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energy transition. As renewable energy alternatives, there 
are solar, photovoltaic, biomass, wind, hydroelectric, geo-
thermal and tidal (Chowdhury et al. 2021). In this context, 
sustainable energy development is important at a global 
level, since natural resources were once excessive and, over 
the years, have been decreasing. The possibility of capturing 
ocean energy, compared to traditional sources, has a high 
potential (Castello et al. 2020).

The maximum global tidal energy potential/year is around 
331E18 Joules, while the theoretical potential is 7,400EJ, 
so these results outweigh the total world consumption, con-
firming the relevance and exploring the trend of sustainable 
energy potential. If we only consider tidal energy, the oce-
anic potential in Brazil is above 72 TWh.year− 1 (Carneiro 
and Pentado Neto 2022). They are concentrated in three 
northern states of Brazil: Amapá, Pará and Maranhão (Neto 
et al. 2017). Specifically, the coast of the Amapá State has 
excellent energy indicators. Tide differences can reach 10 m 
in the Maracá island region.

For the characterization and decision-making of proj-
ects and sites with relevant energy potential, numerical 
approaches at different spatial and temporal scales are 

1 Introduction

Replacing fossil fuel energy sources with clean renewable 
energy can be a way to avoid environmental and health 
impacts. Research into new energies from renewable 
sources and reducing the use of fossil fuels should favor the 
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This study addresses the global shift towards renewable energy due to the increasing demand driven by socioeconomic 
development. With finite fossil energy sources, there’s a growing interest in oceanic renewable energy, estimated at 76 mil-
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two-dimensional hydrodynamic model, the study evaluates power density in key areas. The spring-neap cycle simulations 
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lower section (tidal current velocity of 1,12 m.s− 1 – 720,03 W.m-2). Notably, the upper Varador channel near the Inferno 
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ing sustainable energy development.
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fundamental for the initial phases of projects for harnessing 
tidal energy, as they allow for a deeper analysis of the study 
of the hydrodynamic model (Thiébot et al. 2020).

The application of numerical models in hydrodynamic 
studies is still recent and for this reason, scientific interest 
based on cutting-edge research in a numerical approach is 
of great value, as long as it has been used in a timely or 
comprehensive manner (Thiébot et al. 2020; Azevedo et al. 
2023). Hydrodynamic modeling is a tool used in regional 
domains or river basins, such as the Amazon basin, to com-
plement and provide a complete description of time and 
space of physical systems (Marta – Almeida 2022).

Some hydrodynamic modeling studies on renewable 
energy potential were developed in Amazon region: Numer-
ical modeling of Maranhão Gulf tidal circulation and power 
density distribution (Czizeweski et al. 2020); Hydraulic 
potential evaluation with hydrokinetic turbines for isolated 
systems in Amazon region locations (Oliveira et al. 2021b); 
Statistical relationship development for hydrokinetic energy 
potential assessment (Sood and Singal 2022); Energy 
potential and economic analysis of hydrokinetic turbines 
implementation in rivers: an approach using numerical pre-
dictions (CFD) and experimental data (Santos et al. 2019); 
Global riverine theoretical hydrokinetic resource assess-
ment (Ridgill et al. 2021); Economic feasibility study of 
ocean wave electricity generation in Brazil (Oliveira et al. 
2021b). This article aims to produce hydrodynamic simula-
tions (mid-high tide, mid-low tide, high tide and low tide in 
spring and neap situations) and evaluate the energy density 
(tidal currents) of areas of interest in the Inner Continental 
Shelf of Amapá (ICSA).

This paper focuses on the energy characterization of 
the Maracá island area that seems to be a promising area 
for harnessing tidal currents to generate renewable energy. 
The relevance of this work lies in the fact that it includes 
this remote region as a potential producer of clean energy, 
which can promote the development of this area. As it is 
located on the equatorial margin and close to the ship routes 
that serve the large ports on the Amazon River, it presents 
attractive aspects for generating offshore green hydrogen 
for export. Maracá is an indigenous term meaning musical 
instrument (a hollow cylinder of light, thin wood filled with 
small stones and capped at the ends), a kind of rattle, used 
in festivals, religious ceremonies and warfare.

The relevance of this article lies in highlighting the 
renewable energy potential of this unique amazonian region. 
This potential can serve as a compelling argument against 
offshore oil exploration initiatives at the entrance of the vast 
Amazon estuary. Moreover, the study contributes to the dis-
covery and understanding of a nearly unknown area charac-
terized by the interaction between the ocean and the Amazon 

River, emphasizing the importance of preserving its natural 
resources and focusing on sustainable development.

2 Study area location

The ICSA (2º11’ and 1º50’ N − 50º37’ and 50º11’ W) is 
adjacent to the Atlantic coast of Amapá, where the Varador 
channel separates the Maracá island, between the mouth 
of the Calçoene river estuary and Cabo Norte (Fig. 1). The 
ICSA (study area) can be described according to geomor-
phological features and the material type on the bottom of 
Amapá coastline to the depth limit delimited to the 10 m 
isobath.

3 Study area

3.1 Weather and meteorological parameters

According to Dubreuil et al. (2018), the study region is 
characterized by a warm monsoon type weather “Am”. 
The average annual air temperature follows a trend with a 
maximum in September and November months with 29 ºC, 
and minimums in January to March months with 26 ºC with 
super humid characteristics due to high rainfall and tem-
perature range up to 3 ºC. (INMET 2024; Lima et al. 2021). 
The Intertropical Convergence Zone (CZIT) is formed from 
the trade winds of the hemispheres that meet on the surface 
and cause moderate to heavy rainfall in Amapá. Also, its 
control over the tropical climate interferes with water and 
solid discharge.

The rainy season runs from November to March with 
high convective activity and heavy rainfall in January. The 
dry season affects the months from May to September, 
where the months of April and October mark the transition 
between the rainy - dry and dry - rainy periods, respectively 
(França et al. 2021). According to Liang et al. (2020), the 
average rainfall shows higher levels in the period from 
January to March and lower in the period from July to 
September.

The trade winds blow from the NE and SE, which pre-
dominate in the equatorial region and converge in the AICS, 
which changes throughout the year between August and 
September, further north, and between March and April near 
the Equator with a speed between 5 and 10 m.s− 1, and a 
maximum between December and April When added to the 
SE commercial wings (Rodrigues and Silva 2021; Lentini 
et al. 2021).
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3.2 Water and solid discharge from Amazon river

The Amazon River has a water flow of 5.7 × 1012 m3 
year− 1, with an average of 200,000 m3 s− 1, a maximum of 
220,000 m3 s− 1 (May) and a minimum of 100,000 m3 s− 1 
(November) (Gouveia et al. 2019; Liang et al. 2020). Water 
discharge from the Amazon River reaches its maximum 
in April - May along the north flow of the ICSA, and in 
June and July the flow contributes to the north equatorial 
countercurrent (Gouveia et al. 2019; Liang et al. 2020), in 
addition, the maximum flow in the North Channel reaches a 
volume of 160,000 m3 s− 1. Solid discharge from the Ama-
zon River to the Amazon continental shelf is estimated at 
1.1 to 1.3 × 109 ton. year− 1 (Cunha et al. 2021).

3.3 Oceanographic conditions

In the region, the tide is semidiurnal, with a maximum and 
minimum height of 3.4, /0.2 m (Barra Norte), 5 m/0.3 m 
(Grande Curuá ¨igarapé¨) and 3.5/0.1 m (Santana port) 
(DHN 2024). On the other hand, on Maracá Island, the 
hyper tide reaches a maximum height of 11–12 m (DHN 

2024). The ICSA is subject to the greater M2 component 
activity (12.42 h period) associated with the other compo-
nents S2 (12 h) and N2 (12.66 h), which act on the sea level 
rise variation around 85% (Beardsley et al. 1995; Gurgel 
2015; Gallo and Vinzon 2015). Tidal currents are character-
ized by two components, the coastal subtidal flow and the 
semidiurnal barotropic tidal flow. Tidal currents cause shear 
stress on the seafloor, participating in the process of sedi-
ment transport and granulometric distribution. The velocity 
of tidal currents reaches a maximum velocity of 2 m.s− 1 
(spring) and a minimum of 0.7 m.s− 1 (neap) in the ICSA 
(Torres et al. 2018).

4 Methodology

4.1 Hydrodynamic model

According to Rosman (2021), the SisBaHiA hydrodynamic 
model fits into the Filtered in Space and Time (FIST) lin-
eage and some of its characteristics confirm the importance 
and flexibility of the method. The numerical schemes of 

Fig. 1 The inner continental shelf of Amapá (ICSA). The Varador channel separates the Maracá Island from the Atlantic coast of Amapá, R: River
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4.2 Input data for the hydrodynamic model

The application of the hydrodynamic model in SisBaHiA 
requires a set of input data (tidal elevation, bathymetry, bot-
tom roughness, winds, maps and satellite images) to config-
ure the project discretization. The ICSA mesh was created 
in SisBaHiA® after importing the base map and land and 
ocean contours, both adjusted in Surfer 23 (Table 1). The 
ICSA modeling domain was based on nautical charts from 
the Directorate of Hydrography and Navigation of the Bra-
zilian Navy (DNH), with nautical chart no. 21,200 at a scale 
of 1:300,000 (3º 30’) for the oceanic region, however, for 
the Atlantic coast of Amapá, the Topex altimetry program 
was used. At ICSA, computational modeling was used in 
the QuantunGis software to generate bathymetric data, 
which were interpolated and later compared with bathym-
etry data from the Topex altimetry program. The roughness 
parameters were adopted as recommended in SisBaHiA® 
(Rosman 2009). The tide data - harmonic constants and 
Variable Mean Level (Elevation) were extracted through a 
SisBaHiA® database (Rosman 2021) and, as for the wind 
data, they were acquired through periodic information from 
Copernicus Europe’s eyes on Earth – ERA5, at single levels 
of peaks in the dry (October) and rainy (April) periods of the 
study area. In the Hydrodynamic Model (2DH), boundary 
conditions were imposed according to tidal current patterns 
based on the momentum of the water mass using software 
that participates in the modeling stages in SisBaHia such as 
Surfer, Grapher, Google Earth Pro and Excel for data orga-
nization. The models produced virtually from the input data 
in SisBaHia virtually represent the hydrodynamic behavior 
of the ICSA. Therefore, data on tide levels, currents and 
bathymetry play an important role in the model, as they 
influence the quality of the results. The discretization of 
the spatial domain with module 2DH was carried out using 
quadrangular finite elements with 9 nodes and triangular 
finite elements with 6 nodes connected to each other, where 
the average speed and surface elevation of each node in the 
domain are determined.

Tidal velocity and direction data were also used to iden-
tify responses to seasonal variations in hydrodynamics in 
the ICSA. To define the periods of spring and neap in the 
model, the April 2021 time series (30 days) was used. The 
bathymetric data were reduced by 0.5 m above the low mid-
tide spring RL (MLWS). An elevation of 3.1 m above the 
NR (mean height from sea level – MS: mean sea level) was 
considered, referring to Guarás Island (0º 36’ N − 57º 54.9’). 
The harmonic analysis was carried out using the SisBaHiA® 
Tide Analysis and Prediction Module, where three points 
were selected in the ICSA for the acquisition of tidal data 
for the calculation of the harmonic constants (Fig. 2).

the models are well established, which makes validity and 
acceptance more precise. The two-dimensional model (2D) 
has only the dimensions (x, y, t), and can be classified by 
two types of dimensions: (1) vertical (2DV) and (2) hori-
zontal (2DH) (Rosman 2021).

For the analysis of the hydrodynamic circulation in a 
two-dimensional flow, the following aspects were taken into 
account: the average vertical velocities (U and V in the x 
and y directions) and the free surface level (ζ) according to 
the following equations (Rosman 2021):

Expression for the 2DH moment for vertically integrated 
flux in the y direction:

∂ V

∂ t
+ U

∂ V

∂ x
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Expression for momentum 2DH for vertically integrated 
flow in x direction:

∂ U
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∂ U
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∂ U
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− 2 Φ sinθ V
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∂ ζ
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+

1
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Continuity expression (volume) integrated along the 
vertical:

∂ ζ

∂ t
+

∂ UH

∂ x
+

∂ V H

∂ y
= 0  (3)

Where:
g – Represents the gravity acceleration;
ρ 0−  Equals to specific mass of constant value;
H – Spontaneous total depth;
τ xx, τ xy, τ yy−  Represent the turbulent stresses in 

vertical;
τ s

x e τ
s
y−  Equivalent to frictional stresses on surface in 

respective x and y directions;
τ B

x e τ B
y −  Equivalent to the frictional stress at bottom 

in respective x and y directions;
Φ −  Earth rotation angular speed on local coordinate 

system and θ it’s the latitude angle.

Table 1 Mesh data of square and triangular elements used in ICSA
Amapá’s Inner Continental Shelf
Elements numbers 309
Nodes numbers 1363
Average distance between nodes 1500 m
Mesh area 2.049.349.185.155 m2
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“P” is equivalent to power, “A” is the transversal area of 
the flow intercepted by the device, “ p”is the water density 
in kilograms per cubic meter (1000 kg.m−³ for fresh water 
and 1025 kg.m−³ for sea water) and “U” is the tidal current 
velocity (m.s− 1) This last variable changes predictably over 
the time and it’s directly related to depth and position.

5 Results

5.1 Model validation

To validate the model, a comparison was made between the 
real and modeled data, whose tidal height data were used as 
a parameter comparing the elevations generated in the simu-
lations for the rainy period from 04/01/2021 to 04/30/2021 
and at identified elevations (Fig. 4). The tide elevation curve 
resulting from the modeling generated a maximum eleva-
tion of 7.55 m and a minimum of 0.40 m for the second 
spring tide of the analyzed period, demonstrating values   

In this way, we selected three stations (FES 1, FES 2 and 
FES 3) in the study area (Fig. 3) to acquire generic tidal 
data (Figs. 4 and 5) in ICSA to obtain information regarding 
harmonic constants, which were used in the development of 
the grid and modeling domain in the SisBaHia. 31 harmonic 
constants were used according to the FES database in the 
SisBaHiA® tool tab.

Eight hydrodynamic simulations were generated during 
mid-flood, high tide, mid-ebb, low tide, both for spring and 
neap tides.

4.3 Energy density calculation

The energy density per square meter available from a tidal 
current kinetic energy is calculated according to the equa-
tion (Hagerman et al. 2006):
(
P

A

)
water=

1

2
ρ.U 3(W.m−2) (4)

Where:

Fig. 2 Discretization mesh and station location with harmonic constant data in ICSA, P: Point, I: Island, R: River, Ch: Channel, I: ¨Igarapé¨; 1, 2 
and 3 generic tide stations
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(2009) showed currents with a velocity of up to 1.1 m.s− 1 in 
the ICSA (Table 2) during the flood period, where (present 
study), with reference to node 64.

Analyzing the results of the AMASSEDS (1990) and 
the modeling obtained by Fontes et al. (2008) for the M2 
tidal component from NW to SE along the Amapá coast 
(Table 3), it is observed that the results of the study model 
are within the validated parameters.

In addition to the comparison between the previous 
data, a statistical relationship was also made between the 
observed and modeled elevations. During the validation 
process, the difference (Table 4) was considered, which 
evaluates the difference between the simulated data and the 

close to the real one in comparison with the data from tide 
stations close to the ICSA.

To validate the values   of tidal currents in the ICSA, Ros-
man’s approach (2009) was used, in its site selection anal-
ysis for energy extraction from tidal currents in Brazil, to 
compare the results of the generated tidal currents, which 
presented a higher U velocity than the transversal V veloc-
ity, with a minimum U velocity of -1.053 m.s− 1 and a maxi-
mum of 1.361 m.s− 1, while the V velocity has a minimum of 
-0.793 m.s− 1 and a maximum of 0.697 m.s− 1.

The results for amplitude and tidal currents, as well as 
depths, were compared according to the approach of the 
AMASSEDS (1990), the modeling of Fontes et al. (2008), 
Rosman (2009) and Molinas (2020). The study by Rosman 

Fig. 4 A) Tide raise curve generated by SisBaHiA for a period of 30 days, starting April 1, 2021. B) U (longitudinal velocity) and a V (transversal 
velocity) at node 64

 

Fig. 3 A) FES data station. B) Astronomical Tide – Station 1 FES in the dry period
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of 979,200 s was adopted for all simulations, with a final 
time of 2.570,400 s with 50 s elapsed.

The objective of the simulation is to analyze the hydro-
dynamic behavior in the ICSA during spring and neap tides 
and their intervals: mid-high tide, mid-low tide, high tide 
and low tide. The initial conditions of the 2DH model in 
SisBaHiA define aspects of the hydrodynamic circulation 
according to the initial time t0 for all domain nodes, gener-
ating free surface elevation values, as well as the U and V 
velocity components.

In the model, it is necessary to have the value of the 
elevation of the surface at instant 0, which is represented 
graphically and determined in the curves of the harmonic 
constants. The results obtained through the initial conditions 
of the 2DH model established the patterns of tidal currents 
according to the vector fields that represent the velocities of 
the x and y components of the water column, allowing the 
analysis of the average velocity, direction and intensity of 
tidal currents in the ICSA.

observed data. The result of the difference values for the 
first mid-tide neap were 0.17.

5.2 Hydrodynamic simulations

Verification of the results in the SisBaHiA® hydrodynamic 
model was provided in seconds, where, in all simulations, 
the spatial and temporal intervals were 3600 s and 1200 s, 
respectively, presenting 1 result every twenty minutes. 
From the first analysis of the high tide curve, an initial time 

Table 2 Comparison of depths and tidal currents in the ICSA region
Area Rosmam (2009) Molinas (2020) Modeling (this paper)
PCIA Depth (m) Current (m.s− 1) depth

(m)
Current
m.s− 1)

Depth
(m)

Current (m.s− 1)

0–25 - 0–20 0,1–0,14 0–24 0–1.1

Table 3 Comparison of model results with reference to the tidal harmonic constant M2
Area AMASSEDS (1990) Fontes; Fontes et al. (2008) Modeling (this paper)
I. Maracá Amplitude (m) Current (m.s− 1) Amplitude (m) Current

(m.s− 1)
Amplitude (m) Current

(m.s− 1)
3,51 0,41 3,00 0,39 2,94 0,42

Table 4 Tide rise data for mid-tide neap and a difference between 
observed and modeled data
Elevation
(m)

Modeling
AMASSEDS (1990); 
Fontes et al. (2008)

Simulation
(this paper)

Dif-
fer-
ence

Maximum 3,81 3,51 0,17
Minimum 3,65 3
Mean 3,46 3,25

Fig. 5 Tide rise in the lower section of the Varador channel: maximum 
of 6.8 m and minimum of -0.2 m for the first spring tide of the period 
and maximum of 7.55 m and minimum of 0.40 m for the second spring 

tide of the analyzed period, P: Point, I: Island, R: River, Ch: Channel, 
I: ¨Igarapé¨
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of Maracá Island, and between 2.66 and 2.91 m on the outer 
part of the ICSA. The elevations for this period were close 
to those identified in the mid-tide simulation of spring and 
there is a movement of the water mass towards the outer 
part of the Maracá Island due to the ebb tide. The tidal cur-
rents had lower velocities in relation to the mid-ebb period 
of the spring, where the flow is more intense at the ends of 
the Varador channel (Ponta da Pescada/Maracá Island) and 
towards Cabo Norte (Fig. 7.a).

5.2.2.2 Low tide (Simulation 6) At low tide, there was little 
difference in relation to the elevation of the ebb tide in the 
neap, although in the Varador channel there was a reduc-
tion in elevation of 0.5 m, with low speeds of tidal currents, 
ranging from 0 m.s− 1 to 0.32 m.s− 1 in ICSA. Outside the 
ICSA, high tide ranged from 2.57 to 2.67 m with higher 
elevations near Cabo Norte (Fig. 7.b).

5.2.2.3 Mid-flood tide (Simulation 7) At mid-flood tide, 
elevations above 3 m were observed throughout the domain, 
as well as tidal current velocity between 0 m.s− 1 and 0.41 m.
s− 1. The highest elevation stretch (3.76–3.81 m) in the ICSA 
occurred in the Varador channel near Cape Norte. However, 
the highest tidal current velocities (0.77 m.s− 1 to 1 m.s− 1) 
were recorded near ¨Igarapé¨ do Inferno (Maracá Island) 
(Fig. 7.c).

5.2.2.4 High tide (Simulation 8) At high tide, the tide rise 
had low variation, with a maximum of 5.50 m in the central 
part of the Varador channel, lower in spring high tide. At 
ICSA the tidal rise was 5.18–5.36 m in the outer part of the 
Maracá Island, however, the tidal velocity was 0 m.s− 1 and 
0.12 m.s− 1 in the same area (Fig. 7.d).

5.3 Energetic density

In the northern and southern parts (Cabo Norte) of the Vara-
dor Channel, areas with tidal current fields were identified, 
with higher velocity in the ICSA during the spring-neap 
cycle. Thus, the highest energy densities were measured in 
both periods (Table 5).

From the determination of the hydrodynamic simula-
tions during the spring (1–4) and neap (5–8) in the ICSA, 
a division of the hydrodynamic modeling domain was cre-
ated and areas with velocities superior to 1,0 m.s− 1, favor-
able to energy extraction according to Fraenkel (2007). In 
simulation 2 (spring high tide), as well as in simulation 4 
(spring low tide) there was no occurrence of tidal currents 

5.2.1 Spring tide

5.2.1.1 Mid-flood tide (simulation 1) At mid-flood tide, 
the greatest elevation amplitudes occur at the north and 
south ends of the Varador channel, respectively close to the 
Flechal river and Igarapé do Inferno (Maracá island) and, in 
the lower part, with small variations in elevation amplitudes 
during the flood. Elevation and tide inland ranged from 2,12 
to 2,44 m but were between 2,64 and 2,72 m in most large 
part of the ICSA (Fig. 6.a). The velocity modules generated 
for the U and V components vary between 0.0 m.s− 1 and 
1,86 m.s− 1. The largest tidal current velocity fields oscillate 
between 1,09 m.s− 1 and 1.53 m.s− 1, in the upper part of the 
Varador channel. At this time, tidal currents have a speed 
of less than 1.0 m.s− 1, oscillating between 0.44 m.s− 1 and 
0.98 m.s− 1 in most ICSA.

5.2.1.2 High tide (simulation 2) At high tide (spring), there 
is a standardization of the tide rise in the ICSA in several 
areas, with minimum tidal height, much higher than at the 
neap moment. In the outer part of the ICSA the tide eleva-
tion was between 6.67 and 6.85 m with a gradual increase in 
the inner part of the Varador channel (6.88–7 m) and veloc-
ity between 0 m.s− 1 and 0.37 m.s− 1 near Ponta da Pescada 
(Fig. 6.b).

5.2.1.3 Mid-ebb tide (simulation 3) At mid-ebb tide, the 
tidal elevation remains high in the inner part of the Varador 
channel (2.46–2.62 m), with greater water flow throughout 
the entire length. At ICSA, tidal elevation varied between 
2.17 and 2.41 m on the outer part of Maracá Island. Also, 
tidal currents had the highest velocities (0.44 m.s− 1 to 
1.24 m.s− 1), near ¨Igarapé¨ do Inferno (Maracá Island) 
(Fig. 7.c).

5.2.1.4 Low tide (simulation 4) At low tide, the relative 
standardization of the tidal rise had a gradual increase up to 
the central part of the Varador channel (0.21–0.40 m), with 
small differences in the outer part of Maracá Island (0.2–0 
0.17 m) and velocity from 0 m.s− 1 to 0.43 m.s− 1 (Fig. 7.d). 
The strongest tidal currents (1.31–1.85 m.s− 1) occur in the 
narrowest stretch between the Atlantic coast of Amapá and 
Maracá Island, close to Cabo Norte.

5.2.2 Neap tide

5.2.2.1 Mid-flood tide (Simulation 5) At mid-flood tide, 
the tidal rise is between 2.84 and 2.94 m, towards the north 
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Fig. 6 Spring tide - Elevation and tidal current standards at moments A) mid-flood tide. B) high tide. C) mid-ebb tide. D) low tide in ICSA. A1 - 
Area A1, A2 - Area A2, P: Point, I: Island, R: River, Ch: Channel, I: ¨Igarapé¨
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Fig. 7 Neap – Elevation and tidal current standards at moments A) mid-ebb tide. B) Low tide. C) mid-flood tide. D) High tide. B1- Area B1, C1- 
Area C1, I: ¨Igarapé¨, P: Point, I: Island, R: River, Ch: Channel, I: ¨Igarapé¨
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6.2.1 Spring tide

The highest speeds occur in the rising mid-tide and in the 
ebbing mid-tide.

(1) In the upper section of the Varador channel (16–18 m 
depth), at mid-flood tide the velocity reached 1,53 m.s− 1 
and the corresponding energy density of 1.835,56 W.
m− 2;

(2) Near the lower section of the Varador channel (4–8 m 
depth) south of Maracá Island, a field of tidal currents 
with a velocity of 1,31 m.s− 1 was identified at mid-
flood tide, and the corresponding incident power is 
1.152,15 W.m− 2;

(3) In upper stretch of the Varador channel (Fig. 7.c) during 
mid-ebb tide, a tidal current velocity field of 1,14 m. 
s− 1 was identified and the energy density was 759,29 W.
m− 2;

(4) In the lower section of the Varador channel (Fig. 7.c), 
during the mid-ebb tide, a tidal current field reached a 
velocity of 1,12 m. s− 1 and corresponds to an incident 
power of 720,03 W.m− 2.

6.2.2 Neap tide

(1) In the Varador channel, the tidal current field had a 
lower velocity compared to the spring tidal moment. 
At low tide, the tidal current field reached a velocity of 
1,08 m.s− 1, with an energy density of 645,60 W.m− 2;

(2) In the Varador channel (Fig. 7.c) and during mid-flood 
tide, the current field reaches a speed of 0,9 m.s− 1 and 
the corresponding energy density of 373,61 W.m− 2;

During the spring tide, the ICSA exhibited a total area of   
99,680,000 m2 with an energy density of 113,958,905 kW, 
however, in the neap tide, the total area was 36,390,000 m2 
with an energy density of 18,736,278.9 kW.

6.3 Comparison with other regions of Brazil and 
world

The tidal regime has an important advantage in terms of 
predictability of its behavior, where the speed of the cur-
rents at high or low tides to the detriment of its semidiurnal 
regime and seasonality (rainy and dry periods) determine 
the places of considerable energy density. During the spring 
tidal cycle, the flow follows towards the coast with a veloc-
ity variation of 1.09 to 1,53 m.s− 1 in narrow segments of the 
ICSA, where in most of the domain the tidal currents oscil-
late between 0 0.44 and 0.98 m.s− 1, the velocity varies from 

with velocity above 1,00 m.s− 1. For the neap period, simu-
lations 6 (low tide) and 7 (mid-high tide) showed maximum 
tidal current velocity around 1,00 m.s− 1. Simulation 8 (high 
tide) showed the lowest tidal cycle velocities (0,0 - m.s− 1 to 
0,23 m.s− 1).

The places with relevant power density occur in the Vara-
dor channel: the upper section with a total power density of 
54.791,466 KW (mid-flood tide - currents of 1,53 m.s− 1) 
and 18.367,225 KW (mid-ebb tide - currents 1,14 m.s− 1), 
both during spring; and the lower section near Cabo Norte, 
with a total power density of 21.164,996 KW (mid-flood 
tide - currents of 1,31 m.s− 1) and 19.635,218 KW (mid-ebb 
tide- currents of 1,12 m.s− 1)(Table 5).

6 Discussion

6.1 SisBaHiA hydrodynamic model

Hydrodynamic models in homogeneous fluid indicate the 
pattern of currents in bodies of water with free surface, such 
as estuaries (Rosman 2021) and according to Cunha (2017), 
the properties of fluids can be conjectured through statistical 
methods for evaluating solutions analytical through numeri-
cal hydrodynamic models. SisBaHiA is considered an ade-
quate tool to produce hydrodynamic simulations (Dalazen 
et al. 2020; França et al. 2021). The results of the hydro-
dynamic analysis provided a representation of the hydro-
dynamic circulation in the ICSA based on the tidal current 
velocities calculated by the model.

6.2 Energy density available in ICSA

According to the analysis of hydrodynamic simulations (8) 
developed at ICSA during the spring and neap moments, 
fields of tidal currents were identified, with velocity greater 
than 1 m.s− 1 (Table 5):

Table 5 Energy densities calculated in ICSA stretches during tidal 
simulations and their respective tidal current velocities
Spring tide
Area km2 Period Velocity

(m.s− 1)
Total Gross 
Power (kW)

W.m− 2

A1 29,85 Mid-flood tide 1,53 54.791,466 1.835,56
A2 18,37 Mid-flood tide 1,31 21.164,996 1.152,15
C1 24,19 Mid-ebb tide 1,14 18.367,225 759,29
C2 27,27 Mid-ebb tide 1,12 19.635,218 720,03
Neap tide
B1 18,90 Low tide 1,08 12.201,840 645,60
C1 17,49 Mid-flood tide 0,9 6.534,438 373,61
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2019). Environmental data (water discharge of 200,000 m3 
s− 1/Liang et al. 2020; solid discharge of 160,000 m3 s− 1/
Cunha et al. 2021; hyper tide, with maximum height of 
11–12 m/DHN 2024; currents tide of 1.53 m.s− 1 and sus-
pended material of 700 mg.L− 1 (April) and 200 mg.L− 1 
(May)/Gensac et al. 2016) are relevant for the selection of 
sites for exploitation energy from tidal currents (Ross et al. 
2021). Taking into account these environmental conditions 
in the Varador channel, an anchored hydrokinetic turbine is 
suggested to take advantage of tidal currents. Understand-
ing the changes caused to the environment by the installa-
tion of tidal turbine technology involves both assessing the 
variation in energy density by determining the ideal location 
for applying the techniques and assessing the tidal currents 
(hydrodynamics) and suspended sediment concentration 
(SSC) in the estuary (Ross et al. 2021). The ecosystem and 
human populations determine the layout and location of 
tidal turbines to the detriment of the hydrodynamic impacts 
and sediment transport influenced by the implementation of 
tidal current energy extraction techniques.

The currents observed in this study indicate attrac-
tive energy densities for power generation, promoting the 
development of riverside communities and the production 
of green hydrogen in vast uninhabited areas. Given the 
region’s morphological characteristics and the temperature, 
salinity, and turbidity of equatorial waters, turbines should 
be designed for these conditions to achieve optimal effi-
ciency. Several recent studies report specific turbines for 
large Brazilian rivers and estuaries. For example, Gemaque 
et al. (2022), Rezek et al. (2023) and Cosme et al. (2023) 
report significant efficiency gains using diffuser turbines 
and other specific modifications.

7 Conclusion

The application of the Base System of Environmental 
Hydrodynamics (SisBaHiA) proved to be satisfactory for 
the development of hydrodynamic simulations (8), which 
allowed the identification of high tide current fields. Finally, 
the application of the energy density calculation pointed out 
the energy potential of several areas of the ICSA. The study 
area presents complexity for data entry in the software, 
however, the program proved to be efficient with results 
consistent with the real data. Through the hydrodynamic 
simulations carried out, it was verified that the minimum 
velocities of the tidal currents in the ICSA, occur only in the 
periods of flooding half-tide and ebb tide (spring), where 
they presented velocities between 1,12 m.s− 1 and 1,53 m.
s− 1 at the ends of the Varador channel.

During high and low tides of the spring, tidal currents 
with velocities between 0,16 m.s− 1 and 0–0,43 m.s− 1, 

zero (low tide) to a maximum and then decelerates at high 
tide. During ebb tide, the flow direction changes towards the 
ocean and accelerates again according to the cyclic behavior 
of the tides.

According to Rosman (2009), a considerable area of   
the ICSA exhibited tidal current velocity below 1,1 m.s− 1 
most of the time during a simulation period of 2 months. 
The modeling area near the Varador channel demonstrated 
in 50% of the time minimum tidal current velocities lower 
than 1,1 m.s− 1.

Assuming the minimum parameters for hydrokinet-
ics (Fraenkel 2007; Lim and Koh 2010; Myers and Bahaj 
2012), some stretches of the Varador channel present ener-
getic potential in both periods, spring (i) and neap (ii) ( 
Table 2): (i) Areas A1 with 1.835,56 W.m− 2 and A2 with 
1.152,15 W.m− 2 in mid-flood tide (Fig. 6.a) and areas C1 
with 759,29 W.m− 2 and C2 with 720,03 W.m− 2 (Fig. 6.c) 
during mid-ebb tide; (ii) Areas B1 with 645,60 W.m− 2 at low 
tide and C1 with 373,61 W.m− 2 (Fig. 7.c) at mid-flood tide 
also showed energy potential.

The average energy density in Chacao Channel (Chile) 
is greater than 5 kWm− 2 (Guerra et al. 2017). In Todos 
os Santos Bay (Brazil), the average energy density is 400 
Wm− 2 and reaches a peak of 2,5 kWm− 2 (Marta-Almeida 
et al. 2017; Vogel et al. 2019). In São Marcos Bay (Mara-
nhão / Brazil), the energy density is between 1,5 and 7,5 
kWm− 2 (González-Gorbeña et al. 2015). In Yangtze River 
estuary (China), the maximum energy density can exceed 
10 kWm− 2 and in the Chengshan cape, located in the most 
eastern part of Weihai (Shandong province/China), the aver-
age energy density is 2 kWm− 2 (Liu et al. 2021).

According to the results of this article, locations with 
relevant energy density were identified when compared to 
other estuaries in other parts of the world, which allows the 
hypothesis of installing turbines to generate electricity. Con-
comitantly with the development of new technologies for 
low-speed turbines (Yosry et al. 2021), the indicated sec-
tions with considerable energy density become economi-
cally exploitable according to the areas of energy potential 
and current speeds. Some sites can be compared to those 
identified by Czizeweski et al. (2020); Liu et al. (2021).

Estuaries have many social, physical aspects that must 
be considered before introducing tidal energy devices and 
are habitat and breeding grounds for many marine species 
[McLusky and Elliot 2004). On the other hand, estuaries 
provide environmental services and provide recreational 
and economic activities to riverside communities. The tidal 
currents in ICSA, with maximum velocities of 1.53 m.s− 1, 
occur in the narrowest part of the Varador channel (Table 5), 
and where the bottoms are covered by fine sediments from 
the Amazon River, transported towards the north, by water 
discharge and macro tidal currents (Tenorio-Fernandez et al. 
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