. An elastic behavior may be defined as one in which the stress state depends only on
strain; a viscoelastic behavior may be defined as one that the stress state depends both on strain and
strain history; a poroelastic behavior may be defined as one that results from two or more phases, with
one phase being an elastic solid and the other being a fluid.

Currently, investigators are using different models and material parameters to study the following
processes: 1. Quasi-static1 processes (e.g. neurosurgical retraction, brain shift during surgery, he-
matomas, hydrocephalus etc.) are simulated by mostly poroelastic (Paulsen et al. 1999; Miga et al.
1998a; Miga et al. 2000; Subramaniam et al. 1995; Kaczmarek et al. 1997; Pena et al. 1999; Nagashima
et al. 1990; Tenti et al. 1999; Basser 1992), viscoelastic (Miller 1999), or nonlinear elastic (Sahay et al.
1992) and even linearly elastic models (Ferrant et al. 2000; Skrinjar et al. 2001; Skrinjar and Duncan
1999). Paulsen’s group (Paulsen et al. 1999; Miga et al. 1998a; Miga et al. 2000) used a poroelastic
model (linear material and strain) to evaluate intraoperative brain shift for image corrections during
image guided surgery, and recover 80% of deformation under loads compared to clinical conditions.
Ferrant et al. 2000 used a linear elastic material and linear strain for similar purposes of evaluating
brain shift. Skrinjar and colleagues (Skrinjar et al. 2001; Skrinjar and Duncan 1999) used both a linear
mass spring (discrete) model and a linear (both material and strain linearity) elastic continuum model
for evaluating brain shift. Nagashima and colleagues (Nagashima et al. 1994; Nagashima et al. 1990;
Nagashima et al. 1990; Nagashima et al. 1987) used a linear material and linear strain with a 2D FEM-
based poroelastic theory. This allowed them to model edema as well as to investigate issues like
hydrocephalus. Neff and collaborators (Subramaniam et al. 1995; Kaczmarek et al. 1997) used a similar
2D poroelastic model with a nonlinear strain definition and a linear material to numerically study the
biomechanics of hydrocephalus and other structural neurologic diseases. 2. Impact (e.g. during falls or
car accidents) has been studied mostly via linear viscoelastic (Bandak et al. 1995; Wang and Wineman
1972), or nonlinear viscoelastic (Donnelly and Medige 1997; Mendis et al. 1995; Bilston et al. 1997)
models. Miller’s group (Miller 1999; Miller and Chinzei 1997; Chinzei and Miller 1996; Miller et al.
2000) developed a viscoelastic model to simulate both quasi-static and fast (up to a strain rate of

1 By quasi-static processes, we refer to slow enough processes for the mass-acceleration term to be
negligible, for example when strain rates are slower than 0.1 s)1. On the other hand, strain rate will still be
included for calculating stresses in the viscoelastic constitutive relation.
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0.64 s)1) processes. In addition to material experimentation and model development, they simulated
an experiment on live swine brain using ABAQUS, but forces were found to be 31% lower than reality.
This discrepancy may be due to the use of generic swine material properties rather than specific to the
individual experimental animal.

In addition to the use of biomechanical brain models for simulating neurosurgical procedures and
neurological processes, brain biomechanics has been used to match/register two brain volumes from
two different individuals based on material properties and boundary conditions as well as image
intensities. For example, we and others (Kyriacou et al. 1999; Wasserman and Acharya 1996) used
nonlinear hyperelastic or linear models respectively to register an anatomical atlas to a tumor-bearing
brain image volume.

Compressible vs incompressible model
The issue of compressibility of brain tissue warrants careful investigation because the tissue may
behave incompressibly in impact situations while it may be effectively compressible in long duration
processes (Kaczmarek et al. 1997). Furthermore, fluid cavities like the ventricles and subarachnoid
space, and their interconnections, allow movement of fluid and thus apparent changes of local volume
(Sarron et al. 2000). Also, many brain models do not include the ventricular and subarachnoid
cavities. Thus, it may be prudent to use a compressible material. On the other hand, Miller and
Chinzei (1997) have not observed volume changes in their 1-D compression experiments although a
rigorous measurement of the volume change was unsuccessful due to technical reasons. Thus, the
model by Miller et al. (2000) invokes incompressibility to simulate the deformation in swine brain
even for quasi-static processes such as surgical manipulations. On the other hand, the poroelastic
model is by definition compressible in an aggregate sense (even though the constituents are both
incompressible) so that it will allow fluid movements. In the case that the fluid movement is not of
importance, it may be prudent to use a relatively simpler viscoelastic model (compared to a poro-
elastic model) and to calculate an appropriate viscoelastic compressibility term from the poroelastic
model through use of simple simulations (an example is described in the Results section). Com-
pressibility constants have been calculated by various groups. Some groups used a linear poroelastic
material: Tenti et al. (1999) calculated a dry Poisson’s ratio m ¼ 0.4 based in part by reevaluating the
data by Metz et al. (1970). Miga et al. (1998b) used an approximate value of m ¼ 0.45 chosen from a
range that minimized errors in their experiments. These experiments consisted of inflating a balloon
inside a porcine brain and measuring the displacement of inserted beads. Other groups used a linear
elastic material (with possibly a viscous component): Guillaume et al. (1997) found that a m ¼ 0.35
gives best agreement with hypergravity experiments on excised bovine brains. Skrinjar et al. (2001)
tried different values for m so as to minimize errors between intraoperatively acquired data and
calculated results; they found that m ¼ 0.4 gives optimal results. Nevertheless, there seems to be an
absence of rigorous experimental work for finding brain tissue compressibility, either in vitro or even
more importantly in vivo.

Another variable of interest in modeling neurosurgical procedures is the use of mannitol and other
diuretics which have the effect of reducing the brain volume. Thus, the use of such drugs should also
be modeled by applying a corresponding brain tissue volume reduction.

Fluid vs solid model
Bilston et al. (1997) suggested that brain tissue lacks a long term elastic modulus and thus it is a fluid.
Shuck and Advani (1972) seem to agree since they found that a viscoelastic fluid represents the
material behavior of brain better than a viscoelastic solid. But Donnelly and Medige (1997) reported
that brain tissue samples, immersed in saline, return to a clearly defined shape after being deformed,
which indicates a need for a solid model. Nevertheless, this characteristic was not so evident when the
tissue was removed from saline. In addition, Shuck and Advani (1972) discuss yield properties of
brain tissue; this would strengthen the solid model theory since fluid models are not usually associated
with yield. One possible explanation for these apparent disagreements may be that experimental data
in Bilston’s work went down to a modulus of approximately 800 Pa while Miller’s data show a
long term modulus of approximately 500 Pa for small strains. Another useful constitutive model for
brain tissue may be the elastoplastic material. This would justify the contradiction that brain
tissue behaves as an elastic solid when immersed in saline and as a fluid when not immersed in saline.
The gravity forces on the tissue when not immersed may be larger than the yield point of the
elastoplastic behavior so that the tissue seems to be a fluid under those conditions.

Gray vs white matter elastic properties
According to Bilston et al. (1997), some researchers found no difference between the elastic
properties of the white and gray matter while others did find differences. Nagashima et al. (1990)
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assumed a much stiffer (10-fold) gray matter without fully justifying their choice. Kaczmarek et al.
(1997) used the same elastic properties for both white and gray matter, taken from the lowest
strain tests performed by Metz et al. (1970). Nevertheless, they also tried sensitivity analysis
simulations with the gray matter taking values of increasing stiffness, starting from a stiffness the
same as that of the white matter and ending at a stiffness four times larger, based on their
expectation that gray matter is stiffer than white matter. Ozawa et al. (2001) performed experi-
ments on rabbit spinal cord (whose material properties may differ from brain’s) and showed no
significant difference in stiffness between gray and white matter. Prange et al. (2000) investigated
the effect of regional, directional, and species effects on brain mechanical properties. They found
that gray matter (thalamus) was in an average sense stiffer than white matter (corona radiata and
corpus callosum) by about 30% in fresh swine brain tissue. In addition they found directional
dependence of stiffness in the white matter (about 70% stiffer in the second direction) and to a
much lesser extent in gray matter (about 10% stiffer in second direction). Due to this anisotropy,
the white matter stiffest direction may be stiffer than the gray matter stiffest direction. Zhou and
collaborators (Zhou et al. 1994; King et al. 1995) used a 60% stiffer white matter due to its fibrous
nature. Manduca et al. (2001) reported that Magnetic Resonance Elastography (which is a very
promising though not fully mature technique for measuring shear moduli) showed a stiffer white
matter with an average shear stiffness of 14.2 kPa while gray matter average shear stiffness was
5.3 kPa. There seems to be a need for further experimentation even though the work by Prange
et al. (2000) seems most convincing.

Effect of gravity and CSF submersion
Gravity may be an important modeling force due to the very low stiffness of brain tissue. Since
the brain is submerged in CSF in physiological conditions, its weight is neutralized by the fluid
pressures (buoyant force). This is important in neurosurgical navigation during open skull surgery
where loss of CSF seems to be the dominant factor in inducing an average of 10 mm of defor-
mation mostly along the direction of gravity (Roberts et al. 1998). Thus, it is clear that modeling
the weight of brain tissue and taking the weight into account when doing compression experiments
for finding the material properties is important, especially when the height of the specimen is
relatively large.

Importance of subarachnoid gap and falx/tentorium
The size of the subarachnoid gap has been modeled as having zero thickness for the lower half of
the skull (due to settling) and having a linearly increasing gap for the upper half of the skull with
maximum gap being 0.75 mm (Miller et al. 2000). Two extensions of the tough dura membrane, the
falx and tentorium, are important since they provide a boundary for the various compartments of the
brain such as the two hemispheres and the cerebellum. Nevertheless, these membranes are not always
taut, and can even be calcified, so modeling them may be especially difficult.

Mesh generation for medical images
Mesh generation (and application of boundary conditions) is a challenging issue in biomechanical
models since there is high variability in human anatomies; thus, mesh generation has to be tailored to
each individual brain. In addition, the human brain has many intricate morphological details (e.g. the
ventricular shape) that add further complications in model creation. An additional difficulty is that the
anatomy is often revealed via an MRI or CT volume image that needs to be translated into a geo-
metrical model for meshing. Widely used image processing, solid modeling, and FEM commercial
software have not made the modeling process any easier. Only MIMICS (Materialise, Ann Arbor, MI)
seems to have a mostly automated method to go from the image volume to a CAD model (IGES
NURBS surfaces) for creating the FE model. Nevertheless its cost makes it rather expensive for
academic research. In addition, it is only available for the windows platform. Analyze (Mayo Foun-
dation, Rochester, MN), a commercial software that is widely used in academic environments and is
compatible with Unix workstations, has an IGES output for points but not surfaces, thus further
processing is required to created CAD models. Thus, in-house semi-automated and fully-automated
methods for model generation have been investigated by many brain modeling researchers: Miller
et al. (2000) used a semi-automatic mesh generation by first defining section contours on each vol-
umetric section and then created the 3D geometry and FE model within MSC-PATRAN (MSC.Software
Corporation). Ferrant et al. (2000), Miga et al. (1998b), and Hartmann and Kruggel (1999) have
written automatic mesh generation software and used it to create anatomically correct brain models.
Our group has also developed an automated mesh generator, which will be described in a separate
publication.
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3
Methods
Due to the complexities of the material behavior and contact constraints that will be needed for a
full 3D brain biomechanical model, we used ABAQUS, which has a rich library of constitutive
models and efficient contact interfaces. We tested the various brain material models by computing
the solution of a simple boundary value problem, motivated by the standard uniaxial compression
experiments described in Miller and Chinzei (1997), which may be the only quasi-static data we
have on brain tissue to date. The geometry for this boundary value problem is a cylindrical
specimen loaded along its axis of symmetry by a uniform pressure, with zero friction at the top
and bottom surfaces (see figure 2). Its unloaded dimensions are a diameter of 30 mm and a height
of 13 mm. The experiment was modeled in an axisymmetric fashion with the bottom having
no displacement in the z direction and no displacement in the x direction at the symmetry
axis. The element used was the ABAQUS axisymmetric 8-node biquadratic displacement, bilinear
pore pressure (for poroelastic models), hybrid (for incompressible models), reduced integration
element (CAX8RP for poroelastic, CAX8RH for incompressible and CAX8R for compressible
viscoelastic). The number of elements was just 1 for homogeneous solutions and approximately
200 for inhomogeneous solutions (i.e., the poroelastic solutions with side flow). In the second
case of inhomogeneity, stresses reported here were average quantities over the circular
cross-section of the simulated cylindrical shape.

We performed the following simulations.

– Constant speed simulations: the top surface was compressed at two constant speeds: 8.3333E-8 m/s
(strain rate of 6.41E-6 s)1) for 50,000 s, which corresponds to the slowest speed experiment in
(Miller, Chinzei 1997) and 8.3333E-3 (strain rate of 6.41E-1 s)1) for 0.5 s, which corresponds to the
fastest speed experiment in Miller. In both cases, the final stretch ratio was 0.68.

– Stress relaxation (constant displacement) simulations: the top surface was compressed (in a ‘‘ramp’’
fashion) by a constant strain in 0.02 s and then kept there for 1000 s (unless mentioned otherwise).
This compressive strain was approximately –0.2307 (3 mm displacement).

The following constitutive models were compared under the above simulated experiments.
– Viscoelastic constitutive model: this is a single integral, finite strain, viscoelastic, isotropic model,

based on a generalized Mooney-Rivlin elastic response and a relaxation response based on a Prony
series expansion. The potential function W is in the form of the following convolution integral
(Miller 1999; ABAQUS 2001):

W ¼
Z t

0

XN

iþj¼1

Cijðt � sÞ d

ds
�II1 � 3ð Þi �II2 � 3ð Þj

h i
þ
XN

i¼1

1=Di t � sð Þð Þ d

ds
J � 1ð Þ2i

h i( )
ds ð1Þ

Fig. 2. Simulated experiment setup
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where

�II1 ¼ J � 2=3ð ÞI1; �II2 ¼ J � 4=3ð ÞI2; I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k�2

1 þ k�2
2 þ k�2

3

and J is the volume ratio (i.e. det(F), the determinant of the deformation gradient). The shear and
compliance relaxation moduli functions Cij and Di are in the form:

Cij ¼ Cij0 1 �
Xn

k¼1

gk 1 � e�t=sk

� � !

Di ¼ Di0 1 �
Xn

k¼1

kk 1 � e�t=sk

� � !

where Cij0,Di0 are the instantaneous shear and compliance moduli, sk,gk,kk are the characteristic
times, shear, and compliance relaxation coefficients, respectively, and t is the time. We used the
following material parameters for fresh swine brain tissue behavior that were shown to model
quasi-static conditions with good accuracy (Miller 1999): The non-zero stiffness coefficients were
C100 ¼ C010 ¼ 263 Pa, C200 ¼ 491 Pa, C020 ¼ 491 Pa, and C110 ¼ 0 Pa. The two characteristic times
sk (for k ¼ 1, 2) and related shear relaxation coefficients gk were s1 ¼ 0.50 s, g1 ¼ 0.450, s2 ¼ 50.0
s, and g2 ¼ 0.365 (note that a zero value for the shear or compliance relaxation coefficients
indicates zero viscous effects in the shear or compliance moduli respectively, while a unity value
would indicate moduli that diminish to zero at infinite time). Values for Di0 were assumed to
be zero (signifying incompressibility) unless otherwise noted (and thus kk were not required).
In the simplest case of non-zero D10 with k1 ¼ 0, the correspondence of the initial bulk modulus
K0 to D10 is well known (ABAQUS 2001): K0 ¼ 2/D10

– Poroelastic constitutive model. This is a finite strain, poroelastic, isotropic model based on linear
(material-wise) elastic response (ABAQUS 2001; Kaczmarek et al. 1997)2 : The total stress tensor is
given by the effective stress re minus the hydrostatic pressure PiI (by definition a positive quantity):
r=re)PiI. Also needed is Darcy’s Law: U ¼ )K,Pi, where U is the velocity of the fluid and K is the
hydraulic conductivity. Finally, mass conservation requires ,(/U) ¼ 0, where / ¼ the interstitial
fluid fraction (Kaczmarek et al. 1997, which is assumed to be a constant.
Assuming the elastic skeleton is isotropic and linearly elastic, the effective stress will be:

re ¼ 2Ge þ ktr eð ÞI :

The shear modulus G and k are the Lamé constants with the standard relations to the Young’s
modulus E and Poisson’s ratio m. E ¼ 3156 Pa, based on the instantaneous modulus in Miller’s
viscoelastic model, calculated as follows: Shear modulus G ¼ 2 Æ (C100 + C010) ¼ 2 Æ (263 + 263) Pa;
based on Miller’s assumption of incompressibility and thus assuming a nominal m ¼ 0.5, Young’s
modulus E ¼ G Æ (2(1 + m)) ¼ 3156 Pa. The rest of the parameters are based on Kaczmarek et al.
(1997): dry solid m ¼ 0.35, K ¼ 1.6E)11 m4/(Ns). Note that, for ABAQUS compatibility, we assumed
an initial / ¼ 0.22; this value should not affect the stress and strain results since we have not
allowed change of permeability with / in the ‘‘permeability’’ section of the ABAQUS input file.

– Generalized Mooney-Rivlin constitutive model: This model and the material parameters are exactly
the same as the hyperelastic part of the viscoelastic model above:

W ¼
XN

iþj¼1

Cij
�II1 � 3ð Þi �II2 � 3ð Þjþ

XN

i¼1

1=Dið Þ J � 1ð Þ2i

– Neo-Hookean constitutive model: W ¼ l(I1)3), with l based on the instantaneous modulus in
Miller’s viscoelastic model (l ¼ C10 + C01). Thus, l ¼ 526 Pa. Incompressibility was assumed.

– Linear constitutive model:

r ¼ 2Ge þ ktr eð ÞI ;

2 This formulation allows finite strain in contrast to work by Paulsen’s group (Paulsen et al. 1999, Miga
et al. 1998a) which does not.
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which is also based on the instantaneous modulus in Miller’s viscoelastic model. Thus,
E ¼ 3156 Pa. A nearly incompressible behavior was assumed with m ¼ 0.4999.

The resulting boundary value problems were solved by imposing force equilibrium with
, Æ r + F ¼ 0. Finite strain (NLGEOM keyword in ABAQUS) was used throughout.

We would like to clarify that while the viscoelastic model is fully nonlinear, the poroelastic one is
only strain-wise nonlinear. This was partly dictated by our decision to use the ABAQUS platform for
our simulations which does not readily allow a nonlinear poroelastic model. A justification for
comparing these two not so similar models is that both formulations have already been used to model
neurosurgical procedures (Miller et al. 2000; Paulsen et al. 1999).

4
Results

Validation
Validation in computational mechanics is key to successful modeling; numerical convergence alone is
not sufficient. One such validation was to compare the results of 1D constant speed compression for
our neo-Hookean ABAQUS-based model against analytical results (patch tests). In particular for
l ¼ 15000 Pa and an axial stretch ratio k ¼ 0.67949, the stress along the compression axis was ana-
lytically calculated to be: r ¼ –30300 Pa, which matched perfectly the ABAQUS solution. In addition,
the results from the viscoelastic model were tested against analytical results from (figs. 3b and 3c)
Miller (1999) and found to be in excellent agreement.

Nomenclature used in the various plots:
– viscoel: The viscoelastic model as explained in Methods.
– poroel_NF: The poroelastic model as explained in Methods with zero boundary flow conditions (NF

stands for No Flow).
– poroel_NF_P0: The poroelastic model as explained in Methods with zero boundary flow conditions

and a zero bulk pressure condition so as to imitate the behavior of the drained solid (P0 stands for
zero Pressure).

– poroel_SF: The poroelastic model as explained in Methods with free flow (zero pressure) boundary
conditions on the sides of the cylinder (SF stands for Side Flow).

– poroel_SF_kaczmarek: A similar poroelastic model, but with a value for E taken from Kaczmarek
et al. (1997) rather than based on the instantaneous E from Miller’s model: E ¼ 10000 Pa.

– poroel_SF_miga2000a: A similar poroelastic model, but with parameters based on Miga et al. (2000):
E ¼ 2100 Pa, m ¼ 0.45, and K ¼ 1.0E)7 m4/(Ns).

– mooney_N2: The generalized Mooney-Rivlin model as explained in Methods (N2 stands for N ¼ 2).
– neohook: The neo-Hookean model as explained in Methods.
– miller_1997_low: Digitized experimental data for low speed compression of swine brain tissue from

Miller and Chinzei (1997) (included for comparison purposes).
– miller_1997_high: Digitized experimental data for high speed compression of swine brain tissue

from Miller and Chinzei (1997) (included for comparison purposes).

Fig. 3. Cauchy stress vs stretch ratio for
four constitutive models that have been
proposed recently for quasi-static mod-
eling of brain tissue. The results are for
the slow constant speed compression of a
cylindrical shape. The ‘‘poroel_SF_kacz-
marek’’ is based on a poroelastic model
with side flow and material properties
based on Kaczmarek et al. (1997). The
‘‘poroel_SF_miga2000a’’ is based on
Miga et al. (2000). The ‘‘poroel_SF’’ and
the ‘‘viscoel’’ are poroelastic and
viscoelastic models respectively based on
Miller (1999)
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Low speed compression: Behavior of various proposed models
Figure 3 shows the behavior of the simulated cylindrical specimen under various constitutive be-
haviors proposed by different groups in the last few years. Three different poroelastic materials (with
free side flow) and a viscoelastic one were tested in low speed compression. The results show that for
the poroelastic materials the Young’s modulus seems to be the dominant player that decides their
behavior in 1D compression.

Constant speed compression: Behavior of models based on Miller’s instantaneous elastic
modulus
We compared the behaviors of various models that had their initial instantaneous elastic modulus
based on Miller’s model. Results are presented in figure 4 for constant speed compression. The
absolute Cauchy stress is plotted against the stretch ratio. The solution is homogeneous except for the
case of the side flow poroelastic model. In that case, as we mentioned earlier, the stress is an average,
calculated on the top of the specimens by summing all the reaction forces on the top nodes of the
specimen and dividing by the total deformed top surface area.

A Compressible viscoelastic model
We tested the poroelastic model poroel_SF for compressibility under stress relaxation, with results
shown in figure 5, right panel. Volume reduction seemed to converge to about 7.5%. There was no
effect when the void ratio was changed from 0.22 to 0.05. We also tested the viscoelastic model with
different degrees of compressibility D10 (for simplicity, keeping k1 ¼ 0) and compared the percent
volume compression at the end of the slow constant speed simulation to that of the poroelastic model.
We found that a D10 ¼ 0.00110 Pa)1 seems to give the same percent volume compression (ratio of
final to initial volume) equal to 10.8%. Figure 5, left panel, shows the compressibility for the whole
time period. The right panel shows the behavior of the two models under stress relaxation. Obviously,
this is a rather simplistic approach for finding an equivalent viscoelastic compressibility, so further
investigation is required.

Relaxation simulation
We tested the side flow poroelastic and the viscoelastic models under stress relaxation (figure 6). The
results show a much less pronounced relaxation behavior for the side flow poroelastic model com-
pared to the viscoelastic model. For comparison purposes, we also plotted the Mooney-Rivlin and the
no-flow poroelastic models even though they do not change with time (the first because it is hyper-
elastic and the second because fluid is not allowed to leave).

5
Discussion
We have discussed important issues in brain biomechanical modeling such as the appropriateness of
using poroelastic vs. viscoelastic constitutive models, the compressibility of the tissue, the use of fluid
vs. solid models, etc. In addition, we have compared the behavior of various constitutive models that
have been proposed in the literature.

We conclude that a good way to model neurosurgical retraction (while other conditions may
require a different type of modeling) may be the following: if there is no specific requirement for
knowing the interstitial fluid movement, use the viscoelastic model developed by Miller’s group for the
whole brain; in addition allow for a compliance modulus (compressibility response) that initially may
be based on the compliance modulus of previously proposed poroelastic models, until more complete
data on the compressibility of brain tissue in-vivo become available. A solid model may be more
appropriate than a fluid model even though a very low equilibrium modulus may be necessary.
Another possibly useful model may be the elastoplastic model which would handle the possibility of
material yielding by the applied stress. We propose the use of same stiffness for both the white and
gray matter as a first approximation, since experimental work has been inconclusive. A subarachnoid
gap based on Miller’s work that increases linearly from zero width to a maximum width of 0.75 mm at
the highest brain position may be used as a first approximation.

We have shown how the behavior of the poroelastic model compares to the viscoelastic one proposed
by Miller in simple 1-D simulations of experimental procedures used to evaluate brain tissue properties.
The poroelastic model has a Young’s modulus derived from the instantaneous elastic response of the
viscoelastic model. The viscoelastic model showed a much stronger dependence on strain rate than did
the poroelastic model (figure 4). Similarly, stress relaxation was much more pronounced in the visco-
elastic model compared to the poroelastic model (figure 6). This agrees with observations by Miller
(1998). On a similar note, it has been postulated that many viscoelastic phenomena like creep and stress

160



F
ig

.
5.

T
h

e
vi

sc
o

el
as

ti
c

m
o

d
el

b
eh

av
io

r
w

it
h

th
e

ad
d

it
io

n
o

f
a

co
m

p
re

ss
ib

il
it

y
co

n
st

an
t

D
1

0
¼

0.
00

11
0

P
a)

1
.

L
ef

t:
C

o
m

p
ar

is
o

n
o

f
th

e
p

o
ro

el
as

ti
c

an
d

vi
sc

o
el

as
ti

c
co

m
p

re
ss

ib
il

it
y

u
n

d
er

sl
o

w
co

n
st

an
t

sp
ee

d
.

R
ig

h
t:

Si
m

il
ar

to
le

ft
,

b
u

t
fo

r
st

re
ss

re
la

xa
ti

o
n

.
B

o
th

p
lo

ts
sh

o
w

q
u

it
e

a
d

if
fe

re
n

t
co

m
p

re
ss

ib
il

it
y

b
eh

av
io

r:
in

p
ar

ti
cu

la
r,

th
e

re
la

xa
ti

o
n

b
eh

av
io

r
is

to
ta

ll
y

d
if

fe
re

n
t

w
it

h
th

e
p

o
ro

el
as

ti
c

m
o

d
el

h
av

in
g

a
lo

ga
ri

th
m

ic
-t

yp
e

co
m

p
re

ss
ib

il
it

y
w

h
il

e
th

e
vi

-
sc

o
el

as
ti

c
m

o
d

el
h

as
m

o
re

o
f

a
re

la
xa

ti
o

n
b

e-
h

av
io

r,
w

it
h

a
sp

ik
e

at
th

e
o

ri
gi

n
an

d
th

en
a

sm
o

o
th

ly
co

n
ve

rg
in

g
re

d
u

ct
io

n

161



relaxation can be reproduced using a poroelastic theory (Barry and Aldis 1992). Yang and Taber (1991)
advocate the use of poroelasticity (together with some viscoelastic elements) in modeling the passive
cardiac muscle. However, one of their conclusions is that the hysteresis produced by the poroelastic
model (with no viscous elements) was much smaller than the experimental one. The need for a visco-
elastic solid within a poroelastic formulation has also been reported within the articular cartilage re-
search community (see for example (DiSilvestro et al. 2001) and references therein). It thus seems that
poroelastic models may not be appropriate for modeling some moderate-strain-rate surgical manipu-
lations. Nevertheless, they may be more appropriate for low-strain-rate situations, e.g. structural diseases
like hydrocephalus or for brain hemorrhage modeling. In conclusion, a poro-viscoelastic model which
would combine the advantages of both poroelastic and viscoelastic models may ultimately be needed.

We have found that a compressible viscoelastic model has a different mode of volume reduction
compared to the poroelastic one with the volume reduction being highest at time zero and decreasing
fast to an equilibrium state. On the other hand, the poroelastic model has zero volume reduction early
on and increases fast to the equilibrium state. We also note that the compressibility of the poroelastic
material, when no fluid is allowed to leave the specimen, is practically zero even though it has a
Poisson’s ratio m ¼ 0.35. This should be a clarification of the fact that the m is based on the dry material
and that both the solid and fluid parts of the poroelastic mixture are incompressible.

We have used a constant permeability and have not allowed changes in its value due to com-
pression of the voids. As an example, the permeability should intuitively be significantly reduced when
the material is under large compressive strains. The use of constant permeability may thus be an
important source of error and indicates that further evaluation would be of value. The need for a
variable permeability in the poroelastic formulation has also been discussed extensively before
(Kaczmarek et al. 1997; Barry and Aldis 1992).

We have performed some preliminary calculations on the effect of gravity using the instantaneous
and long-term elastic moduli of the viscoelastic model; these show a strain of approximately 0.05–0.10
which indicates that it should not be neglected. Thus, we suggest that since brain tissue is in a
physiological no-gravity environment, experiments on quasi-static brain tissue should be performed
with the tissue immersed in saline or artificial CSF solution. By performing such experiments in air, we
may obtain misleading results for the various elastic moduli.
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