
https://doi.org/10.1007/s10236-021-01485-6

Experiments on uni-directional and nonlinear wave group shoaling
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Abstract
We report an experimental study addressing the characteristic hydrodynamic transformations of unstable wave groups as
well as JONSWAP wave fields propagating from deep-water towards shallow regions. Long zones of linearly rising floor
levels have been installed to mimic a simplified coastal morphology. The breather surface elevation evolution data show a
very good agreement with the depth-adapted nonlinear Schrödinger-type model. Our results suggest that the residual effects
of four-wave resonance interactions in the shallower regions is relevant for the nonlinear group propagation over steep
bottom topography slopes. When considering broadband JONSWAP processes, the model fails in predicting the evolution of
kurtosis, independently of the values of significant wave height adopted. Nonetheless, consistency with the data is achieved
when narrowing the spectrum of the JONSWAP wave field. Our study emphasizes the strong potential of weakly nonlinear
frameworks in modeling complex wave shoaling problems and wave transformations in coastal zones.

Keywords Nonlinear waves · Wave group shoaling · Coastal waves

1 Introduction

The dynamics of wave packets in the ocean is driven by
dispersion and weak nonlinearity in deep and intermediate
water depth. Therefore, both key features have been well-
studied and understood in such water depth conditions.
Assuming uni-directionality of wave propagation, it is
also well-known that narrow-band wave trains can become
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unstable and undergo a focusing process, also referred
to as modulation instability (Dudley et al. 2019). That
said, waves in shallow coastal areas are stable to long
wave perturbations; however, the latter undergo breaking,
which is driving sediment transport (Elfrink and Baldock
2002), marine erosion (Zhang et al. 2004) and other
complex coastal processes. With the increase of ocean wave
heights over the last decades (Young and Ribal 2019),
it is becoming evident to expect more damaging waves
reaching shorelines according to the trend described in
(Martins et al. 2017). As such, extreme wave transformation
process modeling in the surf and near-shore zones will
become increasingly relevant, for instance in the assessment
of large swell-impact on the shoreline (Baldock and
Holmes 1999; Baldock and Huntley 2002; Kimmoun and
Branger 2007; Didenkulova et al. 2007; Viotti et al.
2014). Several experimental studies have investigated the
fundamental characteristics of nonlinear wave propagation
over a variable bathymetry, using deterministic frameworks
(Shemer et al. 1998), and extreme wave statistics (Zeng and
Trulsen 2012; Trulsen et al. 2012; Gramstad et al. 2013;
Kashima and Mori 2019; Zhang et al. 2019; Trulsen et al.
2020; Li et al. 2021b). Recently, the role of second-order
effects in the formation of extreme events for narrow-
band linear wave packets (Li et al. 2021c; Li et al.
2021a) and the transformation of narrow-band nonlinear
wave groups (Ducrozet et al. 2021), both experiencing
sudden depth transitions, have been highlighted. Simplified
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weakly nonlinear model have been suggested since the
late 1970s to predict water wave dynamics over variable
bathymetry in finite water depth (Djordjević and Redekopp
1978; Grimshaw and Annenkov 2011; Slunyaev 2005).
These take into account the variation of dispersion and
nonlinearity with the change of water depth as well as
bottom friction effects. A rigorous multiple scales approach
can be applied to the Euler equations (Hasimoto and Ono
1972; Mei et al. 2005) to derive such wave evolution
equations. In the case of energy-conserved narrow-band
wave fields in deep-water, the latter models reduce to the
famous nonlinear Schrödinger equation (Zakharov 1968).
The depth-adapted nonlinear Schrödinger equation (DNLS)
as proposed in (Djordjević and Redekopp 1978) can be
considered as the simplest deterministic nonlinear wave
model, which takes into account third-order effects and
can be utilized to analyze steep wave packets undergoing
a run-up process. We emphasize that directional effects
are crucial for an accurate description of coastal wave
dynamics and extreme wave events (Holthuijsen 2010),
particularly, during interactions with the bathymetry in
shallow zones: refraction, diffraction and sediment transport
are also essential and non-negligible processes. Nevertheless,
understanding the key properties’ variations of uni-directional
wave packets is an essential starting point towards a
deterministic and statistical prediction of coastal extreme
wave shoaling physics. Such weakly nonlinear models can
be also implemented to address more complex and realistic
configurations (Mei et al. 2005; Klein et al. 2020).

Our experimental study aims to track and predict the
behavior of unstable and steep wave groups, also known
as breathers, while propagating over linearly varying beds.
We particularly focus on wave packets which undergo
modulation instability in deep-water and then evolve into
a relatively shallow water zone. In this context, shallow
water regime is characterized by dimensionless depth values
kh (k and h being the wavenumber and water depth,
respectively) below 1.363. In such conditions, it is known
that modulation instability cannot be triggered or unfold
(Mei et al. 2005) as a result of disappearance of third-
order nonlinear interactions (Yuen and Lake 1982). It is
shown that when the floor has a gentle inclination the
breather wave packets tend to quickly decay. On a steep
slope, however, breathers last longer and even propagate
far into the shallow water kh < 1.363 region, as has
recently been conjectured (Kashima and Mori 2019). Since
these unstable wave groups can be considered as extreme
waves, we assume that the lifetime of some large-amplitude
waves formed in deep water can be extended when making
their way into shallow regions over a steep slope. All
breather transformation measurements show a very good
agreement with the DNLS model. We have extended our
experimental investigation to uni-directional JONSWAP-
type wave fields, which undergo the same shoaling process

as the deterministic breathers. The evaluation of skeweness
and kurtosis show that the DNLS is only accurate when the
wave field is narrow-band.

2 Steep wave packets modeling in variable
water depth

Starting point of our deterministic model validation for
wave groups evolving over a variable water depth is the
so-called DNLS (Djordjević and Redekopp 1978).
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and D being a supplementary linear dissipation rate
parameter. g is the gavitational acceleration and ω the wave
frequency while cp and cg denote the phase and group
velocity, respectively.

When considering the case of energy conservation and
deep-water condition, Eq. 1 reduces to the famed NLS
(Zakharov 1968; Osborne 2010). When kh > 1.363 the
NLS is known to model Stokes waves, which undergo
modulation instability. This latter process can also emerge
in the ocean (Zakharov and Ostrovsky 2009; Annenkov
and Shrira 2009; Babanin 2011; Waseda 2020). There are
different ways to trigger or generate such unstable steep
wave groups in a laboratory environment, i.e. in water wave
tanks (Dudley et al. 2019). One possibility to initiate the
modulation instability (Benjamin and Feir 1967) is to seed
side-bands within the instability frequency range (Tulin and
Waseda 1999; Houtani et al. 2018) or simply by using
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deterministic Akhmediev breathers (ABs), which are known
to describe the nonlinear stage of modulation instability
(Akhmediev et al. 1985; Chabchoub et al. 2017). Details
on the respective parametrization in hydrodynamics can be
found in Kimmoun et al. (2016). Note that when adopting
the latter breather parametrization for a given modulated
carrier wave with amplitude a, wavenumber k and wave
frequency ω, the breather parameter a is related to the

modulation frequency Ω by a = 1

2
− Ω

2
√

2akω
. The

evolution of the respective wave trains over a pre-defined
bottom topography profile following Eq. 1 is determined
numerically by integrating the envelope along the co-
ordinate x of wave direction using the split-step method.

3 Experimental and numerical set-up

The laboratory experiments have been conducted in two
large-scale water wave flumes, which we will refer to as the
midsize and the large tank. Both facilities are installed at
the Tainan Hydraulics Laboratory of the National Cheng-
Kung University in Taiwan. The waves are generated using
a hydraulic piston wave maker while the evolution of the
free surface is measured using 48 capacitance wave gauges,
which were installed along both facilities in the direction of
wave propagation. The artificial and linearly varying floors
as installed in these facilities are made of concrete with a
smooth surface. Schematics of both facilities together with
the locations of the wave gauges and the inclined floors are
shown in Fig. 1

The exact dimensions of both facilities are described in
Table 1.

Different bottom topographies have been installed. The
characteristics of these artificial bathymetries are given in
Table 2.

Fig. 1 Water wave facilities, in which the experiments have been
conducted, including the location of the wave gauges and the artificial
floor slopes. Top: midsize tank. Bottom: large tank

Table 1 Dimensions of the two water wave tanks in which the
experiments have been conducted

Tank Length Width Initial water depth

Midsize 200 m 2 m 0.975 m

Large 300 m 5 m 2.3 m

The slope values of the two floor sections in each tank
is 1/40 followed by 1/200 in the midsize tank and 1/188
followed by 1/100 for the large tank.

The initial temporal wave profiles, as imposed to the
wave maker, have been programmed to initiate either
periodically modulated and unstable wave trains or irregular
wave fields which satisfy referenced JONSWAP sea states
(Hasselmann et al. 1973). In order to start the instability
from very small amplitude modulation the initial unstable
side-band amplitudes as modeled by the breather have
been determined to achieve the maximal focusing at the
dimensionless depth condition kh = 1.363, where the
switch to shallow-water conditions occurs. Both facilities
provide sufficient propagation distance for the instability to
develop and decline. It is obvious that the variations of the
local water depth parameter kh and the wave steepness ak

are crucial in this type of experiment. This will be shown
and discussed in the next section.

Finally, the numerical scheme, used for the integration of
the DNLS, was adapted according to the parameters of the
studied model. It is based on the robust split-step method,
which has been proven to be very stable and accurate in
the integration of weakly nonlinear evolution equations. We
refer to Hardin and Tappert (1973) for more details.

4Wave group shoaling

4.1 Deterministic evolution of unstable wave groups

We start reporting on breather experiments, which have
been conducted in the midsize facility with a major gentle
slope section as described in the previous Section. The
initial modulationally unstable wave train has a frequency
of f = 0.92 Hz and a wave amplitude a = 0.02 m
while the modulation frequency, as imposed by the breather

Table 2 Bed bathymetry properties in the corresponding water wave
flume

Tank Slope 1 Length Slope 2 Length Propagation distance

Midsize 1/40 20 m 1/200 105 m 146.2 m

Large 1/188 50 m 1/100 200 m 253.4 m
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dynamics, corresponds to the case of maximal growth rate
Ω = 0.45 s−1. The maximal envelope compression is
expected to occur 76.2 m from the wave maker, which
corresponds to the location in which the dimensionless
threshold depth condition kh = 1.363 is satisfied. The
evolution of the unstable modulated wave train while the
comparison with DNLS simulations are shown in Fig. 2.

Note that the wave envelope can be easily extracted
from the surface measurements using the Hilbert-transform
(Osborne 2010). Indeed, we can clearly observe an excellent
focusing and defocusing trend between the deterministic
and expected wave transformation as described by the
DNLS and the wave measurements in the tank. This is
also confirmed in the next experiment, which have been
performed in the same wave facility and visualized in Fig. 3.

Here, the frequency, amplitude and modulation fre-
quency are f = 0.92 Hz, a = 0.026 m and Ω = 0.51
s−1, respectively. That is, the corresponding steepness is
now ak = 0.09. This is very encouraging when consider-
ing the location of wave focusing reached, the significant
propagation distance as well as the complex wave-bottom
interaction effects at play. Obviously, wave reflection is
inevitable and the reflection coefficient has been quantified
to be of 11% for both experiments conducted in the midsize
facility.

Before discussing the envelope compression and de-
compression process, we will present the results of the
experiments conducted in the larger facility with having
a steeper large slope section. The first case corresponds
to carrier parameters a = 0.075 m and f = 0.6 Hz,

Fig. 2 Left: Evolution of narrow-band wave field, subject to
modulation instability, as expected from DNLS. Right: evolution of the
measured wave field in the midsize wave tank. Top: evolution of the
wave envelope. Bottom: evolution of the wave train at different gauge
locations. The wave amplitude and wave steepness are a = 0.020 m
and ak = 0.07, respectively, while the modulation frequency is Ω =
0.45 s−1

Fig. 3 Same as Fig. 2. The wave amplitude and wave steepness are
a = 0.026 m and ak = 0.09, respectively, while the modulation
frequency is Ω = 0.51 s−1

which define a carrier steepness of ak = 0.11. Also
here, the boundary conditions have been determined to
fulfill a maximal wave focusing at kh = 1.363. The
modulation frequency has been chosen to be Ω = 0.27
s−1. The respective measurements and comparison with the
DNLS estimations are represented in Fig. 4. The reflection
coefficient is 4.6% in this case.

Another experiment has been performed by the increas-
ing the value of amplitude to a = 0.088 m and Ω = 0.30
s−1 while keeping the same wave frequency. Thus, we have
increased the value of wave steepness to ak = 0.13. The
experimental and numerical evolution is shown in Fig. 5.
The reflection coefficient here is 7%.

Fig. 4 Same as Figs. 2 and 3. The wave amplitude and wave steepness
are a = 0.075 m and ak = 0.11, respectively, while the modulation
frequency is Ω = 0.27 s−1
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Fig. 5 Same as Figs. 2, 3 and 4. The wave amplitude and wave
steepness are a = 0.088 m and ak = 0.13, respectively, while the
modulation frequency is Ω = 0.30 s−1

Once again, the measured wave field evolution is in good
agreement with the simplified weakly nonlinear theory as
described by Eq. 1.

It is also interesting to compare the lifetime trend of the
wave focusing in the presence of gentle-inclination steep
floor in the midsize tank with the steeper but still moderate
inclination in the large facility. It is particularly insightful
to understand the wave packet dynamics in the wave flume
around the dimensionless depth of kh = 1.363, a region
where the deep-water four-wave interactions are expected
to weaken while second-order effects remain active. At this
dimensionless depth value the nonlinear coefficient in the
Schrödinger equation vanishes and wave packets are stable
below this value (Johnson 1977).

The evolution profiles provide a qualitative understand-
ing of the focusing behavior of unstable wave groups
approaching shallow regions. When the floor has a mild
inclination, the steep wave packets decay even before reach-
ing kh = 1.363. In contrast, when the slope is rather steep,
the (rogue) wave envelopes keep their extreme form over
a large distances in relatively shallow regime. The reported
wave behavior is in agreement with the recent numerical
study (Lyu et al. 2021). We now focus on tracking the max-
ima and minima of the unstable wave group data around the
threshold of kh = 1.363, see Fig. 6.

Note that the dissipation and friction resulting from the
interaction of the waves with the floor play a key role in
the evolution as suggested by the modeling. This attests that
deep-water wave groups, which are subject to modulation
instability, may in fact maintain their large amplitudes and
pervade far into shallow waters when the continental slope
is steep, as previously reported in Kashima and Mori (2019)
and Lyu et al. (2021) while the DNLS is well-suited to
describe such steep wave group (breather) hydrodynamics.

Fig. 6 Evolution of normalized maxima and minima of the upper wave
envelope. Top left: case as in Fig. 2. Bottom left: case as in Fig. 3. Top
right: case as in Fig. 4. Bottom right: case as in Fig. 5

Since we have carried out the experiments with different
wave steepness values, we conjecture that third-order
nonlinear interactions are substantial when unstable wave
packets propagate over steep linear slopes before and after
kh = 1.363 as a result of a slow relaxation of the
four-wave resonance in the shallow zone (Trulsen et al.
2020). On similar but mild inclinations on the other hand,
third-order interactions considerably weaken and the role
of second-order effects appear to be more dominant in
such configurations (Li et al. 2021a). Moreover, observed
breather wave groups experience a generic broadening as
has been reported by Didenkulova et al. (2013).

4.2 Irregular wave evolution

In this subsection, we turn our attention to the DNLS model
validation for irregular and therefore more broadband wave
processes as modeled according to the JONSWAP-spectrum
parametrization (Hasselmann et al. 1973)
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We chose a representative peakedness parameter γ of 3.3
and 7 to investigate the role and influence of the bandwidth
on the DNLS model accuracy. These experiments have been
conducted in the large tank, and thus, only in the facility
with the initial very mild, followed by the steeper bottom
slope configuration. Characteristic relevant indicators for
the wave statistics are the skewness and kurtosis (Mori and
Janssen 2006; Zhang et al. 2019), which are key parameters
to assess the role of second- and third-order nonlinear
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Fig. 7 Evolution of skewness and kurtosis for fp = 0.4 Hz and a
JONSWAP peakedness parameter of γ = 3.3. Left: Hs = 0.10 m.
Right: Hs = 0.12 m. Red lines: DNLS simulations; Black lines DLS
simulations; Blue lines: experimental values

effects, respectively. Moreover, we investigate the role of
nonlinearity in the shoaling process by including depth-
adapted linear Schrödinger equation (DLS) simulations. We
will not introduce the Benjamin-Feir index (BFI) in this
study, since it is well-known that the kurtosis depends on
the square of BFI (Mori and Janssen 2006). All experiments
have been conducted with a peak frequency of fp = 0.4 Hz,
therefore the condition kh = 1.363 is satisfied at 52 m from
the wave maker. The results for γ = 3.3 while Hs = 0.10
m and Hs = 0.12 m are shown in Fig. 7.

The results suggest that both DLS and DNLS simulations
match reasonably well the experimental skewness values,
including its peak; however, the kurtosis prediction is far
to be accurate and the mismatch can be observed for
both significant wave height values chosen. We conclude
that such weakly nonlinear models are not sufficiently
accurate for the description of such broadband processes
and that second-order effects from wave steepness are
highly likely to govern such evolution hydrodynamics (Lyu
et al. 2021; Li et al. 2021b). In the very shallow region,
the wave process appears to be dominated by purely linear
effects and the wave field does not relax back to a pure
Gaußian process. We surmise that the latter might be due
to wave reflection, which is very challenging to quantify
for the broadband JONSWAP wave field adopted. The next
experiment comprise an increased JONSWAP peakedness
parameter value of 7. The comparison of skewness and
kurtosis variation with the DLS and DNLS simulations for
this case are reported in Fig. 8.

Fig. 8 Evolution of skewness and kurtosis for fp = 0.4 Hz and a
JONSWAP peakedness parameter of γ = 7. Left: Hs = 0.10 m.
Right: Hs = 0.12 m. Red lines: DNLS simulations; black lines DLS
simulations; blue lines: experimental values

We can confirm that the agreement with the experimental
skewness and kurtosis values have been significantly
improved in this case. The relaxation and convergence
of the kurtosis parameter back to three in the shallow
region after the experienced shoaling peak is well-captured
by the DNLS, suggesting the significance of third-order
nonlinearities for this narrow-band and nonlinear wave
trains propagating on linear bottom topographies while
the skewness is significantly influenced by second-order
effects in the shoaling process. These results are indeed in
agreement with the extensive nonlinear Schrödinger-based
numerical simulations recently published (Lyu et al. 2021).
Overall, our results confirm the usefulness of the DNLS in
the accurate modelling of narrow-band and uni-directional
waves undergoing a run-up.

5 Conclusion

We have reported an experimental study for the purpose of
weakly nonlinear model validation for uni-directional water
waves evolving over uneven bottom topographies. Both,
time-periodic steep wave groups (breathers) and irregular
JONSWAP wave fields with two distinct significant wave
height values and two peakedness parameters have been
considered in this study. The DNLS model, which captures
dispersion, weak nonlinearity, water depth variation and
simplified bottom friction effects, has been used to track
intrinsic wave field characteristics as measured in large-
scale water wave facilities with different linear slopes.
When investigating breathers, it is found that when these
unstable wave packets propagate over a gentle slope,
the wave amplitudes attenuate quickly and the focusing
is not significant. This highlights the dominant role of
second-order terms from wave steepness while four-wave
interactions gradually weaken during the propagation. Then
again, when the breather propagate over a steeper slope the
third-order effects appear to be crucial even for kh < 1.363
and consequently, the focused wave amplitudes persist and
remain large in the shallow zone. All surface elevations
measured along the water wave facilities are in very
good agreement with the DNLS model. For the case of
JONSWAP wave fields, we conjecture that independently
of the significant wave height chosen, the DNLS is very
accurate when considering narrow-band wave processes
(γ = 7) and substantially loses its high accuracy in
forecasting the kurtosis peak and its decay when broadening
the spectrum (γ = 3.3). All JONSWAP cases show a
relaxation of the wave filed to a (nearly-)Gaußian process in
very shallow regions.

We cannot draw a final conclusion on the role
of the nonlinear four-wave interactions in the wave
shoaling process due to the limited cases considered here.
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Nevertheless, our conclusions are in line with the recent
findings (Trulsen et al. 2020; Zhang and Benoit 2021;
Lyu et al. 2021; Li et al. 2021b). We intend to explore
supplementary types of linear and nonlinear wave packet
transformations as next. In addition, future studies will
be focusing on considering additional bottom topography
designs and extending the range of spectral bandwidth.
Moreover, we will adopt more sophisticated nonlinear wave
models to improve the understanding of extreme wave
hydrodynamics and statistics in coastal areas.
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