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Abstract
Reanalysis datasets have been widely used in oceanography and climate change studies. We evaluate the applicability of eight 
reanalysis datasets in the Yellow and Bohai seas (YBS), including ERA5, SODA3.4.2, GREPv2, C-GLORSv7, GLORYS2v4, 
ORAS5, CORAv1.0, and CORAv2.0, compared to the observation data from the oceanic stations and an observation-based 
dataset of global instantaneous 3D thermohaline fields (ARMOR3D). The results show that the sea surface temperature (SST) 
of ERA5, ORAS5, and GREPv2 agrees with the observations, while the temperature profiles of C-GLORSv7 and GREPv2 are 
in good agreement with the ARMOR3D observation. In terms of ocean salinity, the salinity profile of the CORA series is in 
better agreement than other reanalysis datasets. Overall, GREPv2 is more consistent with seawater temperature observations 
in the YBS than others, while the CORA series reproduces the salinity variation better. GREPv2, a multi-model ensemble 
product, delivers a better depiction of seawater temperature and salinity than that of the individual member dataset. Most 
reanalysis datasets can reproduce the interannual variation of SST in the YBS well with improved performance in the last 
decade. The spatial distribution differences occur mostly in offshore waters with a warmer but less salinity bias.
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1  Introduction

The ocean is the dominant reservoir of the global water 
cycle, which is inextricably linked to climate change. Sea-
water temperature is a widely used ocean variable in global 
climate change analysis, characterizing the combined results 
of ocean thermal and dynamical processes and sea-air inter-
actions (Wu et al. 2013). The Sixth Assessment Report of 

the Intergovernmental Panel on Climate Change (IPCC) 
notes that the global surface temperatures per decade dur-
ing the last 40 years have seen successively warmer than any 
decade since 1850 (Masson-Delmotte et al. 2021). Cheng 
et al. (2019) pointed out that the average temperature in the 
upper ocean (0 − 2000 m) since 1960 has increased by about 
0.13 ℃, especially in the accelerating warming process since 
1990. At the same time, seawater salinity is also an essential 
indicator of the global water cycle (Du et al. 2019). Over 
the past half-century, the global water cycle has acceler-
ated due to continuous climate warming (Yu et al. 2020), 
which in turn affects seawater salinity. Both observations 
(Skliris et al. 2014) and numerical simulations (Held and 
Soden 2006) show a “fresh gets fresher, salty gets saltier” 
pattern in ocean surface salinity on multi-year intergenera-
tional time scales.

To reconstruct historical ocean data and predict future 
environmental trends, a series of ocean survey programs 
(Liu et al. 2017) has been carried out and released corre-
sponding products. Among them, data assimilation systems 
have been applied for the reanalysis datasets to coordinate 
and analyze various historical observations (Chi et al. 2018; 
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Storto et al. 2019). Therefore, the reanalysis datasets are 
increasingly used in ocean climate change studies. Up to 
now, dozens of global reanalysis datasets have been pub-
licly released, including the simple ocean data assimilation 
(SODA) series developed by the University of Maryland 
(Carton et al. 2018), the ocean reanalysis system (ORAS) 
series (Balmaseda et al. 2013) released by the European 
Centre for Medium-Range Weather Forecasts (ECMWF), 
the ECMWF reanalysis (ERA) series (Patra et al. 2020), the 
global ocean reanalysis system (GLORYS) series (Verezem-
skaya et  al. 2021) established by the Mercator Marine 
Center, France, and the China ocean reanalysis (CORA) 
series (Han et al. 2011, 2013a, 2013b) developed by the 
National Marine Data and Information Service, Ministry of 
Natural Resources of the People’s Republic of China.

However, there exists a certain bias in different regions in 
terms of ocean temperature and salinity variables among dif-
ferent analyses (Bengtsson et al. 2004). Overall, the trends of 
global mean temperature and salinity among different data-
sets may vary as much as 30% to 40% (Carton et al. 2019). 
In the tropical Indian Ocean, the study found lower sea sur-
face temperature (SST) in the global ocean data assimilation 
system (GODAS) and higher SST in ensemble coupled data 
assimilation (ECDA), SODA, and ORAS4 (Karmakar et al. 
2018). In the tropical Pacific Ocean, there exist small devia-
tions of ocean salinity among different reanalyzed datasets. 
At the same time, the most significant divergence and errors 
were found in the Southern Ocean and other regions with 
large frontal variations, which may be caused by the lack of 
observational data (Balmaseda et al. 2015; Shi et al. 2017). 
Therefore, according to previous studies, reanalysis datasets 
are unlikely to perform well in all regions or all periods.

In recent years, the applicability of reanalysis data in 
the adjacent sea areas of China has been explored com-
pared to the observations from stations and satellites. The 
regional reanalysis product CORAv1.0 has attracted more 
scholarly attention. Wu et al. (2013) compared the sea-
sonal and interannual variability of SST near the China 
seas between CORAv1.0 and SODA2, and the results 
compared to Advanced Very High Resolution Radiometer 
(AVHRR) satellite data showed that the CORAv1.0 data-
set had a smaller error. Zhang et al. (2016) also found that 
CORAv1.0 performed better in capturing the intraseasonal 
variability of SST than the Estimating the Circulation and 
Climate of the Ocean, Phase II (ECCO2) and SODA2, but 
it needed further improvement at the subsurface layer. Chao 
et al. (2021) calculated the errors of CORAv1.0 in the north-
west Pacific and pointed out that the root mean square error 
(RMSE) of 0 − 2000 m temperature and salinity were 0.61 
℃ and 0.08 psu, respectively. In addition, Gao et al. (2015) 
evaluated the applicability of the ERA-Interim dataset for 
SST in the Bohai Sea. Overall, the assessment of reanalysis 
datasets in Chinese waters is relatively homogeneous with a 

comparative analysis of only single or two reanalysis data-
sets (Wu et al. 2013; Gao et al. 2015; Zhang et al. 2016; 
Chao et al. 2021). However, comprehensive studies of spa-
tiotemporal variability of ocean temperature and salinity 
among multiple reanalysis datasets are lacking.

The marine economy of the coastal provinces in the Yel-
low and Bohai seas (YBS) has been witnessing rapid growth. 
Based on data from the China Marine Economic Statistical 
Yearbook 2019 (Ministry of Natural Resources of the Peo-
ple’s Republic of China 2021), the total marine economy of 
the six provinces along the YBS, namely, Liaoning, Hebei, 
Tianjin, Shandong, Jiangsu, and Shanghai, amounted to 
4,291,360 million yuan in 2019. This accounts for approxi-
mately 15.27% of the gross regional product. Due to global 
climate change, the physical ocean parameters such as 
temperature and salinity in the YBS have changed signifi-
cantly in recent decades (Lin et al. 2001; Park et al. 2015; 
Wei et al. 2020). The increase in seawater temperature and 
salinity will significantly impact the future regional climate 
change, ocean environment, and aquatic ecology in the YBS. 
However, the magnitude of difference for various reanalysis 
datasets cannot be neglected in the assessment. As such it 
is crucial to select an appropriate reanalysis dataset. There-
fore, evaluations of the reliability and accuracy of seawater 
temperature and salinity of reanalysis datasets over the YBS 
need to be carried out, which are essential to many climate 
applications such as the reconstruction of historical marine 
environment and the initialization of seasonal and decadal 
forecasts.

In this study, we first attempt to evaluate multiple global 
reanalysis products in the YBS. The paper is organized as 
follows: data and method are described in Section 2, com-
parison results are in Section 3, discussions are in Section 4, 
and summaries are in Section 5.

2 � Data and method

2.1 � Data sources

2.1.1 � Reanalysis data

In this paper, we select eight reanalysis datasets for assess-
ing temperature and salinity changes in the YBS, including 
(1) the fifth generation of the ECMWF reanalysis (ERA5, 
http://​apps.​ecmwf.​int/​data-​catal​ogues/​era5/?​class=​ea); (2) 
the version 3.4.2 of SODA (SODA3.4.2) developed by the 
University of Maryland (UM), USA (https://​www2.​atmos.​
umd.​edu/​~ocean/​index_​files/​soda3.4.​2_​mn_​downl​oad_b.​
htm); (3) the version 2 of global ocean reanalysis ensem-
ble product (GREPv2) released by the Mercator Ocean 
(https://​resou​rces.​marine.​coper​nicus.​eu/​produ​cts0); (4) the 
sub-datasets in the GREPv2 ensemble, including the ocean 

http://apps.ecmwf.int/data-catalogues/era5/?class=ea
https://www2.atmos.umd.edu/~ocean/index_files/soda3.4.2_mn_download_b.htm
https://www2.atmos.umd.edu/~ocean/index_files/soda3.4.2_mn_download_b.htm
https://www2.atmos.umd.edu/~ocean/index_files/soda3.4.2_mn_download_b.htm
https://resources.marine.copernicus.eu/products0
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reanalysis system 5 (ORAS5) published by the ECMWF, the 
second generation, version 4 of GLORYS (GLORYS2v4) 
distributed by Copernicus Marine Environment Monitoring 
Service (CMEMS), the version 7 of the Euro-Mediterranean 
Center on Climate Change (CMCC) global ocean reanaly-
sis system (C-GLORSv7); and (5) the first and second gen-
erations of CORA released by the National Marine Data 
Center (CORAv1.0, CORAv2.0, http://​mds.​nmdis.​org.​cn/​
pages/​dataV​iewDe​tail.​html?​dataS​etId=​48). The details of 
the resolution, assimilation methods, and ocean assimila-
tion variables of the above reanalysis datasets are shown in 
Table 1. It is worth mentioning that, due to the unavailability 
of daily data in SODA3.4.2 and CORAv1.0, with their high-
est time resolutions being 5 days and 1 month respectively, 
all reanalysis data used in this study were obtained on a 
monthly interval for subsequent analysis.

2.1.2 � Observation data from ocean stations

The observational temperature and salinity data from six 
ocean stations (shown in Fig. 1) used in this paper can be 
downloaded from the National Marine Data Center of China 
(http://​mds.​nmdis.​org.​cn/​pages/​dataV​iewDe​tail.​html?​dataS​
etId=9). The observed temperature and salinity data include 
the daily SST and the daily average sea surface salinity 
(SSS) from January 1996 to December 2020 at three ocean 
stations, including Shidao (36.5° N, 122.3° E), Xiaomaidao 
(36.0° N, 120.3° E) and Lianyungang (34.5°N, 119.3°E). 
The observed hourly SST datasets from January 2011 to 
December 2020 at three ocean stations, including Laohutan 
(38.9°N, 121.7°E), Zhifudao (37.6° N, 121.4° E), and Lvsi 
(32.1° N, 121.6° E), are also collected. The daily mean val-
ues are arithmetically calculated based on the hourly SST 

Table 1   The introduction of 
eight reanalysis datasets

*The variable of sea surface temperature was selected
# GREPv2 is a multi-model ensemble

Dataset Institution Resolution Level Period Model Assimilation system

ERA5 ECMWF 1/4° 1* 1940 − present IFS Cycle 41r2 4DVAR
SODA3.4.2 UM 1/2° 50 1980 − 2020 MOM 5.1 OI
GREPv2 CMEMS 1/4° 75 1993 − 2019  − #  − 
C-GLORSv7 CMCC 1/4° 75 1993 − 2019 NEMO3.6 3DVAR
GLORYS2v4 CMEMS 1/4° 75 1993 − 2019 NEMO3.1 SEEK + 3DVAR
ORAS5 ECMWF 1/4° 75 1993 − 2019 NEMO3.4 3DVAR
CORAv1.0 NMDIS 1/2° 35 1958 − 2018 POMgcs 3DVAR
CORAv2.0 NMDIS 1/10° 50 1989 − 2019 MITgcm 3DVAR

Fig. 1   Location map of the 
study area

http://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=48
http://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=48
http://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=9
http://mds.nmdis.org.cn/pages/dataViewDetail.html?dataSetId=9
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from the ocean stations, and the monthly average, seasonal 
average (March to May for spring, June to August for sum-
mer, September to November for autumn, and December to 
February of the following year for winter), and the annual 
average data are further calculated based on the daily aver-
age SST and SSS.

2.1.3 � Multi‑observation  ocean temperature and salinity 
data

The global multi-observation ocean 3D temperature and 
salinity data (ARMOR3D) dataset are used in this study, 
which is available through the CMEMS implemented by 
Mercator Ocean (https://​data.​marine.​coper​nicus.​eu/​produ​
ct/​MULTI​OBS_​GLO_​PHY_​TSUV_​3D_​MYNRT_​015_​
012). ARMOR3D dataset combines remote sensing obser-
vations (SST, sea level anomalies, and geostrophic surface 
currents) with in situ vertical profiles of temperature and 
salinity obtained primarily from the Argo network using 
statistical methods (Guinehut et al. 2012; Verbrugge et al. 
2017). The dataset has a spatial resolution of 0.25° and a 
temporal resolution of weekly/monthly averaging, covering 
50 layers of vertical data from 0 to 5500 m. The main vari-
ables include temperature, salinity, and sea surface height. 
The synthesis of the ARMOR3D multi-observation data-
set is mainly divided into two steps. The first step synthe-
sizes the temperature field from satellite altimeter data and 
in situ observations using multiple/simple linear regression 
methods and synthesizes the salinity field from satellite alti-
tude data. The second step combines the synthesized fields 
with in situ temperature and salinity profiles using optimal 
interpolation.

The ARMOR3D dataset exhibits a high level of robust-
ness, as evidenced by its minimal RMSE values (Guinehut 
et al. 2012). Notably, the RMSE of seawater temperature is 
observed to be 0.80 °C at a depth of 100 m and 0.20 °C at a 
depth of 1000 m, respectively. Similarly, the RMSE of salin-
ity is 0.10 psu at a depth of 100 m and 0.05 psu at a depth 
of 1000 m, respectively. Therefore, the observation-based 
ARMOR3D dataset has become widely used as an independ-
ent benchmark against satellite-derived products (Su et al. 
2021; Hu and Zhao 2022), numerical results (Kaurkin et al. 
2016), or assimilated reanalysis datasets (Cipollone et al. 
2017; Iakovleva and Bashmachnikov 2021).

2.2 � Data processing

To facilitate the comparison with the measured data of the 
ocean station, the grid point which is closest to the latitude 
and longitude of the ocean station is selected and used as the 
corresponding data of the ocean station. If the deviation is 
large, the four nearest surrounding grid values are selected, 
and they are further calculated by the distance-weighted 

linear interpolation method (Gao et al. 2015). To directly 
compare with the ARMOR3D multi-observation  data-
set with 0.25°, all reanalysis datasets are regridded to a 
0.25° × 0.25° horizontal grid to perform bilinear interpola-
tion (Carton et al. 2019). Although some information might 
be lost in the regridding (Li et al. 2020), previous studies 
used similar methods and showed that data quality was not 
affected to a greater extent (Carton et al. 2019; Arshad et al. 
2021).

The parameters, such as linear correlation coefficient 
(COR), standard deviation (SD), centered root mean square 
error (CRMSE), and bias ratio relative to observations (BR) 
of the reanalysis datasets, are calculated for the applicabil-
ity evaluation of eight reanalysis datasets. The formulae are 
listed as follows:

where n is the number of all values or elements; {ai} is 
the actual observations time series; {oi} is the estimated or 
forecasted time series; a is the mean of a1, …, an; and o is 
the mean of o1, …, on.

Furthermore, the Taylor diagrams (Taylor 2001) are 
employed to effectively differentiate the performance of 
various reanalysis datasets based on the aforementioned 
COR, SD, and CRMSE values.

3 � Results

3.1 � Comparative analysis with ocean station 
observations

3.1.1 � Interannual variation

The annual mean SST and SSS variation are calculated 
based on the daily temperature and salinity observation 
data from the coastal ocean stations (Shidao, Xiaomaidao, 
Lianyungang, Laohutan, Zhifudao, Lvsi) in the study area 
from 1996 to 2020. Eight reanalysis datasets, including 
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ERA5, GREPv2, C-GLORSv7, GLORYS2v4, ORAS5, 
CORAv1.0, CORAv2.0, and SODA3.4.2, are compared 
with the ocean station observations. As shown in Fig. 2, a 
consistent annual mean SST variation is found between the 
reanalysis datasets and the ocean station observations. There 
is no significant trend (p > 0.05) in the annual mean SST at 
Shidao, Xiaomaidao, and Lianyungang from 1996 to 2010. 
However, since 2011, there exists a significant warming 
trend (p < 0.05) for SST in all six ocean stations. The aver-
age warming rate of the reanalysis data is 0.17 ℃/yr, which 
is slightly lower than the ocean station with 0.19 ℃/yr, and 
positive deviations in the reanalysis datasets are found. It 
is worth noting that the average deviations of SST at Shi-
dao, Xiaomaidao, and Lianyungang during 2011 − 2020 
for the four reanalysis datasets, including GREPv2, GLO-
RYS2v4, ORAS5, and CORAv2.0, are reduced to some 

extent compared with those in 1996 − 2010. The average 
reduction in absolute deviation over the past 10 years ranges 
from 12 to 20%, indicating that the accuracy of SST in these 
four reanalysis datasets has improved during the last decade.

Figure  3 compares the annual mean SSS variation 
between ocean stations and reanalysis datasets from 1996 
to 2020. The deviation range of the annual mean SSS of the 
reanalysis dataset is − 5.06 ~ 4.60 psu, and the negative devi-
ation is predominant. There is no significant trend (p > 0.05) 
for the interannual variability of SSS at Shidao and Xiao-
maidao, while there exists a decreasing trend through the 
95% confidence test at Lianyungang. The decreasing rate 
of eight reanalysis datasets with − 0.03 psu/yr is lower than 
that of the observations with − 0.12 psu/yr. The CORA series 
(CORAv1.0 and CORAv2.0) is closest to the observations 
at Shidao and Xiaomaidao, with mean absolute deviations 

Fig. 2   Comparison of annual mean SST variations between ocean stations, eight reanalysis datasets, and the ARMOR3D multi-observation data-
set in the YBS (1996 − 2020: a Shidao, b Xiaomaidao, and c Lianyungang; 2011 − 2020: d Laohutan, e Zhifudao, and f Lvsi)

Fig. 3   Comparison of the annual mean SSS variations between ocean stations, eight reanalysis datasets, and the ARMOR3D multi-observa-
tion dataset in the YBS during 1996 − 2020 (a Shidao, b Xiaomaidao, and c Lianyungang)
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of 0.45 psu and 0.59 psu, respectively. The deviations of 
GLORYS2v4 and SODA3.4.2 are relatively large, with 
maximum negative deviations of − 5.06 psu and − 4.03 psu, 
respectively. However, the salinity at Lianyungang is quite 
different. The CORA series exhibits a large positive devia-
tion, while SODA3.4.2 and C-GLORSv7 datasets have rela-
tively small deviations.

Positive deviations in SST are observed at the Shidao, 
Xiaomaidao, and Laohutan stations. Among these stations, 
the largest deviations are observed at the Shidao station, 
with the values of BR ranging from 4.08% to 18.67% for 
eight reanalysis datasets. In contrast, negative deviations 
in SST are observed at the Lianyungang and Lvsi stations. 
Figure 4 illustrates the Taylor diagram, which compares 
the annual mean SST of eight reanalysis datasets and the 
ARMOR3D multi-observation dataset with ocean station 
observations in the YBS. Compared to eight reanalysis 
datasets, the ARMOR3D multi-observation dataset exhib-
its the highest COR values and the lowest CRMSE values at 
Shidao, Xiaomaidao, and Zhifudao stations. Additionally, 
the remaining three stations also exhibit enhanced perfor-
mance. These findings highlight that ARMOR3D exhibits 
robust performance in accurately representing SST within 
the YBS. Among the eight reanalysis datasets, the GREPv2 
and ORAS5 datasets exhibit the highest CORs and the 
lowest CRMSE. However, it is worth noting that the SST 
deviations of the CORAv1.0 dataset are notably higher com-
pared to the other reanalysis datasets, particularly at Shidao, 
Xiaomaidao, and Lvsi stations, as depicted in Fig. 4. Fur-
thermore, spatial variations in the correlation coefficient are 

observed across different stations. Laohutan station dem-
onstrates the highest correlation coefficient, with all values 
surpassing 0.90. Conversely, the Lvsi station displays the 
lowest correlation coefficient among the stations.

Similarly, the Taylor diagram of the annual mean SSS 
of the reanalysis datasets is presented in Fig. 5. Overall, 
the correlations between the reanalysis datasets and the 
observed data are generally low, typically below 0.50 in 
absolute terms. It is worth noting that the mean CRMSE 
of ARMOR3D for three ocean stations is 0.68 psu, which 
is lower than all other seven reanalysis datasets (ranging 
from 0.82 to 1.15 psu). Among these seven reanalysis data-
sets, GREPv2 exhibits the smallest mean CRMSE at 0.82 
psu, while SODA3.4.2 displays the highest mean CRMSE 
at 1.15 psu. Furthermore, when compared to the ocean sta-
tion observations, the reanalysis datasets consistently show 
a negative deviation in SSS. Notably, the maximum BR is 
observed at Xiaomaidao, indicating a substantial deviation 
at this location.

3.1.2 � Intrayear variation

Figure 6 shows the intrayear variation of SST between eight 
reanalysis datasets, the ARMOR3D multi-observation data-
set, and the ocean station observations. The overall seasonal 
trends of the reanalysis datasets and the observations are 
consistent. At the same time, the deviations of seasonal SST 
between eight reanalysis datasets, the ARMOR3D multi-
observation dataset, and the ocean station observations are 
shown in Fig. 7. Overall, the SST deviation in summer is 

Fig. 4   Taylor diagram of the annual mean SST of eight reanalysis datasets and the ARMOR3D multi-observation dataset compared to the ocean 
station observations in the YBS (a Shidao, b Xiaomaidao, c Lianyungang, d Laohutan, e Zhifudao, and f Lvsi)
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Fig. 5   Taylor diagram of the annual mean SSS of eight reanalysis datasets and the ARMOR3D multi-observation dataset compared to the ocean 
station observations in the YBS (a Shidao, b Xiaomaidao, and c Lianyungang)

Fig. 6   Comparison of intrayear SST changes between eight reanalysis datasets, the ARMOR3D multi-observation dataset, and the ocean station 
observations in the YBS (1996 − 2020: a Shidao, b Xiaomaidao, and c Lianyungang; 2011–2020: d Laohutan, e Zhifudao, and f Lvsi)
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the largest, among which Shidao, Xiaomaidao, and Laohu-
tan stations all show obvious positive deviations, especially 
there exists a positive deviation at Shidao station exceeding 
4.00 °C. The SST in winter for six stations is generally over-
estimated. The deviation in spring and autumn is relatively 
smaller than that in summer and winter. In comparison to 
eight reanalysis datasets, the ARMOR3D multi-observa-
tion dataset demonstrates a generally reduced deviation 
compared to the observed data. Among the reanalysis data-
sets, the deviations of the ORAS5 dataset in the autumn and 
winter are found to be generally smaller than other reanalysis 
datasets, while the CORA series exhibits larger deviations 
than the other datasets. Furthermore, it is worth mentioning 
that the GREPv2 ensemble reanalysis dataset has shown a 
significant improvement in seasonal SST deviation, with a 

notable reduction of 15% when compared to GLORYS2v4 
and C-GLORSv7.

The deviations of seasonal SSS between seven reanalysis 
datasets, the ARMOR3D multi-observation dataset, and the 
ocean station observations are shown in Fig. 8. The SSSs of 
the reanalysis datasets are generally lower than the observed 
data at three ocean stations, except for the CORA series. 
Comparing the seasonal differences of all the reanalysis 
datasets, the seasonal deviation of SSS of C-GLORSv7 and 
SODA3.4.2 is the smallest among all datasets. However, 
the negative deviations of GLORYS2v4 in all seasons are 
higher than other reanalysis datasets, with the largest devia-
tion of − 4.86 psu in the autumn at Xiaomaidao station. In 
addition, the deviation of the CORA series varies notably 
at different stations, among which the deviations at Shidao 

Fig. 7   Deviations of seasonal SST between eight reanalysis datasets, the ARMOR3D multi-observation dataset, and the ocean station observa-
tions in the YBS (1996 − 2020: a Shidao, b Xiaomaidao, and c Lianyungang; 2011 − 2020: d Laohutan, e Zhifudao, and f Lvsi)

Fig. 8   Deviations of seasonal SSS between seven reanalysis datasets, the ARMOR3D multi-observation dataset, and the ocean station observa-
tions in the YBS from 1996 − 2020 (a Shidao, b Xiaomaidao, and c Lianyungang)
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and Xiaomaidao stations are considerably smaller than other 
reanalysis datasets, while there exists a positive deviation 
at Lianyungang station. In terms of the ARMOR3D multi-
observation dataset, the salinity deviation is found to be 
the smallest at Shidao and Xiaomaidao, in comparison to 
the other seven reanalysis datasets. However, a significant 
positive deviation is observed at Lianyungang, which can 
potentially be attributed to the substantial difference in the 
location of the sampling points. The center point of the sam-
pling grid in ARMOR3D and CORAv1.0 is noticeably dis-
tant from the actual location of the Lianyungang ocean sta-
tion, with measurements of approximately 0.37° and 0.74°, 
respectively. In contrast, the distances from the center point 
of the other reanalysis datasets are less than 0.24°.

3.2 � Horizontal variations of temperature 
and salinity

3.2.1 � Annual mean variation

The spatial variation of regional mean annual SST and 
SSS in the YBS for eight reanalysis datasets, includ-
ing ERA5, SODA3.4.2, GREPv2, C-GLORSv7, GLO-
RYS2v4, ORAS5, CORAv1.0, and CORAv2.0, is com-
pared to the observation variation based on the ARMOR3D 

multi-observation dataset. Figure 9 shows the deviations of 
regional multi-year mean SST in the YBS with a deviation 
bar of − 2.1 ~ 2.1 ℃. Regarding the overall regional devia-
tions, C-GLORSv7, GLORYS2v4, and CORAv2.0 datasets 
show large positive deviations, and ERA5, ORAS5, and 
GREPv2 datasets have relatively low positive deviations. 
However, SODA3.4.2 and CORAv1.0 datasets have an 
obvious negative zone for SST, and the negative deviations 
are primarily found in the central part of the North Yellow 
Sea, the eastern Yellow Sea along the Korean coast, and the 
boundary between the southern Yellow Sea and the East 
China Sea. The regional mean annual SST is all overesti-
mated compared to the ARMOR3D observation dataset with 
a relative deviation ranging from 0.88% ~ 3.15%. Regarding 
the region of the northeastern Yellow Sea region, the reanal-
ysis datasets generally show positive deviations, especially 
for the SODA3.4.2 dataset with a deviation of 1.4 ~ 2.1 ℃. 
Regarding the region of the Bohai Sea, the SST has been 
overestimated for all reanalysis datasets. In addition, the 
deviations of the GREPv2 ensemble dataset are lower than 
those of C-GLORSv7 and GLORYS2v4, indicating that the 
ensemble data’s regional SST quality has improved com-
pared with the individual dataset. The results show that the 
applicability of ERA5, ORAS5, and GREPv2 is relatively 
good for regional multi-year mean SST in the YBS.

Fig. 9   Spatial distribution of the deviations of regional multi-
year mean SST in the YBS (a ERA5 (1993 − 2020), b SODA3.4.2 
(1993 − 2019), c GREPv2 (1993 − 2019), d C-GLORSv7 

(1993 − 2019), e GLORYS2v4 (1993 − 2019), f ORAS5 
(1993 − 2019), g CORAv1.0 (1993 − 2019), and h CORAv2.0 
(1993 − 2019))
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Similarly, the deviations of regional multi-year mean SSS 
for different reanalysis datasets in the YBS are shown in 
Fig. 10. There are apparent differences in SSS deviations 
ranging from − 12.9 ~ 2.1 psu among different reanalysis 
datasets. Except for the CORAv2.0 dataset, the regional 
mean annual SSS is generally underestimated with the BR 
of − 6.66% ~  − 0.58%. SODA3.4.2, GREPv2, C-GLORSv7, 
GLORYS2v4, and ORAS5 datasets mainly have negative 
deviations. However, both CORAv2.0 and SODA3.4.2 
datasets have positive deviations in the Bohai Sea, with the 
SODA3.4.2 dataset reaching a maximum deviation of 2.1 
psu. When comparing the SSS deviations among all the rea-
nalysis datasets, the CORA series demonstrates relatively 

smaller deviations compared to other reanalysis datasets. 
Particularly, the CORAv1.0 dataset stands out with relatively 
good quality, featuring the smallest BR of − 0.58%.

3.2.2 � Intrayear variation

The intrayear variation of SST between the reanalysis data-
sets and the ARMOR3D multi-observation dataset is shown 
in Fig. 11a. The monthly SST shows a similar trend com-
pared to the observations. The reanalysis datasets all overes-
timate the SST in winter and spring with positive deviations 
of 0.23 ~ 0.77 ℃, especially the ERA5 and ORAS5 datasets 
having the smallest deviation (as shown in Fig. 11b). Except 

Fig. 10   Spatial distribution of the deviations of regional multi-
year mean SSS in the YBS (a SODA3.4.2(1993 − 2019), b 
GREPv2(1993 − 2019), c C-GLORSv7(1993 − 2019), d GLORYS2v4 

(1993 − 2019), e ORAS5(1993 − 2019), f CORAv1.0(1993 − 2018), 
and g CORAv2.0(1993 − 2019))

Fig. 11   Monthly mean SST 
change (a) and deviations of 
seasonal mean SST between 
the reanalysis datasets and 
the ARMOR3D multi-obser-
vation dataset (b) in the YBS 
during 1993 − 2020
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for CORAv1.0, the deviations of most reanalysis datasets 
are all reduced to < 0.25 °C in summer. In particular, the 
deviation of GREPv2 is only 0.04 ℃. The SST of CORAv1.0 
shows a negative anomaly in summer, with a maximum 
deviation reaching − 0.78 ℃. Positive SST deviations are 
found for most reanalysis datasets in autumn. Consistent 
with the intrayear variation, the seasonal SST deviation of 
the GREPv2 ensemble dataset has been improved compared 
with GLORYS2v4 and C-GLORSv7. In general, the ERA5 
dataset has relatively good applicability for monthly SST 
variation.

Figure 12a shows the intrayear variation of SSS between 
the reanalysis datasets and the ARMOR3D multi-obser-
vation dataset. There is a large SSS deviation in summer 
compared to the observations, especially with a maxi-
mum deviation in August. Six reanalysis datasets, includ-
ing SODA3.4.2, GREPv2, C-GLORSv7, GLORYS2v4, 
ORAS5, and CORAv1.0, generally underestimate the 
SSS in four seasons (as shown in Fig. 12b). Among them, 
CORAv1.0 has the smallest deviation with a deviation range 
of − 0.31 ~  − 0.01 psu, while CLORYS2V4 has the largest 
deviation with a maximum deviation of − 3.46 psu. However, 
CORAv2.0 generally overestimates the SSS in the whole 
year with a deviation range of 0.24 ~ 0.62 psu. Regarding 
the seasonal difference, the SSS deviation of the reanalysis 
datasets is largest in summer, while it decreases to the lowest 
in winter. Overall, the quality of the CORAv1.0 dataset is 
relatively good based on the abovementioned evaluation of 
monthly SSS variation.

3.3 � Vertical variations of temperature and salinity

In this study, the ARMOR3D multi-observation dataset 
is selected as another observation dataset to evaluate the 
applicability of the vertical profile of seven reanalysis data-
sets in the YBS from 1993 to 2020, including SODA3.4.2, 
GREPv2, C-GLORSv7, GLORYS2v4, ORAS5, CORAv1.0, 
and CORAv2.0. It is worth mentioning that no vertical pro-
file of the ocean is available from ERA5 as it is an atmos-
pheric reanalysis; thus, the ERA5 dataset can only provide 
the sea surface temperature data. Since the water depth in 

the YBS is shallow with an average depth of only 18 m in 
the Bohai Sea and 44 m in the Yellow Sea and the depth is 
generally lower than 80 m (Liu et al. 2007), thus, the vertical 
temperature and salinity data were extracted for the upper 
80 m for further analysis.

3.3.1 � Interannual variation

Deviations of annual mean vertical temperature between 
the reanalysis datasets and the ARMOR3D multi-obser-
vation dataset in the YBS during 1993 − 2020 are shown 
in Fig. 13a. The ocean temperature deviation in the upper 
20 m is less than 1.0 °C for the six reanalysis datasets except 
for CORAv2.0. With the increase in depth, there exhibits a 
positive bias for the CORA series, GREPv2, C-GLORSv7, 
GLORYS2v4, and ORAS5 reanalysis datasets, especially 
with a maximum deviation at 60 m depth. In contrast, the 
SODA3.4.2 dataset has the largest negative deviation with 
a maximum value of − 5.0 ℃. The statistical analysis of 
the vertical temperature between reanalysis datasets and 
ARMOR3D can be found in Table 2. The correlation coef-
ficients of five reanalysis datasets, CORAv1.0, GREPv2, 
C-GLORSv7, GLORYS2v4, and ORAS5, demonstrate 
strong agreement, exceeding a high value of 0.97. However, 
the correlation coefficients of SODA3.4.2 and CORAv2.0 
are comparatively lower, measuring below 0.83. Over-
all, SODA3.4.2 has a large negative deviation with a BR 
value of − 11.13%, while the other reanalysis datasets have 
positive deviations. In addition, in terms of CRMSE, the 
C-GLORSv7 and GREPv2 datasets exhibit lower values of 
0.35 ℃ and 0.45 ℃, respectively. Conversely, the SODA3.4.2 
dataset demonstrates a maximum CRMSE value of 1.71 ℃. 
Therefore, the applicability of C-GLORSv7 and GREPv2 
is relatively good for the mean vertical temperature in the 
YBS, while the deviation of SODA3.4.2 is considerably 
large.

Figure 13b shows the deviations of annual mean vertical 
salinity between the reanalysis datasets and ARMOR3D in 
the YBS during 1993 − 2020. The seawater salinity devia-
tions in the upper 20 m of the CORA series are relatively 
small, while the other five reanalysis datasets have relatively 

Fig. 12   Similar to Fig. 11 but 
for SSS
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large negative deviations. The CORA series reanalysis data-
sets also have good applicability for vertical salinity with the 
increase in depth. Table 2 also gives the statistical analy-
sis of the vertical salinity between reanalysis datasets and 
ARMOR3D. Strong positive correlations of vertical salin-
ity between seven reanalysis datasets and ARMOR3D are 
found, especially the CORA series datasets having maxi-
mum values. However, the GLORYS2v4 dataset has the 
largest CRMSE with 0.95 psu.

3.3.2 � Intrayear variation

Figure 14 shows the deviations of seasonal mean vertical 
temperature between the reanalysis datasets and ARMOR3D 
in the YBS during 1993 − 2020. Overall, the deviations 
in spring and winter are small for six reanalysis datasets 
except for SODA3.4.2, with the deviations generally less 
than 2 ℃. The deviations of vertical temperature increase 
in summer and autumn, and the larger deviations occur at 
50 ~ 60 m depth corresponding to the seasonal thermocline. 
The deviations of seasonal mean vertical salinity between 
the reanalysis datasets and ARMOR3D in the YBS during 

1993 − 2020 are shown in Fig. 15. The salinity deviations 
in the upper 20 m vary greatly with the season, which is 
relatively large in summer compared to other seasons. Spe-
cifically, five reanalysis datasets, including SODA3.4.2, 
GREPv2, C-GLORSv7, GLORYS2v4, and ORAS5, are 
found to be underestimated the salinity in the upper 20 m. 
In addition, it is worth mentioning that the CORA series 
reanalysis datasets compare with the ARMOR3D observed 
data well in the YBS.

The statistical analysis of monthly mean vertical tem-
perature and salinity between the reanalysis datasets and 
the ARMOR3D multi-observation dataset in the YBS dur-
ing 1993 − 2020 are shown in Table 3. Strong positive cor-
relations of vertical temperature between seven reanalysis 
datasets and ARMOR3D are found. The C-GLORSv7 data-
set compares with the observed data well with the smallest 
CRMSE (1.05 ℃) and BR (2.75%). However, the deviations 
of SODA3.4.2 and CORAv2.0 are large with a bias ratio 
of − 11.25% and 13.17%, respectively. As for the correlation 
coefficient of monthly mean vertical salinity, it is noteworthy 
that only the SODA3.4.2 dataset exhibits a relatively lower 
value of 0.57, while the remaining six reanalysis datasets 

Fig. 13   Deviations of annual 
mean vertical temperature (a) 
and vertical salinity (b) between 
the reanalysis datasets and the 
ARMOR3D multi-observa-
tion dataset in the YBS during 
1993 − 2020

Table 2   The statistical analysis 
of annual mean vertical 
temperature and salinity 
between the reanalysis datasets 
and the ARMOR3D multi-
observation dataset in the YBS 
during 1993 − 2020

Dataset Annual mean vertical temperature Annual mean vertical salinity

COR CRMSE
(°C)

BR
(%)

COR CRMSE
(psu)

BR
(%)

SODA3.4.2 0.80 1.71 − 11.13 0.96 0.19 − 2.18
GREPv2 0.98 0.45 6.33 0.91 0.70 0.08
C-GLORSv7 0.98 0.35 2.79 0.91 0.52 0.21
GLORYS2v4 0.98 0.54 6.79 0.91 0.95 − 0.73
ORAS5 0.97 0.71 10.98 0.89 0.69 0.96
CORAv1.0 0.98 0.59 7.19 0.99 0.12 − 0.07
CORAv2.0 0.83 0.93 13.03 0.99 0.18 0.29
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showcase considerably higher coefficients exceeding 0.85. 
Regarding the vertical salinity deviations of different rea-
nalysis datasets, the CORA series datasets have the smallest 
values of CRMSE, while the GLORYS2v4 and SODA3.4.2 

datasets display significantly larger values of CRMSE. 
Overall, the correlation and deviation analysis show that the 
C-GLORSv7 dataset and the CORA series have better appli-
cability for vertical temperature and salinity, respectively.

Fig. 14   Deviations of seasonal mean vertical temperature between the reanalysis datasets and the ARMOR3D multi-observation dataset in the 
YBS during 1993 − 2020 (a spring, b summer, c autumn, and d winter)

Fig. 15   Similar to Fig. 14 but for seasonal mean vertical salinity

Table 3   The statistical analysis 
of monthly mean vertical 
temperature and salinity 
between the reanalysis datasets 
and the ARMOR3D multi-
observation dataset in the YBS 
during 1993 − 2020

Dataset Monthly mean vertical temperature Monthly mean vertical salinity

COR CRMSE
(°C)

BR
(%)

COR CRMSE
(psu)

BR
(%)

SODA3.4.2 0.89 2.17 − 11.25 0.57 0.95 − 2.18
GREPv2 0.97 1.14 6.21 0.88 0.80 0.07
C-GLORSv7 0.97 1.05 2.75 0.88 0.58 0.29
GLORYS2v4 0.95 1.35 6.66 0.88 1.08 − 0.75
ORAS5 0.94 1.62 10.77 0.86 0.80 0.95
CORAv1.0 0.96 1.45 6.25 0.91 0.29 − 0.66
CORAv2.0 0.89 2.09 13.17 0.85 0.39 0.28
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4 � Discussion

In this study, we focus on the applicability of ocean tem-
perature and salt of eight reanalysis datasets in the YBS and 
especially expand the assessment to several new reanalysis 
datasets, including the latest published SODA3.4.2, ERA5, 
and CORAv2.0. Notably, we first attempt to compare the 
ensemble product GREPv2 with the individual reanalysis 
datasets in the YBS, and compare the differences between 
the CORA series (v1.0 and v2.0) for the first time. As such 
it would provide a more comprehensive assessment than the 
previous studies.

All reanalysis datasets can reproduce the interannual vari-
ability of SST well, and the correlation coefficients are gen-
erally higher than 0.80. A warming trend of SST in the YBS 
has been shown since 2011 (Fig. 2). Especially the quality of 
SST in ERA5 and ORAS5 reanalysis datasets has improved 
in the last decade. However, compared to SST, the deviation 
of SSS is relatively large, which is related to the late start of 
satellite observations of SSS (Lee and Gentemann 2018). It 
is worth mentioning that the CORA series has improved the 
quality of SSS in the YBS over the last 14a, which benefits 
from more salinity observations assimilated into the CORA 
series in recent years (Wu et al. 2013). Therefore, the acqui-
sition of observation data should be strengthened to assimi-
late into reanalysis datasets to improve the quality of SSS.

Obvious seasonal differences in the temperature and 
salinity deviations were also found in the YBS. The largest 
SST deviation generally occurs in winter (Figs. 7 and 11), 
because of the SST latitudinal variation in abundance in win-
ter due to solar radiation, while the intense solar radiation 
makes the SST more uniform in summer (Qiao et al. 2004), 
reducing the SST deviations among the reanalysis datasets. 
However, the largest deviation in vertical temperature occurs 
in summer (Fig. 14). A seasonal thermocline in the Yellow 
Sea appears in spring, reaches its maximum in summer, and 
gradually decreases in autumn until it disappears in winter, 
which corresponds precisely to the seasonal deviation vari-
ation. The considerable positive deviation reflects that the 
reanalysis datasets underestimate thermocline depth. The 
large temperature gradient near the thermocline increases 
the temperature uncertainty, which leads to an increase in 
the vertical temperature deviations of the reanalysis data-
sets in summer and autumn (Qiao et al. 2004). In addition, 
the variation of seasonal deviation of the salinity (Figs. 12 
and 15) shows that larger deviations occur in summer and 
autumn than in spring and winter. The largest deviation of 
the salinity occurs in summer, which is possibly related to 
a large amount of runoff running into the YBS in summer 
(Shi et al. 2017; Xie et al. 2019). The freshwater flux in the 
summer in the YBS increases largely compared with other 
seasons; thus, the uncertainty of the freshwater change leads 

to an increase in the deviation of the salinity in summer, 
especially in the upper 25 m in the vertical profiles.

The spatial distribution of SST and SSS deviations in the 
reanalysis datasets exhibits spatial heterogeneity (Figs. 9 and 
10), and the region with a high deviation appears generally 
in the coastal water. For example, there are large positive 
deviations of SST and large negative deviations of SSS on 
the west coast of the Bohai Sea and the east coast of the Yel-
low Sea, respectively. A similar situation has been observed 
in New Zealand waters with large errors at the sea-land 
boundary based on four reanalysis datasets (de Souza et al. 
2021). This is possibly due to the lack of observation data in 
the nearshore sea and uneven interpolation (Hu et al. 2015). 
In addition, most reanalysis datasets have positive deviations 
of SSS extending from the south to the north in the central 
Yellow Sea. It is worth mentioning that the region partially 
overlaps with the Yellow Sea Warm Current (YSWC) with 
high temperature and salinity. Therefore, the salinity is gen-
erally overestimated in the reanalysis datasets in the YSWC.

The paper compares the applicability of temperature and 
salinity in the YBS considering the update of reanalysis data-
sets, such as CORAv1.0 and CORAv2.0. The spatial resolu-
tion of CORAv1.0 is 1/4°, and the newly released CORAv2.0 
improves the spatial resolution to 1/10°. The results show 
that the SST of CORAv2.0 is closer to the observed values in 
the YBS. However, the CORAv2.0 quality has not improved 
for vertical temperature and ocean salinity. Specifically, the 
CRMSE of monthly mean vertical temperature and monthly 
mean vertical salinity of CORAv2.0 is 2.09 ℃ and 0.39 psu, 
respectively, which are both higher than CORAv1.0. This 
may be partially related to the different ocean models and 
assimilation methods used in the two reanalysis datasets 
(Table 1). Moreover, some studies suggest that some param-
eters in the previous version are more favorable than the 
newly published version. For example, He and Zhao (2018) 
pointed out that the CFSR dataset has a larger error in the 
daily mean air temperature over central China compared 
to the older NCEP-2 dataset. Hersbach et al. (2020) also 
reported that ERA5 exists a larger cold bias in the lower 
stratospheric air temperature than the older ERA-Interim 
data. The comparison results between different versions of 
the reanalysis datasets are also closely related to the specific 
parameters. Moreover, except for the CORA series, the exist-
ing products in this study with higher resolution, such as 
GLORYS12 (Jean-Michel et al. 2021), should be considered 
in the comparison in the future.

In addition, it is worth noting that there are also some 
limitations in this paper. The bilinear interpolation method 
will introduce some errors at the coastal boundary (Zhang 
et al. 2021), which increases the uncertainty of the ocean 
temperature and salinity data. Furthermore, the reasons for 
the difference in various reanalysis datasets, such as the 
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used ocean models and the assimilation methods, should 
be carried out for further in-depth research in the future.

5 � Conclusion

In this paper, we apply ocean station observational data 
and multi-observation data ARMOR3D to comprehen-
sively evaluate the applicability of eight reanalysis data-
sets, including ERA5, SODA3.4.2, GREPv2, C-GLORSv7, 
GLORYS2v4, ORAS5, CORAv1.0, and CORAv2.0, in the 
YBS. The main conclusions are as follows:

1.	 The ERA5, ORAS5, and GREPv2 reanalysis datasets 
can reproduce the SST well, while C-GLORSv7 and 
GREPv2 can better reflect the vertical ocean temperature 
variation. In contrast, the SST of the CORA reanalysis 
series and the vertical temperature of SODA3.4.2 have a 
certain deviation compared to the observed data. Except 
for the reanalysis data of GLORYS2v4 and SODA3.4.2, 
the other six reanalysis datasets can reflect the changes 
in ocean salinity to some extent. Overall, the GREPv2 
dataset is mostly consistent with the temperature obser-
vations, while the CORA series reanalysis datasets com-
pare with the observed salinity data well in the YBS.

2.	 The quality of ocean temperature and salinity from 
GREPv2 is better than that of the individual member 
dataset (C-GLORSv7, GLORYS2v4, and ORAS5), 
which shows that multi-model ensemble can somewhat 
reduce the deviations of individual data.

3.	 Most reanalysis datasets can reproduce the interannual 
variation of SST in the YBS well with improved perfor-
mance in the last decade to some extent. However, more 
studies should be focused on improving the quality of 
regional ocean salinity from reanalysis datasets in the 
future, especially including strengthening the acquisition 
of observation data.

4.	 Large deviations of SST and SSS are usually occurred 
in coastal waters, such as the western coast of the Bohai 
Sea and the eastern coast of the Yellow Sea. The accu-
racy of reanalysis datasets along the nearshore region 
should be further improved.
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