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Abstract
Wave field data are affected not only by the accuracy of instruments recording them but also by sampling variability, an uncertainty
due to the limited number of observations. For stationary meteorological conditions, due to the randomness of the sea surface
elevation, wave parameters derived from a temporal or spatial wave record will depend on which part of a wave record is used in an
analysis as well as on the length of a wave record and/or size of the investigated ocean area. This study demonstrates, using
numerical simulations, challenges that sampling variability brings in the interpretation of nonlinear wave characteristics of the
surface elevation when single 20- or 30-min field wave records are used in an analysis. As examples, we use sea states in which
rogue waves were observed in the North Sea and investigate them using linear, second-, and third-order numerical simulations. The
third-order wave data are simulated by a numerical solver based on the higher order spectral method (HOSM) which includes the
leading order nonlinear dynamical effects, accounting for the effect of modulational instability.Wave steepness, themaximumwave
crest, skewness, and kurtosis are investigated in unidirectional and directional wave fields. The study shows that having a single 20-
or 30-min wave record maymake it difficult to determine on the degree of wave field nonlinearity and the accuracy of derived wave
parameters, as well as to evaluate the validity of wave models. Both single-point temporal and stereo-video camera data are
discussed. We demonstrate that numerical simulations represent important supporting tools for wave field measurements.

Keywords Wavemeasurements . Roguewaves . Sampling variability . Numerical simulations

1 Introduction

Description of ocean waves is affected not only by the wave
data and models adopted but also by the uncertainties associ-
ated with them. These uncertainties can be classified into

aleatory and epistemic, where the latter can be grouped into
data, model, and statistical uncertainty (Bitner-Gregersen and
Hagen 1990; Bitner-Gregersen et al. 2014a). The statistical
uncertainty, also called sampling variability, is due to the lim-
ited number of observations and brings several challenges in
an analysis of wave field data as well as in modelling and
forecasting of ocean waves.

Measured wave data, either in situ or remotely sensed,
remain important for the development, calibration, and vali-
dation of numerical and theoretical wave models, and specifi-
cation of more detailed wave description such as wave spectra
and individual wave characteristics, e.g., wave height, crest
elevation, wave periods. These data are even more important
in coastal areas where prediction of waves is further compli-
cated by shallow-water and coastal boundary effects.

Traditionally, wave measurements have typically been re-
corded at single point locations by buoys, wave staffs, lasers,
or radars, and restricted to record durations of 20 or 30 min.
This duration has allowed assumption of stationarity of a sea
state onwhich most wave models are based. A strong focus on
spatial wave data was initiated by Krogstad et al. (2004), who
introduced the Piterbarg (1996) theorem to oceanography
demonstrating that single-point temporal measurements may
greatly underestimate (especially in short-crested seas) the
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actual maximum wave displacements that can occur on sea
surface areas even smaller than the typical size of a single
wave. Recent installations of stereo video camera systems
(e.g., Fedele et al. 2011, 2013; Benetazzo et al. 2015, 2017)
for collecting space-time ensembles of sea surface elevation
have allowed for gathering of spatial data, which were limited
in the past. In situ temporal measurements are affected by the
duration of the wave records, while spatial data are also af-
fected by the size of an instrument’s footprint. Both duration
of measurements and an instrument’s footprint bring limita-
tions to the number of data which can be collected.

Investigations addressing sampling variability associated
with in situ point measurements have a long history in ocean-
ography, e.g., Longuet-Higgins (1952), Lipa et al. (1981),
Donelan and Pierson (1983), Bitner-Gregersen and Hagen
(1990), Tucker (1992), Forristall et al. (1996), and Bitner-
Gregersen (2003). For a review, see Bitner-Gregersen and
Magnusson (2014). Monaldo (1988) showed, for two buoys
situated 100 m apart, a 7% RMS (root mean squared) error
for significant wave height, but more limited studies have been
dedicated to spatial field data and associated uncertainties, in-
cluding also sampling variability, e.g., Forristall (2011),
Benetazzo et al. (2015, 2017), and Gemmrich et al. (2016).
However, the impact of sampling variability on parameters spe-
cific to nonlinear effects of wave fields has not been addressed
in these investigations. The latter is important for understanding
the role wave measurements play in confirmation of the exis-
tence of exceptionally large waves such as rogue waves.

Rogue waves, much steeper and larger than the surround-
ing waves in a wave record, were for a long time believed to
be mostly anecdotal, although always part of maritime folk-
lore, see, e.g., Kharif et al. (2009) and Olagnon and Kerr
(2015). The investigations carried out in the last two decades
have shown that rogue waves may occur in low, intermediate,
and high sea states (e.g., Bitner-Gregersen and Hagen 2004)
and can be generated by linear focusing, modulational insta-
bility, crossing seas, current, shallow water effects and wind;
for review, see, e.g., Osborne (2010), Onorato et al. (2013),
Adcock and Taylor (2014), and Bitner-Gregersen and
Gramstad (2016). A question which arises is, how much in-
formation about these exceptionally large waves, and the sea
states in which they occur, can single 20–30-minwave records
provide, and how does sampling variability affect sea state
characteristics derived from such records?

To answer this question, we investigate rogue-prone sea
states recorded in the North Sea using wave data simulated
by linear, second-, and third-order numerical wave models.
The third-order data are simulated by the nonlinear wavemod-
el HOSM (higher order spectral method) which includes non-
linear free-wave modulation as well as higher order bound
harmonics. Unidirectional and directional sea states are ad-
dressed. The Pierson-Moskowitz and the JONSWAP spec-
trum with different spectrum peakedness gamma parameters

and different directional energy spreading functions are used
in the sensitivity analysis. The study includes wave steepness,
maximum wave crest, as well as the skewness and kurtosis of
the surface elevation, often used as indicators of sea surface
nonlinearity. Effects of sampling variability on these parame-
ters, as well as on the correlation between them, are discussed
in the context of 20–30-min temporal and spatial field mea-
surements. Further, we demonstrate the supporting role nu-
merical simulations can play in analysis of field data.

The aim of the present study is to demonstrate, through a few
examples, different challenges sampling variability brings
when single 20- or 30-minwave records are used in an analysis.
To quantify systematically the effects of sampling variability
for combinations of wave parameters describing a rogue-prone
sea state is outside the scope of the study. These investigations,
being an extension of the study of Bitner-Gregersen and
Gramstad (2018), have been inspired by the paper of Donelan
and Magnusson (2017) addressing the Andrea rogue wave,
where the authors argue that this extreme wave event is a result
of linear focusing, showing at the same time that the distribution
of crest heights deviates significantly from the Rayleigh distri-
bution (linear theory, Longuet-Higgins 1952) and the second-
order Forristall distribution (2000).

The paper is organized as follows. The rogue-prone sea
states used in the analysis are presented in Sect. 2 while the
description of setup of the numerical simulations in Sect. 3.
The nonlinear characteristics of surface elevation are given in
Sect. 4. Section 5 is dedicated to unidirectional wave fields
while Sect. 6 to directional waves. The paper closes with dis-
cussion and conclusions.

2 Analyzed Sea states

A common definition of a rogue wave is the criterion
expressed by Haver (2000): Hmax/Hs > 2 and/or Cmax/Hs >
1.25, where Hmax denotes the maximum zero-crossing indi-
vidual wave height, Cmax is the maximum crest height, andHs

is the significant wave height, defined as four times the stan-
dard deviation of the surface, typically calculated from a 20-
min measurement of the surface elevation. Wave models, lab-
oratory experiments, and field observations have shown that
rogue waves have occurred in sea states with wave steepness
kpHs/2 > 0.07 (kp denotes the wavenumber associated with the
spectral peak period Tp) if a wave spectrum is sufficiently
narrow in frequency and direction, see, e.g., Onorato et al.
(2013) and Bitner-Gregersen and Gramstad (2016). For wave
steepness of rogue-prone sea states observed in nature, see
also Bitner-Gregersen and Magnusson (2004).

To demonstrate the effects of sampling variability on sea
state characteristics of rogue-prone sea states, as examples, we
have selected sea states with kpHs/2 ≥ 0.08 in which famous
rogue waves were recorded in the North Sea: the Draupner
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wave, 1 January 1995 at 15:20 UTC (Haver 2000), the Andrea
wave 9 November 2007 at 00:54 UTC (Magnusson and
Donelan 2013), and the Justine Three Sisters, 30 November
2018, 18:20 UTC (Magnusson et al. 2019). The selected sea
states are listed in Table 1. The Draupner (case 1) and Andrea
(case 2) waves were single rogue waves while the Justine
Three Sisters (case 3) was a triple rogue wave group. These
rogue waves were recorded at single-point locations in 20-min
wave time series which were available for the present study.

Lacking directional information for case 1 and case 2,
unidirectional waves are assumed herein. Note that Donelan
and Magnusson (2017) pointed out that the WDM (wavelet
directional method) analysis showed that, during the passage
of the Andrea wave, large wave groups were propagating at
nearly the same direction. In the case of the Justine Three
Sisters, we have used the frequency-directional wave spec-
trum from the operational wave forecast model WAM of the
Norwegian Meteorological Institute (MET Norway), which
has 4 km resolution (MWW4) and provides output every hour,
but not at the exact time of the Justine triple wave group’s
occurrence. Therefore, the spectrum at 18 UTC has been
adopted in the analysis. The significant wave height provided
by the forecast model at 18 UTC is lower,Hs = 3.4 m, than the
one obtained from the WaveRadar REX radar time series,
reducing wave steepness from kpHs/2 = 0.12 to kpHs/2 = 0.10.

In addition, a rogue-prone sea state (case 4 in Table 1) with
Hs = 5.66 m, spectral peak period Tp = 10 s (corresponding
wave steepness kpHs/2 = 0.11) and different directional wave
energy spreading is used in the sensitivity analysis.

The sea states listed in Table 1 were selected to demon-
strate that independent of the value of wave steepness and
wave energy spreading in frequency and direction, 20- or
30-min wave records will be affected by sampling variability.
Both temporal and space-time numerical data are studied.

3 Description of setup of numerical
simulations

The investigations carried out herein are based on the numer-
ical simulations performed using a numerical solver based on
the HOSM, independently proposed by Dommermuth and

Yue (1987) and West et al. (1987). Unidirectional and direc-
tional wave fields have been simulated in a spatial domain
with periodic boundary conditions. The nonlinear order in
the HOSM simulations in this study was set to M = 3, which
includes the leading order nonlinear dynamical effects, includ-
ing the effect of modulational instability.

For the unidirectional simulations, the spatial domain was
discretized by nx = 1024 grid points, while in the short-crested
simulations, the horizontal plane was discretized using nx = ny
512 × 512 grid points. Note that these values are for the fully
de-aliased grid, the corresponding values before de-aliasing is
nx = 2048 in the unidirectional case and nx x ny = 1024 × 1024
in the directional case. For the directional case, this corresponds
to 32 × 32 λp and for the unidirectional to 64 λp in the domain,
where λp denotes the peak wavelength. For example, for a
directional wave field with Tp = 10 s in infinite water depth,
the computational domain is approximately 5 × 5 km. A weak
dissipation of high wavenumbers is included to model the en-
ergy dissipation due to wave breaking, using the wavenumber
filter suggested in Xiao et al. (2013). Random phases and am-
plitudes were assigned to the initial spectrum in all cases.

In the simulations, the initial condition was chosen as a
wave system with the Pierson-Moskowitz (PM) or the
JONSWAP spectrum and with cosN(φ − φp) directional
spreading function. Thus, the wave spectrum was defined as
E(k) = F(k)D(φ) where k = (kx, ky)=k(sinφ, cosφ) and

F kð Þ ¼ α

2k3
exp −

5

4
k=kp
� �−2� �

γ
exp −

ffiffiffiffiffiffi
k=kp

p
−1ð Þ2

2σ2

h i
ð1Þ

and

D φð Þ ¼ 1

k
ffiffiffi
π

p Γ N=2þ 1ð Þ
Γ N=2þ 1=2ð Þ cos

N φ−φp

� �
;

D φð Þ ¼ 0

if jφ−φpj≤
π
2

otherwise

ð2Þ
where Γ is the gamma function, and the parameter σ has the
standard values 0.07 for k ≤ kp and 0.09 for k > kp. The other
spectral parametersα, γ, kp, φp, andNwere chosen to give the
desired spectral shape, significant wave height Hs, and peak
period Tp. N denotes the directional spreading coefficient and
φp the peak direction. The following spectrum peakedness

Table 1 Analyzed sea states

Case Date and time Hs (m) Tp (s) Wave steepness Water depth

1 1 Jan. 1995, 15:20 UTC (Draupner wave) 11.2 16.7* 0.08 70 m

2 9 Nov. 2007, 00:54 UTC (Andrea wave) 9.2 13.2 0.11 70 m

3a 30 Nov. 2018, 18:20 UTC (Justine Three Sisters, radar) 4.0 8.4 0.12 70 m

3b 30 Nov. 2018, 18:00 UTC (Justine Three Sisters, MWW4) 3.4 8.4 0.10 70 m

4 Selected for the sensitivity analysis 5.7 10.0 0.11 Deep

*Tp taken from Bitner-Gregersen and Magnusson (2004)
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parameters γ = 1, 2, 3.3, 6, and directional spreading coeffi-
cientsN = 4, 16, 100, and unidirectional waves, are used in the
analysis. Note that for γ = 1, the JONSWAP spectrum reduces
to the Pierson-Moskowitz spectrum.

In the case of the Justine Three Sisters (case 3 in Table 1), the
input to the numerical simulations is the wave frequency-
directional spectrum from the operational wave forecast model
WAM of the Norwegian Meteorological Institute (MWW4) at
18:00 UTC.

The wave fields are simulated in time for a total duration of
tmax = 1800–3600 s for unidirectional waves and tmax = 1800 s
for directional seas. The number of runs of the unidirectional
simulations varies from 1 to 1000 to demonstrate different
effects of sampling variability, while 20 runs are carried out
for the directional sea state Case 4 requiring more CPU time.
For the Justine Three Sisters (case 3), 500 runs have been
carried out to be able to capture this very rare event (for de-
tails, see Bitner-Gregersen et al. 2020b) but only a few select-
ed 30-min wave records are utilized in the present study.

The DNV GL HOSM solver includes linear and second-
order wave model solvers, which are also applied in the
investigations.

4 Nonlinear sea state characteristics

In the random linear wave model surface elevation ɳ(x, y, t) is
Gaussian distributed, and under an assumption that a wave field
is narrow-banded wave heights and crests follow the Rayleigh
distribution (Longuet-Higgins 1952). Taking nonlinear effects
into account, deviations from the Gaussian distribution should
be expected (Longuet-Higgins 1963). This was confirmed by
analysis of deep water field data, e.g., by Longuet-Higgins
(1963) and shallow water data by Bitner (1980). Consequently,
wave crests and heights will not be Rayleigh distributed, al-
though wave heights are less sensitive to nonlinearities.

Wave steepness kpHs, the skewness coefficient κ3, the kurto-
sis coefficient κ4, and the ratiosHmax/Hs andCmax/Hs can be used
to characterize wave field deviations from Gaussianity. Further,
for a Gaussian wave field, the skewness coefficient is equal to 0
and the kurtosis coefficient is equal to 3, while κ3 is typically
larger than 0 and κ4 is beyond three in a non-Gaussian wave
field. It should be noted that within wave theory, skewness is
primarily a second-order effect while kurtosis is a third-order
effect (Longuet-Higgins 1963). Therefore, kurtosis has been used
as an indicator of occurrence of rogue waves (Mori et al. 2011).

In the present study, we demonstrate, using numerical sim-
ulations, effects of sampling variability on the maximumwave
crest, skewness, and kurtosis when single 20–30-min tempo-
ral or spatial wave records are used in an analysis. Note, that
the maximum surface elevation ɳmax, both in time and space,
represents the maximum wave crest height Cmax.

Wave data collected in nature, laboratory experiments or
numerically simulated include a limited number of observa-
tions, and therefore allow only sample estimators of maximum
surface elevation, skewness, and kurtosis to be provided. For a
surface snapshot from the numerical simulations ηi, j = η(xi,
xj), where i = 1, …, nx and j = 1, …, ny, the sample skewness
κ3 and the kurtosis κ4 coefficient can be defined as follows:

κ3 ¼
1

nxny
∑
i¼1

nx

∑
j¼1

ny

ηi; j−ηi; j
� �3

1
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∑
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� �2 !2 ð4Þ

The mean value of sea surface ηi; j is always 0.

Accuracy of the estimators of the maximum wave crest, and
skewness and kurtosis given by Eqs. (3) and (4) will depend on
the number of observations used in an analysis (low values of nx
and ny may result in poor estimates), but more importantly, the
accuracy of the estimates depends on the size of the domain over
which the average is taken, with respect to the number of waves
in the domain. Herein, we compare the values of κ3 and κ4, and
ɳmax (Cmax) derived from a single 30-min temporal and spatial
wave record with the coefficients κ3 and κ4 and ɳmax (Cmax)
calculated as averages over all random realizations of the same
sea state when a large number of runs is performed.

It should be mentioned that the sample skewness and kur-
tosis coefficients described by Eqs. (3) and (4), as well as the
alternative commonly used “unbiased” estimators for identi-
cally distributed independent samples found in the literature,
represent biased estimators of the real populations of κ3 and
κ4 in cases where the samples are not independent (Joanes and
Gill 1998; Bai and Ng 2005), which was pointed out for wave
surface applications by Gramstad et al. (2018). Therefore, for
a numerically simulated linear Gaussian surface, the skewness
is not equal exactly to zero, nor is the kurtosis equal exactly to
three. This effect is more pronounced for small simulation
domains. Due to the relatively large computation
area/duration considered in this study, the presented numerical
results are little affected by this bias, but we also observe it.

5 Unidirectional wave field

5.1 General

It has been shown that the occurrence of modulational insta-
bility in deep and intermediate water is characterized by high
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wave steepness and a narrow wave spectrum, both in frequen-
cy and direction, and is more pronounced in a unidirectional
wave field, Onorato et al. (2006), Toffoli et al. (2010), Toffoli
and Bitner-Gregersen (2011). It can be parameterized by the
Benjamin-Feir Index (BFI), see Onorato et al. (2006, 2013).
The BFI is a measure of the relative importance of nonlinear-
ity and dispersion and is defined as BFI = (kpHs/2)/(Δω/ωp),
whereΔω/ωp is the frequency spectral bandwidth (Δω is often
measured as the half-width at half-maximum of the spectrum
andωp is the spectral peak frequency). Provided the wave field
is sufficiently steep and narrow banded in frequency and di-
rection, rogue waves are expected to be generated when
BFI = O(1).

Consequently, we would expect that a JONSWAP spec-
trum with peakedness parameter γ = 6 will generate higher
maximum wave crest, skewness, and kurtosis than the PM
spectrum having γ = 1, given that the two spectra have the
same wave steepness. Furthermore, for the same wave steep-
ness and spectrum peakedness parameter γ, we would expect
to see higher surface elevation, skewness, and kurtosis in
third-order HOSM simulations than in the linear and second-
order ones.

For a single 20–30-min realization of a sea state, this may
not always be the case due to sampling variability. We dem-
onstrate this below using as examples the Draupner and
Andrea sea states (cases 1 and 2 in Table 1) and assuming
unidirectional seas. The Draupner sea state was characterized
by Hs = 11.2 m and Tp = 16.7 s (adopted from Bitner-
Gregersen and Magnusson 2004), the Andrea sea state by
Hs = 9.2 m and Tp = 13.2 s with the corresponding wave steep-
ness kpHs/2 = 0.08 and kpHs/2 = 0.11, respectively.

5.2 Surface elevation

Surface oscillations in time ηi,j (t) at one selected grid point (xi,
yj) for the Andrea sea state for HOSM and linear simulations
are plotted for seed = 1 and seed = 100 in Fig. 1 a and b,
respectively. The 30-min wave records in Fig. 1 show

consistent with wave theory that the HOSM simulations pro-
vide the highest maximum wave crest both for seed = 1 and
seed = 100. In contrast, the linear maximum wave trough is
slightly deeper than the HOSM one (see Fig. 1a). Further, by
selecting a 20-min wave record (vertical blue dashed lines in
Fig. 1a; 600–1700 s) within the 30 min wave time series, we
can see that the HOSM maximum wave trough is deeper
than the linear one, while the maximum wave crests are
equally high, both for the HOSM and linear simulations.
These effects are due to sampling variability resulting
from inherent randomness of surface elevation. Note
that the earlier findings of Toffoli and Bitner-
Gregersen (2011), where the 20-min HOSM simulations
were repeated 150 times, gave higher wave crests and
deeper troughs compared to the linear wave model.

Although due to sampling variability, wave crests and
troughs may have similar values for the HOSM and linear
wave model in a single 20–30-min wave record, the evolution
of the linear and nonlinear wave train ηi,j(t) is different, as
illustrated in Fig. 2. This will affect response calculations of
marine structures.
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Fig. 1 Surface elevation ηi(t) as a function of simulation time. HOSM and linear simulations; Andrea sea stateHs = 9.2 m and Tp = 13.2 s, kpHs/2 = 0.11.
a Seed = 1. b Seed = 100
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Fig. 2 An extract of HOSM and linear time surface elevation time series
from 600 to 1200 s; Andrea sea stateHs = 9.2 m and Tp = 13.2 s, kpHs/2 =
0.11; seed = 1
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Temporal 20- or 30-min wave records will always be more
affected by sampling variability than space-time ones as
space-time records will include more observations, if the sam-
pling rate of the data is the same (see Bitner-Gregersen et al.
2020a). Further, the spatial observations will provide a higher
maximum surface elevation (maximumwave crest), an impor-
tant parameter for design.

5.3 Kurtosis and skewness

Estimators of skewness and kurtosis derived from 30-min
wave records discussed below are calculated over the compu-
tational domain at every sampling time step.

The spatial kurtosis (Eq. 4) as a function of 1800 s HOSM
simulations with the same seed for the PM (γ = 1) and
JONSWAP spectrum with γ = 2, 3.3, and 6 for the Andrea
and Draupner unidirectional sea states are shown in Fig. 3 a
and b, respectively. Figure 3 demonstrates that a single spatial
30-min realization of a rogue-prone sea state may produce
higher kurtosis for the PM spectrum (γ = 1) than for the
JONSWAP spectrumwithγ = 6, 3.3, and 2 due to the inherent
randomness of waves, in contrast to what we would expect
from averaging over very large amounts of data. However, in
accordance with the wave theory, the kurtosis reaches higher

values for the steeper Andrea sea state than for the less steep
Draupner sea state.

As mentioned above, for a Gaussian distributed wave pop-
ulation, the skewness coefficient is equal to 0 and the kurtosis
coefficient is equal to 3. In Fig. 4, spatial skewness and kur-
tosis as a function of time for a single 30-min HOSM and
linear simulation is plotted, when the Andrea sea state with
the JONSWAP spectrum with γ = 6 and seed 100 is adopted
in the analysis.

As seen in Fig. 4, the skewness derived from the linear
simulations is not equal to zero and the kurtosis is not equal
to three. Generally, the skewness derived from the linear simu-
lations is much lower than the one obtained from the HOSM
simulations. However, at the time step 484–488 s, the linear
skewness κ3 = 0.20–0.24 is exceeding the HOSM skewness
κ3 = 0.17–0.20 by 26%. The HOSM skewness reaches the val-
ue κ3 = 0.43, more than twice as high as expected from second
order wave theory for this particulars wave steepness (Longuet-
Higgins (1963); Srokosz and Longuet-Higgins 1986), but both
the HOSM and linear skewness coefficients also take negative
values, as observed also in field data (e.g., Bitner 1980).

The corresponding spatial kurtosis derived from the
HOSM and linear simulations is plotted in Fig. 4b. The linear
kurtosis at the time step 1431 s is reaching κ4 = 3.79, which is
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similar to the maximum HOSM kurtosis κ4 = 3.86. Thus, in-
herent randomness of wave field is also manifested in the
spatial 30-min wave records. As expected, when the number
of 30-min HOSM runs is increased to 4 and the mean kurtosis
over them is calculated, the variations of kurtosis in time are
reduced, as illustrated in Fig. 5.

In order to improve significantly the accuracy of the skew-
ness and kurtosis estimators, the duration of HOSM and linear
simulations has been increased to 60 min and the number of
the 60-min simulations of the surface domain was repeated
100 times, using different seeds for each run. The calculated
skewness (Eq. 3) and kurtosis (Eq. 4) for the Andrea sea state
are shown in Fig. 6 a and b, respectively. The outcomes from
the linear and HOSM simulations are shown for the spectral
peakedness parameter γ = 1.0, 2.0, 3.3, and 6.0.

The estimated skewness and kurtosis calculated from the
linear simulations have values close to the theoretical ones;
skewness is approximately equal to 0, while the kurtosis is
slightly lower than 3. This is consistent with the bias of the

skewness and kurtosis estimators for serially correlated data
pointed out by Bai and Ng (2005); see Gramstad et al. (2018)
for the discussion of it in the context of ocean waves. Further,
the HOSM skewness is approximately equal to 0.17, which is
consistent with second-order wave theory and should be ex-
pected, as skewness is primarily a second-order effect. Note
that the HOSM skewness is affected also by the estimator bias
mentioned above. It is interesting to see that skewness has little
sensitivity to the spectrum peakedness parameter γ. The largest
skewness is obtained for γ = 1 (PM spectrum) and the lowest
for γ = 6. This slight difference is difficult to explain at present
and needs further investigations.

Figure 6 b shows that the kurtosis derived from the nonlinear
HOSM simulations deviates significantly from three, consistent
with dynamical nonlinear effects (see, e.g., Toffoli et al. 2010).
The spectrum peakedness parameter γ = 6 gives the highest
value of kurtosis, up to 3.4, while the PM spectrum results in
the lowest kurtosis, consistent with the well-known result that a
more narrow spectrum (larger BFI) will give higher kurtosis.
Also consistent with previous works, an initial rapid increase of
the kurtosis is observed, which can be attributed to the effect of
modulational instability. As seen in Fig. 6b, there are also slow
variations in the kurtosis after this initial increase. In order to
identify if these variations are just due to sampling variability,
or due to some physical effect, the number of runs is increased
to 1000 and the results plotted in Fig. 7.

As demonstrated in Fig. 7, small variations of skewness
and kurtosis for the linear and HOSM simulations are reduced
significantly, although showing the same effects as in Fig. 6.
We can say that, after about 500 s, small variations of kurtosis
are due to sampling variability (i.e., that kurtosis is practically
constant after the initial increase from 3).

The average skewness and kurtosis estimators plotted in
Figs. 6 and 7 are characterized by spreading which is depen-
dent on the spectrum peakedness parameter γ and can be

Fig. 6 Spatial a skewness and b kurtosis as a function of simulation time
calculated as an average over 100 repetitions of the 60-min simulation.
HOSM and linear simulations; Andrea sea state Hs = 9.2 m and Tp =

13.2 s, kpHs/2 = 0.11. M denotes the order of simulations, M = 1
referred to the linear simulations, M = 3 to the nonlinear third-order
HOSM simulations
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described in terms of standard deviation, a measure of sam-
pling variability. The mean and standard deviation (std) of the
linear (M = 1) and HOSM (M = 3) kurtosis for γ = 1, 2, 3.3,
and 6 are listed in Table 2. The results for 100 runs and for
1000 runs are mostly identical. As seen, the HOSM standard
deviation is the highest for the JONSWAP spectrum with γ =
6, and the lowest for the PM spectrum (γ = 1). While the mean
kurtosis is only 4% higher, the standard deviation is approxi-
mately twice as high for the JONSWAP spectrum compared
to the PM spectrum. Further, the mean kurtosis predicted by
the linear model is approximately equal to 3 (slightly lower
due to the estimator’s bias mentioned earlier) while the aver-
age standard deviation over the spectra considered is equal to
0.22, but similarly to the HOSM model, the highest standard
deviation is obtained for the JONSWAP spectrum with γ = 6.

The distributions of kurtosis for the unidirectional linear
and nonlinear simulations are shown in Fig. 8. Although the
probability of occurrence of high values of kurtosis is signif-
icantly higher for the HOSM simulations with γ = 6 than for
the linear simulations, the kurtosis coefficient derived from
individual linear realizations reaches values far beyond 4.

It should be noted that the standard deviation of kurtosis
will depend not only on the spectrum peakedness parameter
gamma and degree of sea surface nonlinearity but also on
wave steepness, whether temporal or space-time records are
used in an analysis, and their duration, as systematically dem-
onstrated by Bitner-Gregersen et al. (2020a). We illustrate this
below using case 1 in Table 1 as an example.

Figure 9 shows histograms (frequency of occurrence) of
temporal (subscript “t”) and spatial (subscript “x,y,t”) skew-
ness, kurtosis, and ɳmax/Hs for the unidirectional, linear, sec-
ond-order, and HOSMmodels for the Draupner sea state with
kpHs/2 = 0.08. The 30-min numerical simulations for the PM
spectrum (γ = 1) and the JONSWAP spectrum with γ = 6 are
repeated 1000 times to provide accurate average estimators of
the considered wave parameters. Similarly, as for the runs of
the Andrea case discussed above, large variability of κ3 and
κ4, and ɳmax is observed. The spreading of these parameters is
highest for the HOSM simulations, followed by the second-
order and linear ones. As already pointed out by Bitner-
Gregersen et al. (2020a), Fig. 9 illustrates that the nonlinear
wave field including dynamical effects is more sensitive to
sampling variability than the second-order and linear ones,
particularly affecting ɳmax/Hs. Thus, we should expect that
wave fields in which rogue waves are a result of linear focus-
ing will be less affected by sampling variability.

6 Directional wave fields

The same effects of sampling variability as shown above for
the unidirectional wave fields are observed also in
directionally spread waves, although wave directionality sup-
presses modulational instability, generally reducing the max-
imum wave crest, skewness, and kurtosis. Single realizations
of rogue-prone sea states show large variability and extreme

Fig. 7 Spatial a skewness and b kurtosis as a function of simulation time
calculated as an average over 1000 repetitions of the 60-min simulation.
HOSM and linear simulations; Andrea sea state Hs = 9.2 m and Tp =

13.2 s, kpHs/2 = 0.11. M denotes the order of simulations, M = 1
referred to the linear simulations, M = 3 to the nonlinear third-order
HOSM simulations

Table 2 Mean and standard deviation of kurtosis, the Andrea sea state
kpHs/2 = 0.11, unidirectional wave field

γ = 1.0 γ = 2.0 γ = 3.3 γ = 6.0

Mean Std Mean Std Mean Std Mean Std

100 runs

M = 1 2.98 0.19 2.98 0.21 2.97 0.22 2.96 0.24

M = 3 3.17 0.26 3.17 0.28 3.20 0.34 3.29 0.47

1000 runs

M = 1 2.98 0.19 2.97 0.21 2.96 0.22 2.95 0.25

M = 3 3.18 0.26 3.17 0.29 3.20 0.34 3.27 0.46
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events do not occur in all of them. How many rogue
waves will be observed in single realizations of a rogue-
prone sea state will naturally depend on the duration of
the wave records, the size of the spatial domain the
measurements cover, and whether temporal or spatial
data are considered.

Figure 10 shows an example of two single 30-min temporal
HOSM realizations of surface elevation for the sea state case 3
in Table 1 (Justine Three Sisters), when the directional wave
spectrum from the operational forecast model of the
Norwegian Meteorological Institute MWW4 is used as input
to the HOSM code and two different seeds are applied; for

Fig. 9 Temporal (blue) and space–time (brown) histograms of skewness, kurtosis, and ɳmax/Hs for unidirectional linear, second-order, and HOSM
simulations for the Draupner sea state kpHs/2 = 0.08 and a γ = 1.0 and b γ = 6.0

Fig. 8 Distribution of kurtosis
derived from unidirectional linear
M = 1 (left) and nonlinear HOSM
M = 3, (right) simulations, kpHs/
2 = 0.11, 1000 runs
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details see Bitner-Gregersen et al. (2020b). The Justine Three
Sisters (a triple rogue wave group) were recorded at 18:20
November 30, 2018 in the central North Sea at a single point
by the WaveRadar REX in the intermediate water depth of
70 m (Magnusson et al. 2019). The Justine sea state had Hs =
4.04 m, Tp = 8.4 s, corresponding to wave steepness kpHs/2 =
0.12, and maximum wave crest Cmax = 5.2 m, while the wave
model MWW4 produced values ofHs = 3.4 m, Tp = 8.4 s, and
kpHs/2 = 0.10. The fitted JONSWAP spectrum gave γ = 1.84
(see Bitner-Gregersen et al. 2020b) while the directional
spreading of the MWW4 spectrum was 35.8° (Magnusson
et al. 2019).

The time series of surface elevation fromHOSM simulations
presented in Fig. 10a do not reach the Justine crest height of
5.2 m and deviate significantly from each other, clearly mani-
festing the effect of sampling variability. The corresponding
maximum spatial elevation (Fig. 10b) exceeds the Justine crest
of 5.2 m several times in the 30-min wave records.

The impact of sampling variability on directional wave
fields, and in particular the effect of the directional spreading
parameter, is further investigated using case 4 in Table 1, a sea
state with Hs = 5.66 m and Tp = 10 s, with corresponding wave
steepness kpHs/2 = 0.11, and deep water. Case 4 sea state has
the same steepness as the Andrea sea state but lowerHs and Tp.
Three cases listed in Table 3 are considered in a sensitivity
analysis, with different directional spreading: N = 4, 16, 100
(see Eq. 2), and JONSWAP spectrum peakedness parameter:
γ = 1, 3.3, 6.0, but the same wave steepness. Note that N = 100
represents a wave field close to a unidirectional one, but still
being directionally spread. The space-time directional 30-min
simulations were carried out by the HOSM code with M = 3.

Figure 11 shows single realizations of spatial skewness and
kurtosis as a function of time during of the 30-min simulations
for a given seed. Large variations of skewness and kurtosis are
seen in the figure. As fully expected for single runs of limited
domain size, at some time steps of the simulations, skewness,
and kurtosis reach larger values for the most directionally
spread sea state with N = 4 and γ = 1.0 than for the wave field
withN = 100 and γ = 6.0, although the opposite is expected on
average, e.g. when averaging over many independent runs.

Indeed, when the 30-min HOSM simulations are repeated
20 times for every sea state, the average spatial skewness and
kurtosis over the 20 runs show the highest values for the sea
state with N = 100 and γ = 6.0, followed by the sea state N =
16 and γ = 3.3 and N = 4 and γ = 1.0. For all analyzed sea
states, the average skewness over all runs is slightly below
0.2, while the average spatial kurtosis is beyond 3, in the range
between 3.05 and 3.15, depending upon directional spreading,
see Fig. 12. However, the kurtosis is lower than for the unidi-
rectional waves presented in the previous sections, as direc-
tionality is suppressing the effect of modulational instability
(e.g., Toffoli and Bitner-Gregersen 2011).

The mean value and standard deviation of kurtosis predict-
ed by the HOSM model with M = 3, shown in Fig. 12, are
listed in Table 4. The sampling variability of kurtosis,
expressed in terms of the standard deviation, is the highest
for the JONSWAP spectrum with γ = 6 and N = 100,
representing nearly unidirectional waves, followed by the
sea states with γ = 3.3, N = 16, and γ = 1, N = 4. Due to the
fact that the kurtosis is calculated over a large 2D domain, the
standard deviations for the directional wave field in Table 4
are significantly lower than the ones for the unidirectional
waves listed in Table 2.

7 Discussion

Reduction of sampling variability in field data is challenging.
In situ 20- or 30-min temporal and spatial wave records in-
clude a limited number of observations. Today, several wave
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Fig. 10 a Time series of surface elevation of the Justine Three Sisters sea
state, Hs = 3.4 m, Tp = 8.4 s, kpHs/2 = 0.10. HOSM simulations using the
directional wave spectrum from the operational forecast model of the

Norwegian Meteorological Institute as input, seeds = 5, 7. b The
corresponding maximum spatial surface elevation as a function of
simulation time, seeds = 5, 7

Table 3 Directional sea
states considered in the
analysis

Case γ N Hs (m) Tp (s)

1 1.0 4 5.66 10

2 3.3 16 5.66 10

3 6.0 100 5.66 10
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measurement campaigns are recording sea surface elevation
continuously, theoretically allowing the duration of observa-
tions to be extended, but the stationarity of sea states, on
which most of wave models are based, is an issue. Further,
stereo video camera systems have limited footprints, which
limits the number of waves recorded. Increasing the sampling
rate alone will increase the number of data-points, but not
necessarily the accuracy of the estimators of wave character-
istics derived from them.

Figure 13 shows the variability of significant wave height,
mean (zero-crossing) wave period, skewness, and kurtosis
during 1 day of the Andrea storm (8–9 November 2007) at
the point location in the central North Sea where the Andrea
rogue wave was recorded by a sensor consisting of 4 lasers in
an array (LASAR) on 9 November at 00:54 UTC (Magnusson
and Donelan 2013). The wave parameters plotted in Fig. 12
are derived from one of the lasers’ wave profile measure-
ments, using record lengths of 20 min, 60 min, and 3 h, given
in 20-min intervals. As discussed in the previous sections, the
variability of estimators of rogue-prone sea state characteris-
tics will be largest for the shortest wave records, as can be seen

in Fig. 13 for Hs, the mean wave period, skewness (SK), and
kurtosis (KU).

Extension of the duration of temporal measurements to 3 h
or beyond may not always be possible, as stationarity of the
weather conditions needs to be satisfied. Figure 13 clearly
demonstrates that Hs, one of the main characteristics of sea
state stationarity, may vary significantly within 1 day.

Data recorded by stereo video camera systems also pro-
vide, in addition to temporal variations of surface elevation
at a point, the spatial variability of a wave field (see Fedele
et al. 2011; Fedele 2012; Benetazzo et al. 2015, 2017;
Watanabe et al. 2019), but the stationarity of investigated
sea states remains an issue. The spatial evolution of wave
profiles obtained from these systems, however, may be of help
in deciding the degree of wave field nonlinearity (see Babanin
2019).

Stereo video camera systems may cover relatively large
observation domains, up to O(100–1000) m2. The size of the
effective domain within which the wave field is reliably re-
constructed depends on hardware and installation properties
of the stereo camera system such as lens focal length, image
resolution, image acquisition frame rate, height of the stereo
cameras above the sea surface, their viewing angle, and base-
line distance. Environmental factors such as ambient lighting,
precipitation, cloud cover, and sea-surface roughness also af-
fect the quality and effective spatial domain size of wave field
reconstructions from visual stereo video systems (Jähne et al.
1994; Benetazzo 2006; Benetazzo et al. 2017; Guimaräes
et al. 2019). Depending on the duration of recording, derived
sea state characteristics of rogue-prone sea states may be af-
fected by a bias. Gramstad et al. (2018) showed by numerical
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Table 4 Mean and
standard deviation of
kurtosis, directional
wave field

M γ N Mean Std

3 1.0 4 3.05 0.04

3 3.3 16 3.07 0.06

3 6.0 100 3.12 0.11
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simulations that, when the computation domain was reduced
from 5 × 5 km to 1.25 × 1.25 km, the estimated average spatial
kurtosis of the linear wave field with Hs = 5 m and Tp = 10 s
was underestimated by 4% if the number of runs was equal 50
and by 2% if the number of runs was increased to 500.
Further, the distribution of kurtosis became significantly
narrower for 500 runs.

Sampling variability brings also challenges in establishing
functional relations between nonlinear wave characteristics
and in forecasting of rogue waves. Wave parameters identify-
ing occurrence of rogue waves derived from 20 to 30min field
measurements, e.g., kurtosis and wave steepness, show a large
scatter which does not allow the calculation of any regression
lines between them, see, e.g., Olagnon and Magnusson
(2004). Bitner-Gregersen et al. (2020a) demonstrated that,
by use of numerical simulations, such relations can be provid-
ed if the duration of simulations is sufficiently long, the con-
sidered space domain sufficiently large, and the average esti-
mators of wave parameters over all runs are considered.
Alternatively, a coupling of a spectral wave model with the
HOSMmodel can be a solution for prediction of rogue waves
(Bitner-Gregersen et al. 2014b). Application of surrogate
models using machine learning systems trained with output
from a spectral wave model and HOSM simulations has
shown also promising results (Gramstad and Bitner-
Gregersen 2019).

Further, numerical simulations can be used also to validate
theoretical and semi-theoretical wave models where, due to
sampling variability, field data fail to do it. We illustrate this
using numerical HOSM data from Bitner-Gregersen et al.

(2020a), and validating the expressions for kurtosis suggested
by Janssen (2009) and Mori et al. (2011). Mori and Janssen
(2006) demonstrated theoretically that, for a nonlinear wave
field, the kurtosis of sea surface elevation is affected by bound
waves (κ4

(bound)) and by dynamical effects due to the free
waves (κ4

(dyn)). Janssen (2009) showed later that, for a narrow
band wave field in deep water κ4

(bound) = 4.5(kpHs/2)
2.

Further, by assuming unidirectional narrow band waves and
the Gaussian wave spectrum, based on numerical simulations
of a modified nonlinear Schrӧdinger equation (MNLS), Mori
et al. (2011) proposed to approximate the dynamical kurtosis
κ4

(dyn) = (π/√3)BFI2, where BFI is the Benjamin Feir Index.
Closed form expressions for BFI were suggested for long-
crested and short-crested sea states (see also Janssen and

Fig. 13 Variability of a significant wave height, b mean (zero-crossing)
wave period, c skewness, and d kurtosis in the Andrea storm in the
Ekofisk point location of the North Sea in the period 8 November 2007,

15:00 UTC–9 November 2007 15:00 UTC. The wave parameters were
calculated from the 20-min (blue color), 60-min (red color) and 3-h (cyan
color) temporal time series of surface elevation recorded by the laser
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Janssen 2019). Use of these formulas for prediction of rogue
waves was not always successful.

κ4
(bound) and the total κ4

(total) = 3 + κ4
(bound) + κ4

(dyn) for
unidirectional wave field following the proposed expressions
are plotted in Fig. 14, together with the average kurtosis over
all runs derived from space-time unidirectional HOSM simu-
lations for the JONSWAP spectrumwithγ = 1.0, 3.3, 6.0. The
theoretical expressions derived for the narrow-band waves
and the Gaussian spectrum deviate significantly from the
HOSM kurtosis when the more realistic JONSWAP spectra
are used. However, both curves show similar trends, even
though the theoretical expressions predict much larger kurto-
sis with increase of wave steepness. Thus, the main idea of
Janssen (2009), Mori et al. (2011), and Janssen and Janssen
(2019) behind the proposed expressions is valid—wave steep-
ness and BFI are important parameters for the description of
kurtosis. Note that Fedele et al. (2016), when simulating with
the HOSM method the sea states in which the Draupner,
Andrea, and Killard rogue waves occurred, showed the limi-
tation of the expression for κ4

(bound) resulting from the narrow
band assumption.

Figure 15 shows that the second-order polynomials de-
scribed by Eq. (5) approximate the unidirectional HOSM data
well.

κ4 ¼ A kpHs=2ð Þ2 þ B kpHs=2ð Þ þ C ð5Þ
where the parameters A, B and C are functions of the spectrum
peakedness parameter γ, as illustrated in Fig. 15.

8 Conclusions

This study demonstrates, using numerical simulations, the dif-
ferent effects that sampling variability can have on estimators
of nonlinear characteristics of the wave field, such as surface
elevation, skewness, and kurtosis, when single 20- or 30-min
wave field records are used in an analysis. It shows, using
selected rogue-prone sea states as examples, that independent
of the value of sea state wave steepness, wave frequency and

directional spreading, and water depth, 20- or 30-min wave
temporal and spatial measurements will be affected by sam-
pling variability.

Although single 20–30-min wave field records, temporal or
spatial, provide description of individual characteristics of
rogue waves such as, e.g., their wave heights, crest heights,
wave periods, and steepness, these measurements give limited
information about the wave fields in which such rogue events
occur. Having 20–30-min in situ temporal or spatial wave
records, it may be challenging to conclude on the importance
of the nonlinearity of surface elevation, because the sampling
variability may dominate over the nonlinear effects. This
brings challenges for description of rogue-prone sea states
using field measurements and for engineering applications.
We demonstrate that nonlinearity of a wave field can be easily
shown by applying numerical linear, second- and HOSM
third-order simulations.

To provide accurate estimators of nonlinear sea surface
characteristics, a sufficient amount of data is needed.
However, increasing the duration of temporal and spatial mea-
surements may not always be possible, as stationarity of sea
states is an issue and should be considered with care.

Single 20- or 30-min realizations of rogue-prone sea states
show large variability of surface elevation and its characteris-
tics, larger for the temporal data than for the spatial ones. It is
interesting to note that, due to sampling variability, wave
crests and troughs in a single 20–30-min wave record may
have similar values for the HOSM and the linear wave model,
but the evolution of the linear and nonlinear wave trains will
be different. This will affect response calculations of marine
structures.

To get more complete information about sea states in which
rogue waves occur, wave parameters characterizing them
should be presented as average values with corresponding
standard deviations. The average values of nonlinear wave
parameters and associated standard deviations can be derived
directly from field data using a simplified approach suggested
by Bitner-Gregersen and Magnusson (2014), when the dura-
tion of 20-min wave records is extended to 1–6 h, satisfying at
the same time the assumption of stationarity. Alternatively,
numerical simulations, together with laboratory experiments,
represent good supporting tools for field measurements, as
demonstrated in the present study. The average nonlinear es-
timators of a rogue-prone sea state’s characteristics with
plus/minus three standard deviations should be considered in
engineering applications, to capture their inherent variability.
The inherent variability of sea surface oscillations also brings
challenges in establishing functional relations between non-
linear wave characteristics, forecasting of rogue waves and
validation of theoretical and semi-theoretical wave models.
Numerical simulations are also of great support here.

Further, rogue events have typically been recorded at single
point locations by in situ measurements which lack
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information about frequency-directional wave spectra. Often
wave spectral models may be the only source of 2-
dimensional wave spectra, but their accuracy has been
questioned within the wave community, e.g., Ardag and
Resio (2019) and Cavaleri et al. (2020). Some concern exists
that the wave spectral models may provide spectra which are
too wide compared to those derived from wave measure-
ments. Improving the availability of directional measurements
is essential for the description of rogue waves in the future and
enhancing safety at sea.
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