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Abstract
Various uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-
sea interactions, and the lack of certain ground truth observations. Here, a comprehensive analysis of an atmospheric model
performance in hindcast mode (Hurricane Weather and Research Forecasting model—HWRF) and its 40 ensembles during
severe events is conducted, evaluating the model accuracy and uncertainty for hurricane track parameters, and wind speed
collected along satellite altimeter tracks and at stationary source point observations. Subsequently, the downstream spectral
wave model WAVEWATCH III is forced by two sets of wind field data, each includes 40 members. The first ones are
randomly extracted from original HWRF simulations and the second ones are based on spread of best track parameters. The
atmospheric model spread and wave model error along satellite altimeters tracks and at stationary source point observations
are estimated. The study on Hurricane Irma reveals that wind and wave observations during this extreme event are within
ensemble spreads. While both Models have wide spreads over areas with landmass, maximum uncertainty in the atmospheric
model is at hurricane eye in contrast to the wave model.
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1 Introduction

The frequency and destructiveness of coastal storms have
required improving the accuracy of numerical weather
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prediction models, incorporating three other major strate-
gies: (1) data assimilation, (2) ensemble modeling, and (3)
atmospheric-wave-surge-hydrological coupling. The cou-
pling of atmospheric, ocean wave, surge, and hydrological
models on high-resolution numerical grids has improved
model accuracy by better representing nearshore/inland
geometries and physics (Moghimi et al. 2020). Coupling
reflects the dynamic feedbacks of model components, and
improves our understanding of such a complicated system.
In addition, High Performance Computing (HPC) facilitates
the computational speed of the aforementioned modeling
systems. Multiple sources of error still remain, from instru-
ment and processing noise in the observational data that
are used to develop the models, to the physical parameter-
izations that account for the unresolved physics, resolution
limits, and physics simplification in the models, to the
stochasticity of the natural processes themselves. There-
fore, determining the damage caused by hurricanes using
such numerical models requires a statistical evaluation of
uncertainty.

In this study, we statistically evaluate the outputs
of hindcasted deterministic and ensembles simulations
from the Hurricane Weather and Research Forecasting
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model hereinafter HWRF (Tallapragada et al. 2015) and
WAVEWATCH III, hereinafter WW3 (WW3DG 2019), an
ocean wave model forced here with HWRF 10-m surface
winds. Conventionally, the performance of atmospheric
models is evaluated for hurricane track parameters, available
from best track parameters’ tables, including but not
limited to hurricane intensity, central coordinate, radius of
maximum wind, central and background pressure, radii for
34, 50, and 64 knots (1 kn = 0.514444 m/s) thresholds
on four quadrants (Sampson et al. 2017; Bender et al.
2017). In addition, time series of observations at fixed in
situ locations such as meteorological stations, wave buoys,
tide and stream gauges, and spatio-temporal along-track
satellite data are used to assess the accuracy of atmospheric,
wave, and surge models. However, these data are sparse,
often not covering the area of interest where the damage
needs to be determined and sometimes unavailable within
landfall time window. To fill this gap, we first calculate
the spread of ensemble model results as an estimate of
our model uncertainty, and hence as a measure of the
model’s accuracy over the entire model domain, notably
in regions away from the available observations. Then,
model accuracy is evaluated against available observations
in term of statistical parameters, and a paired t test with
hypotheses represented in terms of p value for success or
failure of model in meeting observation. The case study
is Hurricane Irma, 2017, the most powerful hurricane
on record in the open Atlantic region outside of the
Caribbean Sea and Gulf of Mexico, until it was surpassed
by Hurricane Dorian just 2 years later. The HWRF model’s
uncertainty is determined via analysis of 40 ensemble
members, corresponding to 40 sets of initial conditions of
driving variables every 6 h (Fig. 1). The high number of
ensemble members allows to capture the spread of HWRF
prediction errors, ensuring that the hydrodynamic models
are forced with a wide enough ensemble. First, 40 members
are resampled from the outputs of HWRF members
randomly. Secondly and from the spread of HWRF-derived
best track paramerers, relative to the National Hurricane
Center (NHC) advisory (Tong et al. 2018), 40 additional
ensemble members for the wind field are generated to force
the downstream wave model. We analyze the statistical
distributions of time series of model errors, for particular
locations and important hurricane variables. We provide
an exploratory method to assess the similarity between
observations and HWRF/WW3 model estimates which is
general enough to be useful across many geophysical
variables. This is particularly important for minimizing the
error propagation required by complicated coupled model
systems.

The spread of model outputs during extreme conditions
of Hurricane Irma, with multiple landfall locations, allows
us to evaluate the accuracy of each individual model in
detail. The validation results for the investigated case show
that the ensemble mean has a low bias, and that the
observations fall within the ensemble spread, suggesting
that it is broad enough in the context of hindcasting.

This paper is arranged as follows. A summary of
potential sources of error in numerical models and
observations are presented in Section 2. Section 3 provides
a brief overview of the case study, Hurricane Irma and
the observations for model verification (satellite and point
source observations). Section 4 describes the atmospheric
model, track analysis, and ensemble system. A description
of WW3 and forcing ensembles is given in Section 5. Wind
and wave results, extracted from the deterministic run and
ensemble members, are discussed in Section 6. Description
of the paired t test for time series analysis is given in
Section 7. Concluding remarks are provided in Section 8.

2Model and observation sources of error

Numerical models’ inability to resolve natural processes
can be either from inaccurate numerics/physics or due to
the spatial and temporal limits (grid resolution and time
step), where subgrid processes and short-scale changes are
not considered. In addition, a numerical weather prediction
(NWP) model like HWRF is often optimized to resolve
dominant physics, simplifying the governing equations with
bulk formulae for capturing heat and momentum transfer
due to air-sea flux exchanges. Furthermore, certain physical
processes (like sea spray) are often neglected because
of lack of sufficient evidence to support their inclusion.
Use of observations for assimilation (in HWRF) also
leads to “representation error” whereby unresolved physical
processes impact the observations but not the model. These
errors are due to discretization errors on the coarse model
grids and can also be state dependent and correlated in time
(Desroziers et al. 2001; Janjic and Cohn 2006).

In principle, a phase-averaged wave model does not treat
waves individually but instead uses the wave spectrum as
the prognostic variable by describing the evolution of the
wave density spectrum (with source and sink terms as the
source of gain or loss). In other words, such a model is a
deterministic description of statistical properties of the sea
surface, mostly the dominant ones. It has directional and
spectral resolution limits in addition to spatial and temporal
resolution limits. In addition, the subgrid processes and
short-scale changes are not represented in a phase-averaging
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Fig. 1 Discontinuous Hurricane Irma tracks, extracted from the first 6
hrs of HWRF cycles for 40 ensemble members. The continuous best
track is shown by solid black line while the mean of HWRF ensembles
at t = 0 and t = 6 h is shown by dashed red and blue lines respectively.
NDBC buoys equipped with meteorological and directional wave sen-
sors are shown in entire domain. The spread of ensembles in terms
of standard deviation (σ ) is shown in panel (b). Seven landfalls on

Barbuda (1: September 6, 05:45), St. Martin (2: September 6, 11:15),
Virgin Gorda, British Virgin Islands (3: September 6, 16:30), Little
Inagua, Bahamas (4: September 8, 05:00), near Cayo Romano, Cuba
(5: September 9, 03:00), Cudjoe Key, Florida (6: September 10, 13:00),
and near Marco Island, Florida (7: September 10, 19:30) are marked
in panel (b). The gray area shows the time after final landfall

model. Within the phase averaged assumption, a prognostic
tail takes into account the higher-order moments and
high frequency part of spectrum with limits in model
parameterizations or missing physical processes within that
range.

Despite the significant progress in spectral wave mod-
els, these models lack skills in the surf zone and transition

from deep water to intermediate and shallow depths where
the gradients are larger and nonlinear processes often domi-
nate. It gets more complicated in coastal zone where air-sea
fluxes, wave breaking, coastal currents, reflection, refrac-
tion, wave-current interactions, fluidization and transport of
sediments, bottom friction and scattering, wave-vegetation
interaction, and nonlinearity become dominant (Cavaleri
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2006). Most of these processes are often dealt with in an
empirical way, particularly under the spectral approach,
which brings uncertainty to the model. Besides, as these
models are being pushed into shallower waters, the cur-
rents and water levels (tide and surges) cannot be considered
independently of waves and can be identified as another
source of error. Thus, when comparing the model results (in
term of Representative variables of sea-state, i.e., Hs and
Tp) with the observation, some confidence limits should be
considered (Monbaliu 2003; WW3DG 2019; Roland and
Ardhuin 2014). Decoupling of different shallow water pro-
cesses, where hydrodynamics and ocean waves are modeled
stand-alone or in a one-way fashion, introduces error in the
models’ outputs. Note that the necessity of dynamic cou-
pling between atmospheric, wave, surge, and hydrological
model is recognized; therefore, a tremendous effort across
modeling groups is in place (Moghimi et al. 2020; Bakhtyar
et al. 2020), leading to improvement in the accuracy of each
individual model in the coupled system. On the other hand,
the observations including stationary observations, along
satellite tracks or radar field snapshots carry errors and
uncertainties, mostly due to device accuracy, calibration,
and post-processing algorithm. A few number of these vari-
ables are directly observed (i.e., wind speed at the National
Data Buoy Center observatories—NDBC) and mostly are
indirectly calculated from observed variables (i.e., Hs from
satellite altimetry using the slope of the leading edge of the
returned wave form and calibration coefficients or Hs at
NDBC from spectral density data, translated from the buoy
accelerations and integrate those to heave, pitch, and roll
motions). It implies the fact that the observations are not
100% precise and the error embedded in such data should
be considered during performance evaluation of models.

Here, our focus is on the estimation of the error generated
by the atmospheric model and its ensemble members,
propagated into the wave model. The source of error can
be due to the aforementioned parameters of the models’
inabilities and observation uncertainties.

3 Case study: Hurricane Irma, 2017

On August 30th, a Cape Verde hurricane named Irma was
generated on (29.6◦W, 16.1◦N), swept westward over the
Atlantic and reached category 5 intensity (Saffir-Simpson
Hurricane Wind Scale) with four out of seven category five
hurricane landfalls across the northern Caribbean Islands.
Although the system weakened after the landfall in Cuba
to category 2, it re-strengthened to category 4 status as it
crossed the Straits of Florida, made landfall on Cudjoe Key
on September 10 and later that day in Florida on Marco
Island as category 3 (Cangialosi et al. 2018). The Hurricane

Irma best track with time tag (30 August–12 September
2017) is shown in Figs. 1 and 2. Irma was the ninth named
storm, fourth hurricane, second major hurricane, and first
category 5 hurricane of the 2017 season in Atlantic basin. Its
wind speed and pressure reached ∼ 285 km/h and 914 mb
on September 6th. In the Caribbean, the maximum observed
waves reached 8 m in Cayo Romano where hurricane was
category 5. The sea level in Ciego de Ávila Province rose
by 3 to 3.5 m and penetrated inland more than 800 m. In
Florida Keys and Southwestern Florida, the combined effect
of storm surge and the tide produced maximum inundation
levels of 2.5 and 3 m above ground level respectively. The
NDBC network captured maximum observed waves on both
sides of the Florida Peninsula with a significant height of
∼ 6 m at NDBC #41008 and #42036 on September 11.
The peak period of observed waves was about 15 and 10 s
at offshore and nearshore NDBC observations respectively.
Irma was directly responsible for 52 deaths and indirectly
responsible for a further 82 fatalities, with damage of 77.16
billion (2017 USD).

3.1 Observations

The accuracy of the atmospheric and wave models is
quantified along spatiotemporal satellite observations and
at stationary observations in term of time series. Besides
the uncertainties, embedded in the results of numerical
models, errors and uncertainties exist in in situ observations.
The source of measurement errors can be due to either
the instrument accuracy, calibration error, or data post-
processing algorithms where the compared variables are not
collected directly (i.e., significant wave height). Therefore,
comparison of model results against buoy measurements
and satellite altimeter data are not conclusive solely if
the uncertainties in the observations are not determined.
The accuracy of observations is estimated based on other
independent data like hindcast model outputs and in situ
measurements. For example, Abdalla et al. (2011) estimated
the uncertainty in the Jason 1&2 and Envisat RA-2 satellite
observation and buoy measurements using triple collocation
technique for the length of 1 year and reported significant
wave height absolute error of 0.13–0.19 m or Scatter Index
within 5.4–7.8% range relative to the mean values for
satellite and absolute error of 0.206–0.218 m or Scatter
Index within 8.6–8.9% range relative to the mean values for
buoy observations. For wind speed, absolute error of ∼ 1
m/s or 12% Scatter Index relative to the mean values for
satellite and absolute error of ∼ 1.15 m/s or Scatter Index of
13.8 % relative to the mean values for buoy observations are
reported. Note that these statistics can increase significantly
during severe events as wind and wave amplitudes
increase.
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3.1.1 Satellite data

In this study, post-processed satellite altimeter data (wind
speed and Ku-band significant wave height), collected by
six altimeter missions (Sentinel-3A, Sentinel-3B, CryoSat-
2, SARAL, Jason 2 and Jason 3) are used. Correction
algorithms are applied for individual altimeter raw data
based on its specific criteria (Queffeulou and Croiz é
Fillon 2012). For wind speed, the calibrated values of
normalized back-scatter from satellite altimeters (sigma0)
and buoy comparison are used for correction (Abdalla
2012). For significant wave height, a linear correction is
applied using buoy comparison (Queffeulou 2004). Since
the buoy observations are time series at a stationary point,
the projection into space is done using wave group velocity
for significant wave height error estimation. The satellite
footprints within our numerical domains, consisting of
∼ 68-k scattered data points, are shown in Fig. 2 with
a temporal color bar covering August 27–September 12.
The data are divided into two categories: the bold ones,
within 7.5◦ of hurricane eye (∼ 6600 samples) versus far
distance ones > 7.5◦ (∼ 61000 samples). This is done
to separate the data within the active zone, where the
complicated hurricane core and its inherent uncertainties are
under investigation. The satellite tracks move at the speed
of ∼ 0.05 degree/s with a sampling rate of ∼ 1 Hz. On the

other hand, the outputs of atmospheric and wave model are
hourly on variable grid resolutions (HWRF on moving inner
nested domains with resolutions of 0.099/0.033/0.011◦ and
WW3 with variable resolutions of the unstructured grids
from 110 km offshore to 200 m in nearshore regions).
Therefore, proper projection and averaging are required
for the validation and statistical analysis. In this regard,
the model outputs are interpolated to the satellite data,
where linear interpolation for time and Inverse Distance
Weighting (IDW) are used to average between the three and
four nearest points for unstructured and structured grids,
respectively. Then model and satellite data are sorted in time
for each altimeter separately. Finally, the data are averaged
every Δx = 0.5 degrees in space.

3.1.2 Point source observations

In this study, the time series of meteorological and wave
parameters including wind speed U10, wind direction,
significant wave height (Hs), peak period (Tp), and mean
wave direction are compared at NDBC buoy locations.
NDBC wind measurements are six 10-min average values
of wind speed and direction reported each hour. Wave
measurements are 20-min average value (Gilhousen 1987;
Steele and Mettlach 1993). The NDBC data for this study
are provided either every 10 min or hourly while the

Fig. 2 Satellite altimeters with
track date within numerical
domains for the east coast of the
USA; The data, collected within
7.5◦ of the hurricane eye, are
shown in bold, Hurricane Irma
best track and time tags are
shown by magenta
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HWRF/WW3 models’ outputs are hourly. For the sake of a
fair comparison, we averaged the NDBC data every hour. As
shown in Fig. 1, these gauges are located along the hurricane
track from genesis to the landfall on both sides of the Florida
peninsula where meteorological and wave parameters are
collected.

4 Atmospheric model

We have used the Hurricane Weather Research and
Forecasting (HWRF) model (Tallapragada et al. 2014b;
Gopalakrishnan et al. 2010), which is equipped with a
movable multilevel nesting technology (Zhang et al. 2016)
and designed for extreme events like hurricanes. The HWRF
model is a primitive-equation, non-hydrostatic, coupled
atmosphere-ocean model with an atmospheric component
that employs the Non-hydrostatic Mesoscale Model (NMM)
dynamic core of the WRF model (WRF-NMM), with a
parent and two nest domains. The parent domain covers
roughly 77.2◦ × 77.2◦ on a rotated latitude/longitude
E-staggered grid. The location of the parent domain is
determined based on the initial position of the storm and on
the NHC/ Joint Typhoon Warning Center (JTWC) forecast
of the 72-h position, if available. The middle nest domain,
of about 17.8◦ × 17.8◦, and the inner nest domain, of about
5.9◦ × 5.9◦, move along with the storm using two-way
interactive nesting. The stationary parent domain has an
effective grid spacing of about 13.5 km, while the middle
and inner nested domains have effective grid spacing of
about 4.5 km and 1.5 km, respectively. The dynamic time
steps are 30, 10, and 3.33 s, respectively, for the parent,
middle nest, and inner nest domains. The model has 75
vertical levels with a model top at 10 hPa. The system is
flexible so that different model tops and numbers of vertical
levels can be used (Biswas et al. 2018). The two inner
nests follow the hurricane best track, ensuring the highest
resolution around the eye of the hurricane. The HWRF
model is utilized in hurricane forecasting with 4 cycles
per day, each projecting 120 h ahead of the hurricane in
real time and adjusted itself every 6 h with assimilation
of field data. In addition, the model runs on 40 ensemble
members, providing an opportunity for probability and
uncertainty analysis. Here, the HWRFmodel configurations
are slightly changed to use known atmospheric conditions
based on existing observations (after data quality control)
and generate semi-hindcasted wind forcing. In order to save
computational resources, each cycle lasts 9 h. This model
provides hourly outputs which are necessary for a rapidly
changing hurricane wind fields. In this study, and at each
output time step, the wind field from the highest resolution
nested domain is used, extracted from the HWRF model
and its ensembles. We used atmospheric fields generated

by HWRF coupled to the Princeton Ocean Model (POM)
(Yablonsky et al. 2015) and Fully cycled HWRF ensemble
hybrid data assimilation based on hybrid Ensemble Kalman
Filter (EnKF) (Zhang et al. 2009) using satellite data. The
HWRF model was forced with the boundary condition
(B/C) provided by the Global Forecast System (GFS) with
0.25-degree spatial grid resolution, high-resolution GFS
analysis for initial condition (I/C) and best track parameters,
generated by NHC guide in real time.

The HWRF ensembles are generated by initial/boundary
conditions perturbations (large scale) and model physics
perturbations (vortex scale) including stochastic Convective
Trigger Perturbations in GFS Simplified Arakawa Shubert
(SAS), Stochastic boundary layer height perturbations in
Planetary Boundary Layer (PBL) scheme, Stochastic Cd
perturbation and Stochastic initial wind speed and posi-
tion (best track parameters) perturbations considering best
track uncertainty (Zhang et al. 2014). As a unified model
at NOAA, the hybrid ensemble-variational data assimilation
system based on Grid-point Statistical Interpolation (GSI;
Wu et al. 2002) is developed to provide the HWRF analysis
through assimilating all kinds of available conventional and
satellite observations. A combination of static background
error covariance calculated with the National Meteorolog-
ical Centre (NMC) method (Parrish and Derber 1992) and
a flow-dependent background error covariance estimated
from 6-h ensemble forecasts is used in this hybrid data
assimilation system. In HWRF, 40-member high-resolution
ensemble forecasts initialized by the Ensemble Kalman Fil-
ter (EnKF) are designed to generate the flow-dependent
error covariance, which accounts for 80% of the entire back-
ground error covariance (Wang and Lei 2014; Kleist and Ide
2015; Tong et al. 2018).

An ensemble is a collection of two or more simulations
running in parallel to estimate the probability density
function of reconstructed fields due to the presence of
inevitable uncertainties in the model and observations.
The motivation for using ensemble models is to reduce
the generalization error of the prediction. The source
of uncertainties comes from either observational errors,
poor data coverage, and errors in DA system or mis-
representation of model dynamics/physics (chaotic and
nonlinear nature), impact of subgrid scale features. The
more diverse and independent the members, the less error
in the prediction. Here, and for this hindcasted case, the
deterministic run and mean of ensembles are quite close
to each other. However, it has been proven that a well-
designed ensemble system will not only help represent
the uncertainty (and spread) well but it will also give us
better products (Alaka et al. 2019; Zhang et al. 2014)
compared to deterministic simulation, especially in forecast.
Although the uncertainty is small at the beginning, the
errors can grow fast due to the aforementioned key
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roles; therefore, the simulated results will diverge from
observation. The effectiveness of ensemble modeling has
been demonstrated in operational forecasting systems.
Similarly, the uncertainties in hindcast modeling exist due to
the presence of uncertainties in storm position, intensity, and
structure, the large scale flows and Multi-scale interactions
among subgrid scales.

4.1 Track analysis

The best track parameters are subjectively derived analyses
of the hurricane locations, intensities, and structures. While
subjective, these are real and useful estimates of the
hurricane structures, intensities, and locations, which are
based on the available observations (Knaff et al. 2011).
A schematic view of hurricane vortex and its parameters,
summarized in the best track parameters’ table, is shown
in Fig. 3 where a counterclockwise hurricane vortex is
split into four quadrants (NW, SW, SE, NE), each one is
defined by the maximum wind speed (Vmax) with Radius
of Maximum Wind (RMW) from the center (∂Vg/∂r = 0).
The radius of three wind thresholds (64, 50, and 34 knots),
required to define the wind profile, are shown by magenta,
blue, and red lines respectively. The central pressure at
Mean Sea Level (MSL) and background pressure, required
for surge models are also summarized in the best track
parameters’ table:

– Hurricane Best Track.
– Maximum wind speed.
– Radius of Maximum Wind (RMW).
– Pressure at MSL.
– Radii for 34, 50, and 64 thresholds.

The HWRF model uses this information as an initial
condition (I/C) at the beginning of each cycle. Besides,
the observed best track parameters (issued by NHC), forty
tables of best track parameters are generated by the model,

representing each individual member. In our analysis, the
observed data are compared with the spread of ensemble
members (mean and standard deviation σ ) in order to reveal
the uncertainties around hurricane main parameters.

4.1.1 Hurricane best track

The simulated hurricane tracks for the first 6 h of each cycle
(ci) are shown in Fig. 1a where the model is reinitialized at t
= 0 for 40 ensemble members. The ensemble spread tends to
broaden as the model steps forward, which leads to a wider
spread at t = 6 h compared to t = 0 and hence discontinuity in
the whole hurricane period. This discontinuity comes from
the independent nature of perturbations at the initialization
step. The offsets from the observed hurricane best track are
shown in panel b for t = 0 (red) and t = 6 h (blue) where
positive and negative values represent simulated tracks on
the east and west sides of observed track, respectively. As is
shown in Fig. 1, the mean of ensembles at t = 0 are bounded
within [−0.15 0.21]◦ ± 0.06◦ of best track while the mean
of t = 6 h are within [−0.29 0.52]◦ ±0.1◦ of hurricane track.

4.1.2 Maximumwind speed (U10)

The time series of the maximum wind speed, 10 m above
MSL, is shown in Fig. 4a, where the black line represents
observed data and red and blue lines are the mean and spread
of the ensemble members at t = 0 and t = 6 h respectively.
The 34, 50, and 64 kn thresholds are shown in the vertical
axis, determining tropical depression (< 33 kn), tropical
storm (34 − 63 kn), and category 1 (> 64 kn), respectively,
corresponding to the strength below which the shape of
the vortex is no longer semi-symmetric and consequently
the model uncertainty increased. As is shown in Fig. 4a,
Hurricane Irma quickly reached a high wind speed (∼
155 kn—category 5) 5 days after its genesis and retained
its intensity until it lost most of its energy over Cuba on

Fig. 3 A schematic view of
translating wind vortex at the
hurricane eye represented in
terms of radii for 34, 50, and 64
knots wind thresholds, max
wind speed, and its radius in 4
quadrants
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Fig. 4 The mean and spread of
HWRF ensemble members in
term of standard deviation (σ ) at
t = 0 (red) and t = 6 hrs (blue)
for max wind speed (panel a);
Radius of Maximum Wind
(RMW) (panel b) and central
pressure ,Pc and background
pressure, Pn (panel c). In all
subplots, seven landfalls are
marked as explained in Fig. 1.
The gray area shows the time
after final landfall. All model
configurations and results are
pre-decisional and for official
use only

September 9th. It re-intensified again to nearly 100 kn
on September 10th. The wind speed dropped significantly
after September 11th when it hit the main land of the
USA and its structure reshaped. The modeled U10 is close
to the observation, mostly overestimated at the beginning
of each cycle within Model − Obs ± σ = [−9.6 30] ±

5.2 kn of observed ones. The model tends to underestimate
the maximum wind speed as model progresses to t = 6
h with a larger bias relative to the observation until the
landfall in Florida on September 11th. The ensemble mean
varies within [−55.5 6.5] ± 4.1 kn of the observation at
t = 6 h.
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4.1.3 Radius of MaximumWind

The time series of RMW is shown in Fig. 4b where it
remains ∼ 20 ± 3 nm until the maximum wind speed
dropped below 100 kn on September 9th and since then
enlarged to ∼ 150 nm with a wider spread of uncertainty.
For the whole period of Hurricane Irma, the RMW varies
between 15.5 and 141.3 with standard deviation within the
range of ±[1 38] nm for t = 0 and between 15.6 and 155.3
nm with 1.3 < σ < 13.25 nm for t = 6 h.

4.1.4 Pressure at MSL (Pc and Pn )

The recorded background pressure (Pn) during Hurricane
Irma was between 1007 and 1011 mb with average of
1008.5 mb. Figure 4c shows the pressure depression at the
hurricane center Pc varying from 943 and 984 mb with the
lowest value on September 6th. Similar to maximum wind
speed trend, the central pressure tended to recover to the
background values during each landfall and degraded once
it intensified after entering the Straits of Florida. Note that
the mean of ensembles tended to recover the balance in
the pressure differences. As a result, the central pressure
increased to get closer to the background pressure after
cycle reinitializations. The variability of ensemble means is
almost 2.5 mb for either initial time step and t = 6 h.

4.1.5 Radii for 34, 50, and 64 thresholds

As illustrated in Fig. 3 and in each quadrant, the wind profile
is defined by the RMW and the distances of the 34, 50,
and 64 knot thresholds, and therefore the hurricane intensity
and impacted area. Although the cone of a hurricane is
asymmetric by nature, the vortex retains its shape as it
moves over open water, ideal for an atmospheric model like
HWRF. On the contrary, the land geographical irregularities
reshape the vortex structure, decrease the wind speed, and
widen the impacted area. Such behavior is illustrated by the
34, 50, and 64 contours in Fig. 5a, b where the mean radii
started from 102, 57, and 32 nm at the beginning and ended
at 315, 102, and 52 nm as it crossed the Caribbean islands
and finally hit the main land of the USA. Unlike the other
parameters, the mean of ensemble members converges to
the observational values from t = 0 to 6 h as is shown in
Fig. 5c. Similarly, the spread of ensemble means decrease
from 9.65, 5.36, and 4.06 nm at t = 0 to 6.41, 5.26, and 2.7
nm at t = 6 h for 34, 50, and 64 thresholds, respectively.

5Wavemodel

Ensemble modeling requires a massive HPC environment
and a scalable highly efficient numerical model. However,

it is known that spectral wave models (i.e., WAVEWATCH
III) are relatively expensive especially on large unstructured
grids with very high-resolution grid cells, in which the
smallest cell size governs the model time step (due to
CFL constraints in the explicit solver). In these regards,
substantial improvements in the WW3 model are required.
Recent developments in WAVEWATCH III on unstructured
grids have pushed the limits of the model in terms of
minimum grid size and computational efficiency. These
developments include a new parallelization based on a
domain decomposition algorithm and a robust implicit
solver. In this study, the WW3 model (V6.07) with the
implicit scheme and domain decomposition parallelization
is utilized (Abdolali et al. 2020) where a unified time step
for global, spatial propagation, intra-spectral propagation,
and source term is used (Δ t = 300 s). In all simulations,
the model resolves the source spectrum with frequencies
between 0.05 and 0.9597 Hz, divided into 32 spectral
bands and 36 directions with 10◦ increment. In order to
include the effect of distantly generated swell, boundary
conditions are imposed at the eastern open boundary
nodes of the numerical domain, extracted from a global
simulation on a structured grid with 0.5◦, forced by
GFS wind field. In addition, Ardhuin et al. (2010)
source term parameterizations (ST4), nonlinear wave-wave
interaction using the discrete interaction approximation,
DIA (Hasselmann et al. 1985), moving bottom friction
(SHOWEX-BT4) (Ardhuin et al. 2003), depth-limited
breaking based on Battjes-Janssen formulation (DB1)
(Battjes and Janssen 1978), triad nonlinear interactions
(Lumped Triad Interaction method LTA) (Eldeberky and
Battjes 1996) and reflection by the coast (REF1) (Ardhuin
and Roland 2012) have been used for the computations.

Two methods have been used to generate hourly
atmospheric forcing from 40 sets of HWRF model outputs.
The first one is taken from the HWRF outputs directly on
the entire numerical domain. The same number of ensemble
members is resampled randomly. To generate the forcing,
u and v components of U10 are interpolated on a grid with
the resolution of inner domain (1.5 km). Then, the parent
domain data is used outside the middle domain. Similarly,
the middle domain data is used outside of the inner domain.
As a result, the highest quality data is kept. This procedure
is done iteratively for all members, resulted in a four-
dimensional array of atmospheric data (i, j, n, k) where i

and j are the coordinates of the grid node, n is the number of
original HWRF member, and k is the time. Finally, the mth
forcing fields u(x, y, t) and v(x, y, t) are filled on grid node
x = i, y = j at time t = k and from random values between
1 and 40. Since this fields are randomly extracted from the
original HWRF members, the statistics of the original data
and the generated ones are the same (green and light blue
clouds for satellite and buoy data respectively in Fig. 6).
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Fig. 5 Hurricane Irma 34, 50, and 64-knot wind threshold contours
(panel a); temporal evolution over quadrants (panel b), and model
ensembles’ means and their spreads versus observation (panel c).

Seven landfalls are marked as explained in Fig. 1. The gray area shows
the time after final landfall. All model configurations and results are
pre-decisional and for official use only

The second method is based on the spread of hurricane
track information (summarized Section 4.1) and the mean
of HWRF members (this time the mean of all members
generated with the same methodology as method one). In
this method, the mean of HWRF ensembles is perturbed
40 times to generate a smooth evolution of the winds
forcing the wave model, rather than the potentially jumpy
atmosphere tracks. Each of them represents either the
cross-track error (on the eastern or western sides of best
track), along-track error (moving ahead or behind the best
track), intensity error (larger or smaller wind speed), or
size error (wider or narrower RMW and radii 34, 50, and
64 kn) at t = 0 and t = 6 h or random combinations
of aforementioned parameters (see supplementary video

as an example of HWRF perturbation for the hurricane
size: Wider (left), Mean (center), and Narrower (right)).
The spread of each parameters is taken from analysis of
observed best track parameters and HWRF ensembles. Note
that the HWRF model is focusing on hurricane vortex
and the moving high resolution nested grids are always
centered the hurricane eye. However, the outer structure
of the wind field in hurricanes is important and can make
a noticeable difference in the wave field and cannot be
neglected. Therefore, the mean of HWRF ensembles are
used in all forcing data. It should be pointed out that that
the statistical analysis is performed on the atmospheric and
wave data, generated from the aforementioned methods (as
shown in Fig. 6). However, and for the sake of visibility, we
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Fig. 6 Taylor diagram for wind speed (U10: a, c) and significant wave
height (Hs : c, d), representing modeled and collected data along satel-
lite track (a, c) (deterministic run: black (near track < 7.5◦)/red (far
field > 7.5◦) and ensemble runs: magenta/green) and at buoy locations

(b, d) (deterministic run: blue and ensemble runs: gray/light blue) in
terms of the Pearson correlation coefficient, the root mean square devi-
ation (RMSD), and the standard deviation σ . All model configurations
and results are pre-decisional and for official use only

show time series and scatter plots for data, taken from the
forcing dataset used by the wave model rather than direct
from HWRF in Section 6 (method 2).

6 Results and discussion

We first compared the atmospheric and wave model outputs
along satellite altimeters track inside our numerical domain
for the period of Hurricane Irma (1–12 September, 2017)
as shown in Fig. 2. Our analysis is done for the U10 and
Hs observations in the vicinity of hurricane cone and far
field observations separately. Figure 6a and b show Taylor

diagrams of these results, combining standard deviation (σ ),
the root mean square deviation (RMSD), and correlation
coefficient (CC) for the observation, model ensembles,
and deterministic run (∼mean of ensembles). For the
near hurricane data (< 7.5◦), the deterministic runs have
standard deviations of 4.05 m/s and 1.5 m corresponding
to observational values of 3.75 m/s and 1.58 m within the
range of 3.46–4.68 m/s and 1.27–1.76 m for wind and wave
parameters, respectively. The RMSD of 1.71 within range
of 1.57–2.09 m/s for HWRF ensembles and 0.62 within
range of 0.59–0.73 m for WW3 ensembles are estimated. In
addition, the cloud of ensembles have CC in the range of
0.89–0.91 and mean of 1.71 m/s for wind speed while the
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WW3 model has correlation coefficient within 0.89–0.93
range with mean of 0.92 m for the significant wave height.
The biases of deterministic runs are 0.09 m/s and−0.2 m for
wind and wave respectively, while the ensembles’ biases are
within the range of [−1.08 1.26] m/s and [−0.65 0.28] m.
On the contrary and for far distance observations (> 7.5◦),
the HWRF and WW3 models have σ = 2.63 m/s and 0.86
m relative to the value of 2.54 m/s and 0.89 m for the
observations, RMSD = 1.36 m/s and 0.38 m, and CC = 0.86
and 0.9. Note that the apparent better performance at far
distance observations is due to smaller values of wind and
wave activities, away from the hurricane.

For the sake of visibility, we could not show 40 clouds
of scatters plots and corresponding linear regression plot for
the ensemble runs; however, we have shown the lower and

upper limit of all 40 linear regression plots with magenta.
Those lines are within two dashed magenta lines.

In addition, from linear regression analysis, a slight
overestimation of HWRF model is observed with skill of
1.01 for the deterministic run (red line) within the range of
0.95–1.05 for 40 ensemble members (lower and upper limits
are shown by magenta lines) while WW3 underestimates
the significant wave height with skills of 0.91 for the
deterministic run within range of 0.85–0.98 for 40 ensemble
members (Fig. 7a and b).

Second, we analyzed the time series of atmospheric and
wave model outputs at NDBC point source observations
(Fig. 1). The results are shown in Figs. 8 and 9 as time series
of wind speed and wind direction for HWRF model and
significant wave height (Hs), peak period (Tp), and mean

Fig. 7 Linear regression comparison between satellite altimeter data
(a, b) and at buoy observations (c, d) versus HWRF and WW3 mod-
els, for wind speed (U10: a, c) and significant wave height (Hs : b,

d) . The linear regression (red) for deterministic run and ensemble
upper and lower limits (magenta) are shown in each subplot. All model
configurations and results are pre-decisional and for official use only
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Fig. 8 Atmospheric and wave model validation at the NDBC buoy
locations (offshore), deterministic HWRF model (blue) versus obser-
vations (magenta), and deterministic WW3 model (red) versus obser-
vations (black). The spread of ensemble members (σ ) is shown in gray

and light blue: (left) Significant wave height (Hs ) and wind speed U10;
(middle) peak period (Tp) and (right) mean wave direction and wind
direction. All model configurations and results are pre-decisional and
for official use only

wave direction for WW3 model. The time series of model
ensembles spread around mean values are shown for wind
speed and significant wave height with gray and light blue,
respectively, where the observations fall within ensemble
spread. Overall performance at buoy locations is shown in
the Taylor diagrams presented in Fig. 6. For wind speed,
the standard deviation (σ ) for the ensemble varies between
3.04 and 4.19 with mean of 3.57 m/s relative to 2.89 m/s
for the observations while the root mean square deviation
(RMSD) range is 1.7–2.3 with mean value of 2 m/s. The
correlation coefficient (CC) range is 0.82–0.87 with mean
value of 0.85. A better correlation coefficient is observed
for the significant wave height time series at buoy location
with range of 0.9–0.94 and mean value of 0.93. The standard
deviation of the deterministic run is 1.33 m with range of
1.07–1.63 relative to 1.38 m for the observation. The RMSD
for the mean of members is 0.6 within 0.52–0.74 range. The
biases of deterministic runs are 0.31 m/s and −0.08 m for
wind and wave respectively, while the ensembles’ biases are
within the range of [−0.85 1.47] m/s and [−0.48 0.36] m.
The skill of 0.99 for the deterministic run (red line) within
range of 0.94–1.04 for the ensemble members (lower and
upper limits are shown by magenta lines) for wind speed

compared to 0.96 for the deterministic run within range of
0.88–1.03 for the ensemble members for Hs are obtained,
as shown in linear regression plots (Fig. 7c and d).

In addition to the analysis on the spatiotemporal data
collected by satellite altimeters and time series at stationary
NDBC buoys, snapshots of wind and wave fields, and the
spread of ensemble members in the vicinity of hurricane
cone are shown in Figs. 10 and 11 for HWRF and WW3
models respectively. The interval between snapshots is 24
h and the spatial span is 10◦, centered at hurricane eye
where the uncertainty is concentrated. It is clear that the
larger uncertainty in the wind leads to larger uncertainty
in the wave products. The comparison between best track
analysis in Section 4, and wind field plots indicate that
the ensemble spread is smaller when the hurricane is
blowing over open water. As the hurricane gets closer to
geographical irregularities, the misrepresentation of small
islands due to model resolution, or more importantly,
uneven destruction of vortex structure lead to larger
uncertainly in the atmospheric model and subsequently
wave model outputs. Furthermore, as hurricane gets wider
on its way, the uncertainty in the radius increases and
therefore spreads of wind and wave get wider. A closer
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Fig. 9 Atmospheric and wave model validation at the NDBC buoy
locations (nearshore), deterministic HWRF model (blue) versus obser-
vations (magenta), and deterministic WW3 model (red) versus obser-
vations (black). The spread of ensemble members (σ ) is shown in gray

and light blue: (left) Significant wave height (Hs ) and wind speed U10;
(middle) peak period (Tp) and (right) mean wave direction and wind
direction. All model configurations and results are pre-decisional and
for official use only

look also shows that the maximum uncertainty in the wind
field occurs at the hurricane eye while there is a depression
in the uncertainty in wave fields at hurricane center. This
behavior is due to the fact that the wave field integrates
the momentum transferred from the wind field in space and
time, and hence leads to less variation in the wave height.

7 Accuracy assessment with paired t test

For locations where in situ observations are available, we
can perform a statistical test to evaluate model accuracy.
For a given ensemble model run, or the ensemble mean,
we need a test to compare the modeled time series to the
observed time series. Here we aim to test whether a given
level of accuracy (here 90%) is reached, which is equivalent
to an error level of 10%. We consider this requirement to
be stricter than achieving a mean bias of <10%, since a
significant number of individual model data points could
still differ by more than 10% from the corresponding
observation. At the same time, it is considered unreasonably
strict to require that every model data point has an error
of less than 10%, considering the natural variability in the

observed phenomenon (e.g., wind U10 wave height Hs) and
observational error. As a result, the accuracy assessment
will focus on the mean relative difference between the
modeled and observed time series, and test whether this
mean difference is below 10%. The paired t test accounts for
observational uncertainty as well as the expected differences
due to model errors.

Since the model and observation both describe the same
process (e.g., wind speed or wave height), there is a
dependence between the modeled and observed time series
variables. In this setting, the paired t test hypothesis test is
appropriate. To test whether the mean difference between
these two time series is less than 10%, we set the following
null hypothesis H0 and alternative hypothesis Ha :

H0 : μd < 0.1

Ha : μd > 0.1
(1)

where the mean relative difference is defined as di =
(Xi,mod−Xi,obs)/Xi,obs, andXi is the model variable at time
i being tested. Since the alternative hypothesis states that
the relative difference is greater than 0.1, this constitutes
an upper-tailed test. This test has the following assumptions
(Ott and Longnecker 2015):

230 Ocean Dynamics (2021) 71:217–235



Fig. 10 Snapshots of ensemble mean for wind speed U10 (m/s)

between 6 and 11 September (rows 1 and 3), and corresponding stan-
dard deviation σ (rows 2 and 4) close to the hurricane eye. The

variations are indicated with reference to the color bar where white cor-
responds to 0. All model configurations and results are pre-decisional
and for official use only

– That the sampling distribution of di is a normal
distribution.

– That the di samples are independent.

The hypothesis test is conducted at the standard level of
significance of α = 0.05. This means that the null hypothesis
that the mean difference between two time series at a given
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Fig. 11 Snapshots of ensemble mean for significant wave height
Hs (m) between 6 and 11 September (rows 1 and 3), and correspond-
ing standard deviation σ (rows 2 and 4) close to the hurricane eye. The

variations are indicated with reference to the color bar where white cor-
responds to 0. All model configurations and results are pre-decisional
and for official use only
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station is less than 0.1 (or 10%) should be rejected if the p
value of this statistical test is < 0.05. In practical terms, this
means that the probability of erroneously rejecting the null
hypothesis (that 90% accuracy is met), given that it is true,
is less than 5%.

Figure 12 shows the results of the paired t tests at the
NDBC stations for the ensemble means of HWRF and
WW3. Indicated in the two subplots is the critical p value
= 0.05. In the upper panel of Fig. 12, we see that for
HWRF five stations (42036, 42039, 41002, etc.) have p
values exceeding 0.05, so that for these, the null hypothesis
that the mean relative difference between the modeled and
observed time series is less than 0.10 cannot be rejected.
These stations are therefore considered 90% accurate. By
contrast, at the remaining nine stations (e.g., 41004 and
41043), p values are close to zero, indicating that the null
hypothesis can be rejected at a significance level of α =
0.05. The lower panel in Fig. 12 shows the corresponding
results for WW3. Here we see that a number of stations
that did not reach 90% accuracy in terms of wind speed
actually reach that accuracy level in terms of significant
wave height (e.g., 41004, 41008, and 41009). The poorest

Fig. 12 Paired t tests results at the NDBC stations for the ensemble
means of HWRF (a) and WW3 (b). All model configurations and
results are pre-decisional and for official use only

performers (lowest p values) are found to be the stations
42036 and 42039 offshore of Tampa in the Gulf of Mexico,
despite having accurate winds. We speculate that this is due
to the complex land-sea transition at these stations, due to
the offshore winds from the vortex at this location.

8 Conclusion

In this study, we have performed a comprehensive statistical
analysis on the atmospheric and spectral wave models per-
formance in a hindcast setting for Hurricane Irma (2017), a
category 5 hurricane which made its final landfall in south-
west Florida. A well-known atmospheric model, designed
for hurricane modeling (HWRF), is used to drive WW3,
which utilize the latest updates of the operational HWRF at
the National Centers for Environmental Prediction (NCEP),
incorporate the post-processed data for data assimilation,
a high-resolution topography, and a high resolution land-
sea mask (Tallapragada et al. 2014a; Tong et al. 2018; Ma
et al. 2020). The spread of the atmospheric model is eval-
uated using 40 ensemble members from semi-hindcasted
HWRF model simulations, for which each member is initi-
ated independently and accounts for the unresolved physics
and stochastic distribution of error. Forty sets of continu-
ous wind fields were generated around the mean of HWRF
ensembles, which represent cross-track error, along-track
error, intensity error, or size error. These forcing were used
to drive a WW3 model. The recent advances in the WW3
model on unstructured triangular meshes, including the new
parallelization algorithm and implicit numerical solver, have
made the model more efficient and accurate, bypassing
numerical restrictions and CFL constraints (Abdolali et al.
2020). These new capabilities allowed us to run WW3 on
a suite of ensemble members on an unstructured grids with
∼200-m resolutions near the US East Coast and adequate
eastward extent, allowing for appropriate generation of hur-
ricane waves from winds over a large basin. Hence, the error
propagation from atmospheric model to the wave model was
tracked and analyzed.

We have performed a validation study that compares
the atmospheric and wave models’ results with satellite
altimeter data for wind speed and significant wave height,
with hurricane track information against observed and
interpreted ones by NHC at the beginning and t = 6 h of
each cycle, and with point source observations from the
NDBC network for meteorological and wave parameters.
The wave model forced by the available HWRF ensemble
winds reveals the uncertainties and errors embedded in
the upstream atmospheric model that are propagated
downstream to the wave model. The HWRF and WW3
models’ performances were evaluated at stationary NDBC
buoys and along satellite altimeter footprints revealing a
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good agreement between model outputs and observations.
As shown in Figs. 8 and 9, wind and wave observations
are within ensemble spreads, implying that the spread of
HWRF andWW3 outputs is adequate to cover observations.
In addition, the estimated hurricane track from the HWRF
model was compared to observations. A detailed illustration
of hurricane track parameters and statistical analysis is
discussed in this paper. It is shown that HWRF ensemble has
a wider spread over areas with landmass due to the absence
of subgrid scale features in the model, misrepresentation of
the complex land-air-sea interaction in the model equations,
and uneven destruction of vortex structure. The migration
of the errors, introduced by the atmospheric models and
manifested in the wave model, shows similar and different
model behaviors. For example, wider spread of atmospheric
model, specially near landmasses, led to a wider spread
of wave model outputs. On the other hand, maximum
uncertainty in the atmospheric model is at hurricane eye
while wave model uncertainty is small at the center due
to less variation of momentum transfer from wind to wave
model. Along with uncertainty analysis of atmospheric
and wave model across the entire domain, a paired t test
is used at observation locations to evaluate whether the
mean relative difference between the modeled and observed
time series is below a certain value or not. The two
aforementioned methods for model uncertainty evaluation
(for places with no observation) and the paired t test (for
locations where observations are available), considering
the observational error shed light on the importance of
ensemble modeling for uncertainty evaluation of model,
and provides metrics for model accuracy evaluation during
severe events.
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