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Abstract
A fourth-order nonlinear evolution equation of interfacial progressive waves in two-layer fluids of finite depths is derived in 
the case when there is a depth uniform current in the lower fluid. Based on this equation, stability analysis is then determined 
of a plane progressive wave. Discourses are provided for both air–water interface and a Boussinesq approximation. Graphs 
are plotted for maximum growth rate of instability as a function of wave steepness. Two-dimensional instability regions in 
the perturbed wavenumber plane and three-dimensional contour plots of growth rate of instability are also drawn. Starting 
from third-order nonlinear Schrödinger equation in one spatial dimension, we have additionally found the effect of depth 
uniform current on Peregrine breather. The present fourth-order analysis shows significant deviation from the third-order 
analysis and produces results consistent with the exact numerical results.

Keywords Nonlinear evolution equation · Interfacial gravity waves · Stability analysis · Peregrine breather

1 Introduction

The stability of progressive Stokes waves on the surface of 
infinite and finite depths of water has been analyzed numeri-
cally by McLean et al. (1981) and McLean (1982a, b). These 
studies reveal that there is an infinite hierarchy of type I and 
type II instabilities, starting from the centre with type I, the 
next outwards being type II, then the next is type I, and then 
again type II and so forth. The criterion to distinguish these 
two types of instability is the point of symmetry of the insta-
bility pattern. Later on, Yuen (1984) has extended the analy-
sis of McLean et al. (1981) for interfacial gravity waves with 
a basic current jump across the interface and he has stud-
ied the stability analysis when the two fluids are infinitely 
deep. Grimshaw and Pullin (1985) have also derived a cubic 
nonlinear Schrödinger equation coupled to a wave induced 

mean flow equation for two superposed fluids of finite depths 
to study slowly modulated waves and have investigated the 
two-dimensional instability as a special case of long wave-
length perturbation and small wave steepness. In the next 
paper, Grimshaw and Pullin (1985) have complemented their 
analytical results with numerical results for the stability of 
finite amplitude waves. As waves nearly always coexist with 
currents in an ocean and currents can significantly alter the 
characteristics of gravity waves [(Longuet and Stewart 1961; 
Bretherton and Garrett 1968; Peregrine 1976; Kantardgi 
1995)], therefore nonlinear wave-current interactions call 
attention to scientists in ocean engineering and fluid dynam-
ics. Sufficiently large waves can be generated in the areas 
when there are strong currents and particularly for waves 
which move against currents. Furthermore, in these situa-
tions, freak waves have been often formed [(Onorato et al. 
2011; Ruban 2012; Toffoli et al. 2013)]. It is known that the 
interactions between waves and currents mainly rely on the 
direction of propagation of waves and the vertical distribu-
tion of currents [(Peregrine 1976; Liu et al. 1990; Huang 
and Mei 2003)]. Liao et al. (2017)  have derived a cubic 
nonlinear Schrödinger equation for gravity waves in finite 
depth of water for the case when the combined effects of 
depth-uniform currents and constant vorticity are consid-
ered. However, research carrying on wave-current interac-
tions has often assumed that currents are uniform with depth 
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[(Toffoli et al. 2013, 2015; Stocker and Peregrine 1999)], 
that is to say, they are not vertically sheared. Toffoli et al. 
(Toffoli et al. 2013) have showed experimentally that a stable 
wave moving into a region characterized by an opposite uni-
form current U0 may become modulationally unstable. From 
a physical point of view, they have also remarked that the 
process which they have analyzed may take place in nature 
when a modulationally stable swell, which is characterized 
by a narrow spectrum, enters a region of an opposing vari-
able current. Again there are some circumstances for which 
currents are not uniform with depth (namely, they are verti-
cally sheared) as in the cases of currents due to wind flow 
and ebb stream at a river mouth [(Mei and Lo 1984; Maciver 
et al. 2006)]. Furthermore, Hjelmervik and Trulsen (2009) 
have derived a current modified cubic nonlinear Schrödinger 
equation which allows a small amount of vorticity and inves-
tigated the influence of nonlinearity with respect to the vari-
ation of significant wave height, kurtosis, and occurrence of 
rogue waves. They have observed that the largest number of 
rogue waves on an opposing current jet is generated at the 
jet sides where the significant wave height is small. Consid-
ering the importance of currents in the water, Turpin et al. 
(1983) have investigated a nonlinear Schrödinger equation 
which covers the influence of currents and varying depth. 
From their analysis, it is found that the following current has 
a stabilizing influence on a wave train while the opposing 
current has the reverse effect. Later on, a current modified 
nonlinear evolution equation has been derived by Gerber 
(1987). In that paper, he has argued that opposing currents 
increase the growth rate of instability and also spread out 
the onset criterion. Effects reverse to these are observed in 
the case of the following currents. Again, an extension to the 
analysis of Dysthe (1979) to consider the influence of depth 
uniform currents is made by Stocker and Peregrine (1999).

All those studies have made from a lowest order (i.e., 
third-order) nonlinear Schrödinger equation by the said 
authors. Dysthe (1979) has pointed out that a notable 
improvement can be achieved by considering the perturba-
tion analysis one step further, that is, adding fourth-order 
terms in the cubic Schrödinger equation, and he has derived 
a fourth-order nonlinear evolution equation for application 
to deep water gravity waves. Later on, Dhar and Das (1990) 
have extended the analysis of Dysthe (1979) in the presence 
of wind flowing over water. So that paper considered the 
effect of wind on Benjamin-Feir instability. Based on the 
fourth-order evolution equation, the expressions of the maxi-
mum growth rate of instability and the frequency at marginal 
stability are obtained, and graphs are plotted for those two 
expressions as a function of wave steepness. Furthermore, 
Dhar and Das (1994) have studied analytically the stability 
analysis from fourth-order nonlinear evolution equation for 
interfacial gravity waves when there is a basic current shear 
in both of the fluids of infinite depths. They have plotted the 

graphs for maximum growth rate of instability and for wave-
number at marginal stability as a function of wave steepness 
in the case of air–water interface. In the case of Boussinesq 
approximation, they have compared their fourth-order results 
with the exact numerical results of Pullin and Grimshaw 
(1986), and they are showed to agree fairly well. Consider-
ing the importance of the fourth-order evolution equation, 
in the present paper, we have developed a nonlinear evolu-
tion equation correct to fourth-order in wave steepness for 
interfacial progressive waves in two-layer finite depth fluids 
for the case when there is a depth uniform current in the 
lower fluid. On the basis of this equation, stability analy-
sis is then made both for finite and infinite depths of fluids 
for a uniform wave train. Graphs are plotted for maximum 
growth rate of instability as a function of wave steepness 
for finite and infinite depths of fluids and for some values 
of depth uniform current v corresponding to both air–water 
and Boussinesq approximation. Two-dimensional instabil-
ity regions are drawn for infinite depths of fluids for sev-
eral values of v and wave steepness �0 corresponding to 
air–water interface (r = 0.00129) , Boussinesq approxima-
tion (r → 1) , r = 0.1, 0.9 , and an important case for r = 0 
for water waves. The latter three cases are then compared 
to the exact numerical results obtained by Yuen (1984) and 
McLean et al. (1981), and it is found from the figures that 
fourth-order equation gives better results which are closer 
to the exact numerical results obtained by them. We have 
also drawn some contour plots of growth rate of instability 
in the perturbed wavenumbers plane. Moreover, the effect of 
depth uniform current on Peregrine breather has been inves-
tigated by considering the third-order nonlinear Schrödinger 
equation in one space variable. Therefore, the present study 
extends the analysis of Grimshaw and Pullin (1985) to fourth 
order in a parameter � representing the wave steepness in the 
presence of uniform current in the lower fluid.

2  Basic equations and assumption

We take z = �(x, y, t) as the equation of the common inter-
face of two inviscid, irrotational, and incompressible flu-
ids. The two fluids of densities � and �′ are bounded by two 
horizontal planes at z = d1 and z = −d2 . The basic unper-
turbed flow has a uniform velocity v towards x-direction in 
the lower layer, −d2 ≤ z ≤ 0 . It is found useful to consider 
dimensionless variables that are introduced by the following 
transformations

(1)

(
k3
0

g
)
1

2 (�,�
�

) →
(
�,�

�)
, k0(x, y, z, � , d1, d2) → (x, y, z, � , d1, d2),

�t → t, (
k0

g
)
1

2 v → v, r =
�
�

�
.
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For describing the interfacial waves, we consider the gov-
erning equations as follows

We take the solutions of the above equations given by

in which Q symbolizes for �,�′

, � , (k, l) represents the 
wavenumber vector, k0 =

√
k2 + l2 , and c.c. represents com-

plex conjugate. Here �0,�
�

0
,�n,�

�

n
(n = 1, 2) and their com-

plex conjugates are functions of a time scale t1 = �t , a space 
scale (x1, y1) = �(x, y) and z . �0, �n, �∗n (n = 1, 2) are slowly 
varying functions of x1, y1, t1 . � is a small ordering parameter 
measuring the weakness of nonlinearity, where 0 < 𝜖 << 1.

Subsequently, we assume that the wave is moving along 
the direction of x and so we put l = 0 . The frequency � and 
wavenumber k of the basic wave satisfy the following linear 
dispersion relation

where �i = tanhkdi, i = (1, 2).
We now suppose that the first harmonic linear wave, 

whose nonlinear evolution equation we are going to study, 
has its wavenumber equal to the characteristic wavenumber 
k0 . Therefore, we have k = 1 and the relation (10) for finding 
� becomes

Equation (11) yields two values of � given by

that corresponds to two modes and we specify these as 
positive and negative modes. The positive mode propagates 
along the positive direction of the x-axis with a frequency 

(2)∇2𝜙
�

= 0, in 𝜁 < z < d1

(3)∇2𝜙 = 0, in − d2 < z < 𝜁

(4)�
�

z
− �t = �

�

x
�x + �

�

y
�y,when z = �

(5)�z − �t − v�x = �x�x + �y�y,when z = �

(6)
�t − r�

�

t
+ v�x + (1 − r)� = −

1

2
(∇�)2 +

r

2
(∇�

�

)2,when z = �

(7)�
�

z
= 0, on z = d1

(8)�z = 0, on z = −d2.

(9)Q = Q0 +
∑∞

n=1

�
Qnexp{in(kx + ly − �t)} + c.c.

�
,

(10)f (�, k) ≡ (� − kv)2�1 + r�2�
2 − (1 − r)�1�2k = 0,

(11)(�1 + r�2)�
2 − 2�1v� + �1v

2 − (1 − r)�1�2 = 0.

(12)�± =
�1v ±

√
�1�2[(1 − r)(�1 + r�2) − rv2]

(�1 + r�2)

[  �1v +
√
�1�2{(1 − r)(�1 + r�2) − rv2}]∕(�1 + r�2)  , 

whereas the other mode propagates in the nega-
tive direction of the x-axis with a frequency 
[
√
�1�2{(1 − r)(�1 + r�2) − rv2} − �1v]∕(�1 + r�2) ,  pro-

vided 
√
𝜎1𝜎2{(1 − r)(𝜎1 + r𝜎2) − rv2} > 𝜎1v . The linear sta-

bility analysis is invariant under the transformation v into −v . 
Therefore, the results due to negative mode can be achieved 
from the results due to positive mode by changing v to −v.

Equation (12) corresponds to Kelvin–Helmholtz modes. 
When the heavier fluid is under the lighter one and the two 
fluids are at rest relative to each other, the plane interface is 
stable and supports gravity waves. Again, in the presence of 
depth uniform current v , the plane interface becomes unsta-
ble to disturbances of sufficiently short wavelengths. From 
(12), it follows that the plane surface is unstable if

which is known as the classical Kelvin–Helmholtz 
instability.

For linear stability, we get from (12), the following 
condition

So our analysis will remain valid as long as the nondi-
mensional velocity of the lower fluid becomes less than the 
critical value |vc| = [

(1−r)(�1+r�2)

r
]
1

2 . For infinite depths of flu-
ids, �1 = �2 = 1 , and for air–water interface, r = 0.00129 ; 
hence, vc becomes 27.8423 . Now, �n,�

′

n
 , and �n are the per-

turbed quantities and so we have considered the perturba-
tion expansions (17) of them using the ordering parameter � , 
whereas v and r are not the perturbed quantities. Therefore, 
the small value r = 0.00129 and the large value v = 27.8423 
will not affect the ordering of the terms in the nonlinear anal-
ysis (see Dhar and Das (1990) and Senapati et al. (2016)).

The group velocity cg of the basic wave is found from 
dispersion relation

where 
�1 = �1d2

(
1 − �2

2

)
+ �2d1

(
1 − �2

1

)
,

�2 = d1
(
1 − �2

1

)
+ rd2

(
1 − �2

2

)
,

�3 = �1 + d1
(
1 − �2

1

)
.

3  Derivation of evolution equation 
for interfacial gravity waves

Substituting the expression (9) in (2) and (3), we get the 
solutions for ��

n
,�n(n = 1, 2) given by

v2 > [
(1 − r)(𝜎1 + r𝜎2)

r
],

|v| < [
(1 − r)(𝜎1 + r𝜎2)

r
]
1

2 .

(13)
c
g
= {(1 − r)(�1 + �1�2) − �2�

2 + 2�3�v − (�1 + �3)v
2}

{2(�1 + r�2)� − 2�1v}
−1
,
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and �′

0
,�0 as

(14)
�

�

n
=

cosh[(z−d1)Δn]

coshd1Δn

A
�

n
,

�n =
cosh[(z+d2)Δn]

coshd2Δn

An,

where A�

n
and An  (n = 1, 2) are the functions of x1, y1, t1 , 

and Δn = [(n − i�
�

�x1
)2 − �2

�2

�y2
1

]
1

2 . Here, �
′

0
,�0 are Fourier 

transforms of �′

0
,�0 , respectively, defined by

(15)
�

�

0
=

cosh[(z−d1)�k]

cosh�kd1
A

�

0
,

�0 =
cosh[(z+d2)�k]

cosh�kd2
A0,

(16)
(
�

�

0
,�0

)
= ∭

∞

−∞

(
ϕ

�

0
,ϕ0

)
exp

[
−i
(
kxx1 + kyy1 − �t1

)]
dx1dy1dt1,

in which k
2

= k
2

x
+ k

2

y
 and A′

0
,A0 are functions of kx, ky , 

and �.
We now take the following perturbation expansions for 

solving three sets of equations corresponding to n = 0, 1, 2

in which Bj symbolizes for A′

j
,Aj , and �j(j = 0, 1, 2).

Substituting (17) in the Taylor’s expanded form of 
Eqs. (4) to (6) about z = 0 and then equating coefficients 
of expin(x − �t) for n = 1, 2, 0 on both sides, we obtain 
a sequence of equations. From Eqs. (4) and (5) for n = 1 
corresponding to first set, we obtain solutions of A′

11
,A

′

12
 

and A11,A12 respectively. Next from Eqs. (4), (5), and 
(6) for n = 2 and 0 corresponding to second and third 
sets, we obtain solutions of A′

22
,A

′

23
,A22,A23, �22, �23 and 

A
′

01
,A

′

02
,A01,A02, �01, �02 respectively. In the end, the equa-

tion resulting from (6) of the first set of equations can be 
expressed in the following form

where �1 = � + i�
�

�t1
, k1 = 1 − i�

�

�x1
, l1 = −i�

�

�y1
 , and 

a1, b1, c1 are contributions from nonlinear terms.
Inserting solutions of different quantities arising on the 

right side of (18), applying the transformations

and finally setting � = �1 = �11 + ��12 , we obtain the 
fourth-order nonlinear evolution equation as follows

where the coefficients are given in the Appendix and 
F−1 means the inverse Fourier transform.

It is important to mention the small parameter � , which 
describes both the slow modulations and the wave ampli-
tude (see Grimshaw and Pullin (1985)). Here, ��1 is the 
complex wave amplitude, and to leading first order, the 
wave is described by ��1expi(kx − �t) . So the first term on 

(17)Bm =
∑∞

n=1
�nBmn, (m = 0, 1),B2 =

∑∞

n=2
�nB2n,

(18)
f (�1, k1, l1)�1 = −ir�2�1a1 − i�1(�1 − k1v)b1 − �1�2Δ1c1,

(19)� = x1 − cgt1, � = y1, � = �t1

(20)
i
��

��
− �1

�2�

��2
+ �2

�2�

��2
+ i�3

�3�

��3
+ i�4

�3�

����2
= Λ1|� |2� + iΛ2|� |2

��

��
+ iΛ3�

2 ��∗

��

+Λ41�
�

��
F
−1[

F
�

��
(|� |2 )

ktanh(�kd1 )
] + Λ42�

�

��
F
−1[

F
�

��
(|� |2 )

ktanh(�kd2 )
],

the right side of Eq. (20) is the order of magnitude O(�3) , 
whereas the remaining terms are of order of magnitude 
O(�4) , as the derivative increases the order by one (

�

�x
= �

�

�x1
= �

�

��

)
.

The nonlinear spatio-temporal evolution of slowly mod-
ulated interfacial waves can be described by the nonlinear 
evolution equation provided that the wave steepness is 
small (<< 1) and the spectral bandwidth is narrow (<< 1) . 
The derivation of Eq. (20) needs that � is a small parameter 
and describes a balance between nonlinearity and wave 
dispersion about the dominant wavenumber k . Typically, 
one assumes that the wave steepness and the bandwidth are 
of the same order of magnitude O(�) , for which nonlinear 
and dispersive effects balance at the fourth-order O(�4).

Among the fourth-order dispersive and nonlinear terms 
in Eq. (20), only the last two terms on right side of that 
equation whose coefficients are Λ41 and Λ42 contribute to 
the stability results given by Eqs. (33) to (36). Accord-
ingly, as far as stability properties are concerned, it is 
enough to consider the following simplified equation (see 
Dysthe (1979), page 113, Section 4).

To present the results plausible, it is useful to compare with 
other results. We can check that the coefficients �1, �2 and Λ1 for 
v = 0 reduce to those of Grimshaw and Pullin (1985). Further-
more, for r = 0 , v = 0 and infinite depth of fluid, the Eq. (20) 
reduces to an equation equivalent to Eq. (2) of Janssen (1983).

According to Brinch-Nielsen and Jonsson (1986), 
the finite depth assumption of tanh(�kdi) is �kdi(i = 1, 2) 
and they have pointed out that the fourth-order terms of 
Eq. (20) do not contribute to the expression for imaginary 
part of Ω , where Ω is the perturbed frequency. Further-
more, for deep fluids, the conventional approximation is 
taken as tanh(�kdi) ≈ 1 (i = 1, 2) and hence for deep fluids 
(Janssen 1983), we have

(21)
lli
��

��
− �1

�2�

��2
+ �2

�2�

��2
= Λ1|� |2� + Λ41�

�

��
F
−1[

F
�

��
(|� |2)

ktanh(�kd1)
]

+ Λ42�
�

��
F
−1[

F
�

��
(|� |2)

ktanh(�kd2)
]
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where H is the two-dimensional Hilbert transform opera-
tor given by

4  Stability analysis and results

(a) Third-order finite depths case:
  The solution of uniform wave train of Eq. (20) is

  where �0 is a real constant.
  Its stability can be investigated by considering small 

perturbations � ′

, �
′ in amplitude and phase respectively

  We now suppose that (� �

, �
�

) ∝ exp(−iΩ�).
  Substituting (25) in (20), linearizing with respect to 

�
′

, �
′ and then taking the Fourier transform of resulting 

equations defined by

  we obtain finally the following nonlinear dispersion 
relation

  where P1 = Ω − cg�,P2 = �1�
2 − �2�

2.
  For instability we have

  The growth rate of instability Ωi , which is the imagi-
nary part of perturbed frequency Ω , is given by

  For one-dimensional perturbation, we have � = 0 , so 
that Ωi reduces to

(22)�

��
F−1[

F
�

��
(|� |2)

k
] = H

�

��
(|� |2),

(23)Hg(�, �) =
1

2�∬
∞

−∞

(�
�

− �)g(�
�

, �
�

)d�
�

d�
�

[(�
�
− �)2 + (�

�
− �)2]

3

2

(24)� =
�0

2
exp

(
−i�2

0
Λ1�

4

)
,

(25)� =
�0

2
(1 + �

�

)expi(�
�

−
�2

0
Λ1�

4
)

(26)(�
�

, �
�

) = ∬
∞

−∞

(�
�

, �
�

)exp[−i(�� + ��)]d�d�,

(27)P1 = [P2(P2 −
�2

0
Λ1

2
)]

1

2 ,

(28)P2(P2 −
𝛼2

0
Λ1

2
) < 0

(29)Ωi =

√

P2(
�2

0
Λ1

2
− P2)

  and the expression for maximum growth rate of 
instability is given by

(b) Fourth-order deep fluids case:
  In this case, we have the following nonlinear disper-

sion relation

  in which Q1 = Ω − c
g
� + �3�

3 + �4��
2,Q2 = �1�

2 − �2�
2  and 

Λ4 = Λ41 + Λ42.

  The instability condition is given by

  Now the growth rate of instability Ωi is given by

  The expressions for Ωi and the maximum growth 
rate of instability Gr for one-dimensional perturbation 
(� = 0) respectively take the forms

In Figs. 1, 2, and 3, the maximum growth rate of insta-
bility Gr has been plotted against wave steepness �0 for 
several values of depth uniform current v corresponding to 
both air–water interface and Boussinesq approximation. It 
is seen from Fig. 2 that Gr found from fourth-order equa-
tion increases with the enhancement of �0 up to a certain 
value of �0 . Afterwards, the value of Gr reduces. Again, Gr 
found from third-order equation enhances steadily with the 
enhancement of �0 (Dhar and Das 1994). Gr is observed 
to be notably much higher for velocity coming towards the 
critical value. Furthermore, in the case of air–water inter-
face, Gr decreases as the depth d1 of the upper fluid increases 
when the depth d2 of the lower fluid is kept constant. Effects 
reverse to these are noticed in the case of a Boussinesq 

(30)Ωi = �

√

�1(
�2

0
Λ1

2
− �1�

2)

(31)Gr =
Λ1�

2

0

4

(32)Q1 = −
Λ2�

2

0
�

4
± [Q2{Q2 −

�2
0

2
(Λ1 −

Λ4�
2

√
�2+�2

)}]
1

2

(33)Q2[Q2 −
𝛼2

0

2
(Λ1 −

Λ4𝜆
2

√
𝜆2 + 𝜇2

)] < 0

(34)Ωi =

����Q2[
�2

0

2
(Λ1 −

Λ4�
2

√
�2 + �2

) − Q2]

(35)Ωi = �

√

�1{
�2

0

2
(Λ1 − Λ4|�|) − �1�

2}

(36)Gr =
Λ1�

2

0

4
[1 −

Λ4�0

2
√
�1Λ1

]
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approximation. As a check, for r = 0 , the dimensionless 
growth rate Ωi∕�

2

0
 , we find from Eq. (30), is compared in 

Fig. 4 with that obtained by Liao et al. (2017) in Fig. 3. 
In that way, we can verify that this limiting case is repro-
duced exactly. From this figure, it is observed that the curve 
for d2 = 1.37 indicates the disappearance of Benjamin-Feir 
instability as d2 comes towards 1.363 , which is compatible 
with notable classical theory.

Using the conditions (28) and (33), corresponding to third 
and fourth-order results respectively, we have drawn some 
instability regions for infinite depth of fluids in Figs. 5, 6, 
7, 8, 9, 10, 11, and 12 for several values of depth uniform 
current v and wave steepness �0 . From these figures, it is 
observed that in both the cases of air–water interface and 
Boussinesq approximation, the instability region increases 
in size as �0 increases whereas this region diminishes in size 

Fig. 1  Maximum growth rate of instability Gr as a function of �0 for r = 0.00129 ; d1 = 2, d2 = 2 , and v = 0,±5,±11,±15,±23,±25,±27 (left); 
d1 = 1, d2 = 2 , and v = 0,±5,±11,±15,±20 (right)

Fig. 2  Maximum growth rate of instability Gr as a function of �0 for d1 → ∞, d2 → ∞ and r = 0.00129 , v = 0,±7,±15,±23,±27 (left); r → 1 , 
v = 0, 0.015, 0.020, 0.030, 0.040, 0.050, 0.060 (right)

Fig. 3  Maximum growth rate of instability Gr as a function of �0 for r → 1 ; d1 = 4, d2 = 2 , and v = 0, 0.018, 0.024, 0.030, 0.040, 0.050, 0.060 
(left); d1 = 2, d2 = 2 , and v = 0, 0.018, 0.024, 0.030, 0.040, 0.050, 0.060 (right)
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as v increases. Also, the fourth-order effect affords a shrink-
age of the instability region and a decrease in the growth 
rate (see Fig. 2) giving a stabilizing effect. An important 
and interesting particular case is the water waves which is 
obtained for r = 0 and is shown in Fig. 9. In this figure the 
fourth-order equation gives much better results which are 
closer to the exact numerical results obtained by McLean 
et al. (1981) in Fig. 1a, b for �0 = 0.2 and 0.4 than that 
given by the third-order evolution equation. Furthermore, 
the instability regions presented in Fig. 10 for r = 0.1 and 
0.9 , corresponding to fourth-order result, are found to almost 
overlap with the regions found by Yuen (1984) (see Fig. 4a 
and d) (Yuen 1984) from exact numerical computations. 
We therefore conclude that fourth-order nonlinear evolu-
tion equation gives fairly excellent long wave length region 

of type I instability of interfacial gravity waves for small but 
finite wave steepness.

Again, in Figs. 11 and 12, we have drawn some instabil-
ity regions for water waves for two finite values of depth 
d2 = 2, 1.4 , one greater than 1.363 and other near to 1.363, 
following McLean (1982a). In Fig. 11, three instability 
regions drawn by us have the same value of the parameters 
as those of Figs. 2a, b, and c of McLean (1982a) and these 
regions are observed to nearly overlap with each other. 
These regions correspond to the long wavelength regions 
of type I instability obtained by McLean (1982a) from 
numerical computation. It is significant to note that Fig. 12 
indicates the disappearance of Benjamin-Feir instability 
region as d2 = 1.363 is approached for long wavelength, 
two-dimensional perturbations and small wave steepness, 
as predicted by Whitham (1967).

In Figs. 13, 14, 15, and 16, we have portrayed the con-
tour plots of growth rate of instability, Gr = Im(Ω) in the 
(�,�) plane for different values of wave steepness �0 and 
velocity v . From these contour plots, we have observed 
that for both the cases of air–water interface and Boussin-
esq approximation, the growth rate Gr increases with the 
velocity v , when the wave steepness �0 is kept constant 
and further the growth rate Gr increases with the wave 
steepness �0 , when the velocity v is kept constant. We have 
found similar characteristics for both finite and infinite 
depth of fluids. Finally, in all Figs. 13, 14, 15, and 16, it is 
seen that the region of instability is symmetric about the 
lines � = 0 and � = 0.

Fig. 4  Dimensionless growth rate Ωi

�2
0

 as a function of �

�0
 for different 

values of water depth d2 and v = 0, r = 0, d1 → ∞ . BFI indicates the 
Benjamin-Feir instability in infinite depth of water

Fig. 5  Instability regions in the ( �,� ) plane for r = 0.00129 , d1 → ∞, d2 → ∞ , v = 5 , �0 = 0.1 (left), �0 = 0.2 (right)
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5  Impact of depth uniform current 
on Peregrine breather

It is well known that the instability due to modula-
tion of gravity waves can be modelled by the nonlinear 
Schrödinger equation, and the easiest analytical solution of 
this equation is the Peregrine breather. In third order, the 
nonlinear Schrödinger Eq. (20) can be written as

The dimensionless form of Eq. (37) in one spatial dimen-
sion can be expressed as

(37)i
��

��
− �1

�2�

��2
+ �2

�2�

��2
= Λ1|� |2�

(38)i�
�

�
� + �

�

�
�
�
� + 2|� � |2� �

= 0,

Fig. 6  Instability regions in the ( �,� ) plane for r = 0.00129 , d1 → ∞, d2 → ∞ , v = 15 , �0 = 0.1 (left), �0 = 0.2 (right)

Fig. 7  Instability regions in the ( �,� ) plane for r → 1 , d1 → ∞, d2 → ∞ , v = 0.02 , �0 = 0.1 (left), �0 = 0.2 (right)
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which is obtained by employing the transformation on the 
variables as follows

(39)�
�

=
1

2
�0

√
2Λ1

�1
�, �

�

= −
1

2
Λ1�

2

0
�, �

�

=
�

�0

Here �′ denotes the normalized coordinate and the nor-
malized time is denoted as � ′ . The Peregrine breather solu-
tion (Peregrine 1983 (Peregrine 1983)) of Eq. (38) is

(40)�
�

(�
�

, �
�

) = {
4(1 + 4i�

�

)

1 + 4�
�2 + 16�

�2
− 1}exp(2i�

�

)

Fig. 8  Instability regions in the ( �,� ) plane for r → 1 , d1 → ∞, d2 → ∞ , and v = 0.05 ; �0 = 0.1 (left), �0 = 0.2 (right)

Fig. 9  Instability regions in the ( �,� ) plane for r = 0 , d2 → ∞ , and v = 0 ; �0 = 0.2 (left), �0 = 0.4 (right)
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which is localized both in space and time. Using the 
transformations given by (39), we find the dimensional form 
of Peregrine breather solution as

The significant point of the Peregrine breather is that its 
maximum value is achieved at a single point in both the 
spatial and time domains and declines exponentially outside 
the localized region.

In Figs. 17, 18, 19, 20, 21, 22, and 23, we have plotted 
the breather solution for different values of depth uniform 

(41)

�(x1, t1) = �0exp(−iΛ1�
2

0
t1) × {

4�1(1−2iΛ1�
2

0
t1)

�1+2Λ1�
2

0
(x1−cgt1)

2+4�1Λ
2

1
�4
0
t2
1

− 1}

current and fluid depths in space and time domains. In 
both the cases of air–water interface as well as Boussinesq 
approximation, the breather span increases as the depth 
d1 of the upper fluid decreases as seen from Figs. 17 and 
18. Furthermore, from the corresponding sub-figures of 
Figs. 17 and 18, it is found that the breather span increases 
with the increment of absolute value of the velocity v in 
the case of air–water interface, whereas opposite charac-
teristic has been observed for Boussinesq approximation. 
In Fig. 17 (left), the dashed line shows the envelope of 
the Peregrine breather solution for r = 0, d2 = 2, v = 0.2 , 
which is reproduced exactly as that of Liao et al. (2017) 
in Fig. 10(a).

Fig. 10  Instability regions in the ( �,� ) plane for �0 = 0.2 and v = 0 , d1 → ∞, d2 → ∞ ; r = 0.1 (left), r = 0.9 (right)

Fig. 11  Instability regions in the ( �,� ) plane for r = 0 , v = 0 , d2 = 2 , and �0 = 0.20, 0.30, 0.35
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Fig. 12  Instability regions in the ( �,� ) plane for r = 0 , v = 0 , d2 = 1.4 , and �0 = 0.05, 0.1, 0.2

Fig. 13  Contour plot of instability growth rate Gr = Im(Ω) in the ( �,� ) plane for r = 0.00129 , d1 = 2, d2 = 2 , �0 = 0.1, 0.2 , and v = 10, 25
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Again, for infinite depth of fluids, we have observed from 
Fig. 19 (left) that the breather span increases as the abso-
lute value of the velocity increases. An opposite effect is 
observed for Boussinesq approximation as seen from Fig. 19 
(right). These aforesaid characteristics have also been con-
firmed from the Figs. 20, 21, and 22. Finally, Fig. 23 shows 
the Peregrine breather solution for r = 0, d2 = 2 , v = 0.2 , 
which is reproduced here as obtained by Liao et al. (2017) 
in Fig. 9(d).

6  Conclusion

In the present paper, we have derived a (2 + 1)-dimensional 
fourth-order nonlinear evolution equation for interfacial grav-
ity waves of a two-layer fluid domain with the lower fluid hav-
ing a depth uniform current v . We have discussed the stability 
analysis of the plane progressive wave for both the cases of 

air–water interface (r = 0.00129) and Boussinesq approxima-
tion (r → 1) and also for finite and infinite depths of fluids. 
The present fourth-order evolution equation affords consider-
ably better results consistent with the exact numerical results 
obtained by McLean et al. (1981) and Yuen (1984) than that 
given by the third-order evolution equation. Furthermore, 
the fourth-order effect produces a contraction of instability 
region and a decrease in the growth rate giving a stabilizing 
effect. Therefore, it is important to note that the long wave-
length instability region of interfacial gravity waves for small 
but finite wave steepness has been analyzed by Yuen (1984), 
which can be obtained analytically from the fourth-order non-
linear evolution equation. The contour figures have been plot-
ted here to describe the effects of wave steepness �0 and the 
velocity v of the lower fluid on the growth rate of instability. 
Additionally, starting from third-order (1 + 1)-dimensional 
NLSE, we have determined the effect of depth uniform current 
on Peregrine breather. In the end, it is important to note that in 

Fig. 14  Contour plot of instability growth rate Gr = Im(Ω) in the ( �,� ) plane for r = 0.00129 , d1 → ∞, d2 → ∞ , �0 = 0.1, 0.2, and v = 10, 25
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the case of air–water interface, the dimension of the breather 
is spreaded significantly on following currents.

Appendix

The coefficients appearing in Eq. (20)
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Fig. 15  Contour plot of instability growth rate Gr = Im(Ω) in the ( �,� ) plane for r → 1 , d1 = 2, d2 = 2 , �0 = 0.1, 0.2 , and v = 0.03, 0.05
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Fig. 16  Contour plot of instability growth rate Gr = Im(Ω) in the ( �,� ) plane for r → 1 , d1 → ∞, d2 → ∞ , �0 = 0.1, 0.2 , and v = 0.02, 0.05

Fig. 17  |�(x1, t1)|∕�0 vs �0(x1 − cgt1) plot for r = 0.00129 , d2 = 2 and d1 = 1 (left), d1 = 2 (right)

254 Ocean Dynamics (2022) 72:241–257



1 3

Fig. 18  |�(x1, t1)|∕�0 vs �0(x1 − cgt1) plot for r → 1 , d2 = 2 and d1 = 3 (left), d1 = 5 (right)

Fig. 19  |�(x1, t1)|∕�0 vs �0(x1 − cgt1) plot for d1 → ∞,d2 → ∞ , r = 0.00129 , v = 0,±15,±25 (left) and r → 1 , v = 0, 0.03, 0.08, 0.1 (right)

Fig. 20  Peregrine breather for r = 0.00129 , d1 = 2, d2 = 2 , v = 0 (left), v = 10 (right)

Fig. 21  Peregrine breather for r = 0.00129 , d1 → ∞, d2 → ∞ , v = 0 (left), v = 20 (right)
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