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Abstract
The 3D Lagrangian residual velocity (LRV) is solved analytically in a narrow bay employing a vertically varying eddy viscosity
coefficient. The nondimensional vertical profile of the eddy viscosity is described by a parabola that is characterized by its
minimum value and the location of its symmetry axis. The results show that the LRV has similar structures as that under constant
eddy viscosity coefficient when the magnitude is the same. The tidal body force that drives the residual velocity contains two
terms, the advection and Stokes’ drift. The total LRV, as well as the LRV induced by each term, are very sensitive to the
magnitude of the eddy viscosity coefficient, while the specific profile matters less. With a given magnitude, the specific profile
of the varying eddy viscosity coefficient affects the total LRV by changing the LRV induced by the advection term.Moreover, the
contribution mechanism of each component of the tidal body force to the total LRV is analyzed. The 3D LRV is mainly
determined by the Stokes’ drift stress term regardless of the steepness of the across-bay topography. The depth-integrated and
breadth-averaged LRV are mainly determined by the Stokes’ drift stress term with steep topography, but the Stokes’ drift
contribution is no longer obvious with gentle topography.
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1 Introduction

In shallow seas, bays, and tidal estuaries, the long-term mass
transport is determined by the shallow sea circulation or estu-
ary circulation, which is a quasi-steady motion after filtering
the tidal signal. According to the way of filtering the tidal
signal, this quasi-steady motion is also called the tide-
induced Lagrangian residual current.

The idea of the Lagrangian mean is first used by Longuet-
Higgins (1969) in large-scale circulation; he did not propose the
concept of Lagrangian residual velocity (LRV) but used the
mass transport velocity, which turned out to be the first order
of the LRV (Feng et al. 1986a) under weakly nonlinear condi-
tions. The LRV is first descriptively defined by Zimmerman
(1979) as the net displacement of a water parcel after one or
several tidal periods divided by the corresponding time.

The LRV is proved to be rational to describe the shallow
sea circulation (Feng 1986; Feng et al. 1986b; Feng 1987) and
can be applied in real conditions (Cheng and Casulli 1982;
Cheng 1983; Feng 1998). So it has been used in many re-
searches (Feng 1990; Ridderinkhof and Loder 1994; Delhez
1996; Loder et al. 1997; Feng et al. 2008; Muller et al. 2009;
Jiang and Feng 2011, 2014a; Wang et al. 2013; Quan et al.
2014; Chen et al. 2017; Deng et al. 2017, 2019; Cui et al.
2019a).

Studies about the LRV are mainly analytical, numerical, or
observational. The observational studies include observations in
real seas (Quan 2014) and laboratory experiments (Wang et al.
2013; Chen et al. 2017). The numerical study is widely used in
getting LRV because it can simulate complex conditions.
Generally, a particle tracking module is applied to get the net
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displacement which is divided by the corresponding time elapsed
to calculate the LRVaccording to its definition (Quan et al. 2014;
Deng et al. 2017, 2019). In other studies, LRV can also be di-
rectly obtained by solving the governing equations of LRV nu-
merically (Wang et al. 1993; Sun et al. 2000, 2001; Cui et al.
2019a). Analytical study is the basis of the numerical and obser-
vational studies and focuses on establishing governing equations
and solving them analytically.

Based on the weakly nonlinear assumption, Jiang and Feng
(2011) derived the depth-averaged equations of the first-order
LRV systematically in a narrow bay and solved the equations
analytically. The results indicated that the LRV has explicit
physical meanings and is appropriate for describing the
shallow sea circulation. But in the real tidal field, the water
column does not move in unison like a rigid body; the LRV
should be defined in 3D space strictly. So, Jiang and Feng
(2014a) extended their work to the 3D case, in which they
gave the 3D structure of the LRV in a narrow bay, and com-
pared the influences of each component of the tidal body force
on the depth-averaged and breadth-averaged LRV. It is neces-
sary to point out that the tidal body force here is not an astro-
nomical tide-generating force which conventionally means
gravitational pull by celestial objects like the sun and moon,
but the driving force of the governing equations of Lagrangian
residual current through nonlinear coupling of the zeroth-
order tidal current (see Feng 1987).

However, in terms of the eddy viscosity, analytical studies
lag behind the numerical studies. In most analytical studies,
the eddy viscosity coefficient was set as a constant, while in
numerical studies parameterized or turbulent closure schemes
were adopted. Early in 1977, Ianniello (1977) tried to use a
vertically varying eddy viscosity coefficient in an idealized
bay to study the LRV, but his work was limited to 2D space.
In 1993, Feng and Lu (1993) proposed a homogeneous turbu-
lent closure model for the Lagrangian residual current
governing equations, but it has not been solved till today. At
present no analytical solutions of the 3D LRV under varying
eddy viscosity coefficient are reported, while the numerical
studies indicated that both the magnitude and specific profile
of the eddy viscosity coefficient have influences on the LRV
(Winant 2008; Deng et al. 2017). The nonuniform eddy vis-
cosity coefficient was also used in other studies on wind- and
wave-induced currents such as in Jenkins (1987) and Lentz
(1995). So the purpose of this paper is to give the analytical
solution to the LRV and study its dynamics under vertically
varying eddy viscosity.

To solve the LRV, the tidal current under the same condi-
tions should be solved first. Chen et al. (2019) gave the ana-
lytical solution to the 3D tide in a narrow bay with vertically
varying eddy viscosity coefficient and discussed the
influences of the varying eddy viscosity coefficient to the
tidal current. In the present paper, the eddy viscosity
coefficient is chosen as same as that in Chen et al. (2019)

which is a parabolic form in the vertical direction, and the
LRV is solved analytically based on the zeroth-order solution
of the linear tide in Chen et al. (2019).

The structure of this paper is as follows: the detailed pro-
cedure of solving the Lagrangian residual current equations is
given in Section 2. In Section 3 the results of the total LRVand
the LRV induced by two components of the tidal body force
are discussed separately, and the contributing mechanisms are
compared by changing the steepness of the topography. The
conclusions are made in Section 4.

2 The solution to the Lagrangian residual
current equations

In this study the analytical Lagrangian residual velocity is obtain-
ed in a rectangular model bay with the single frequency tide
incoming from the open boundary. In this model, there are five
basic characteristic valueswhich are the spatial scale xc= λc, yc=
B, and zc= hc; temporal scale ωc= 2π/T (T denotes the tidal pe-
riod); and scale of tide amplitude ζc, with B representing the
typical width of the bay, hc being the typical depth of the bay
which is taken as the maximumwater depth in this study, and λc

¼ ffiffiffiffiffiffiffi
ghc

p
T being the tidal wavelength. Based on the dimension-

less method employed in Jiang and Feng (2014a) and B being
one order smaller thanλc, a narrow bay is adopted in this paper as
that in Chen et al. (2019), with x= L being at the head of the bay
and x = 0 being at the open boundary where the tidal signal is
imposed and with y= 0 and y = 1 being the lateral boundaries.
The surface of the still water is at z= 0 and z= − h is the sea
bottom. The vertical eddy viscosity coefficient is assumed to be
time-independent.

2.1 The tide-induced Lagrangian residual current
equations

A dimensionless parameter κ = ζc/hc is defined to denote the
advective nonlinearity of the system. In this study, the weakly
nonlinear condition is studied, i.e., O (κ) < 1. δ = B/λc is the
aspect ratio which is also a small parameter to reflect the
narrowness of the bay in this study. Thus, the two-parameter
perturbation method can be used in this study to get the tide-
induced Lagrangian residual current equations. All the vari-
ables are expanded to different orders with respect to κ and δ.
For example, the water elevation ζ is expanded in the form as
follows:

ζ ¼ ζ0 þ κζ1 þ δ2ζ
0
0 þ κδ2ζ

0
1 þ⋯

where ζ0, ζ1, ζ
0
0, and ζ

0
1 are the zeroth-order, first-order, δ

2-order,
and κδ2-order water elevations, respectively. It can be found by
inserting the perturbation formula into the governing equations
that ζ0 and ζ1 are independent of y because of the narrowness of
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the bay (Jiang and Feng 2014b); ζ
0
0 and ζ

0
1 are still functions of x,

y, and t as ζ is. If the perturbed equations of different orders are

examined, it can be found that the variables, such as ζ0, ζ1, ζ
0
0,

and ζ
0
1, are periodic functions with period being T.

The derivation process of the tide-induced LRV equations
can be found in Jiang and Feng (2014b) which did include the
vertically varying eddy viscosity coefficient case by using the
perturbation method, though they only gave solutions under
constant eddy viscosity coefficient. In this paper only the non-
dimensional governing equations in a 3D narrow bay are
listed as follows:

∂uL
∂x

þ ∂vL
∂y

þ ∂wL

∂z
¼ 0 ð1Þ

0 ¼ −
∂ζE
∂x

þ β
∂
∂z

υ
∂uL
∂z

� �
þ π1 ð2Þ

0 ¼ −
∂ζ

0
E

∂y
þ β

∂
∂z

υ
∂vL
∂z

� �
þ π2 ð3Þ

where uL, vL, and wL are the first-order LRV in x-, y-, and z-
directions, ζE = < ζ1> and ζ

0
E ¼ < ζ

0
1 > are the κ-order and

κδ2-order of the residual water elevations; and < ⋅ >¼ 1
nT

∫t0þnT
t0 ⋅dt is the tidal-averaging operator, where n is the number
of tidal cycles that are used for the average and t0 is the starting
time of the average. In the present study the operator < > is
always applied to periodic functions with period being T; n
and t0 have no influence on the results. For convenience, n is
set to 1 and t0 is set to 0. β ¼ υc=ωch2c represents the magni-
tude of the eddy viscosity coefficient. υc is the characteristic
value of the vertical eddy viscosity coefficient.π = (π1 , π2) is
called the tidal body force.

At the surface, z = 0

wL ¼ 0 ð4Þ

∂ uL; vLð Þ
∂z

¼ 0 ð5Þ

At the bottom, z = − h

uL ¼ vL ¼ wL ¼ 0 ð6Þ

At the fixed boundaries,

UL ¼ ∫0−huLdz ¼ 0; x ¼ L ð7Þ

VL ¼ ∫0−hvLdz ¼ 0; y ¼ 0; 1 ð8Þ

The tidal body force π = (π1 , π2), the nonlinear coupling
of the zeroth-order variables of the tidal system, is the driving

force of the LRV. According to Cui et al. (2019a), they can be
divided into two terms based on the different mechanisms
behind them as follows:

π1 ¼ πadv1 þ πsto1 ¼ − < u0⋅∇u0

> −β
∂
∂z

υ
∂ < ξ0⋅∇u0 >

∂z

� �
ð9Þ

π2 ¼ πadv2 þ πsto2 ¼ − < u0⋅∇v0

> −β
∂
∂z

υ
∂ < ξ0⋅∇v0 >

∂z

� �
ð10Þ

where πadv = (πadv1 , πadv2) andπsto = (πsto1 , πsto2) represent
the advection term and the Stokes’ drift stress term, respec-
tively (Cui et al. 2019a). In (9) and (10), ξ0 is defined as

ξ0 ¼ ξ0; η0; ι0ð Þ ¼ ∫tt0u0dt; t∈ t0; t0 þ nTð Þ

It is the tidal displacement of the water parcel (also see
Jiang and Feng 2014a; Cui et al. 2019a), and u0 = (u0, v0,
w0) is the zeroth-order tidal velocities obtained in Chen et al.
(2019).

2.2 The analytical solutions

In order to get the analytical solution under a vertically vary-
ing eddy viscosity coefficient, two assumptions have to be
made. The first one is that the water depth h should only vary
in the y-direction, i.e., h = h(y). The second one is about the
expression of v. According to Chen et al. (2019), the vertical
eddy viscosity coefficient only varies in z-direction in a para-
bolic form (Fig. 1). The mathematical expression is as follows
which is equivalent to Eq. (23) in Chen et al. (2019).

Fig. 1 The profile of the nondimensional vertical eddy viscosity
coefficient
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v zð Þ ¼ R−1ð Þ z−zmð Þ2
hþ zmð Þ2 þ 1

It can be seen that the vertical eddy viscosity coefficient is
determined by three nondimensional parameters: β, R, and zm.
As an inverse oscillatory Reynolds number, which relates to a

ratio of the frictional Stokes depth
ffiffiffiffiffiffiffiffiffiffiffiffi
υc=ωc

p
to water depth, β

¼ υc=ωch2c is also used in LRV study with the constant eddy
viscosity (Jiang and Feng 2014a). It is found in Jiang and Feng
(2014a) that β is important to the LRV; different β can even
lead to reversed LRV distribution pattern. R and zm are two
new parameters for the vertically varying eddy viscosity co-
efficient, and they codetermine the specific profile of the eddy
viscosity coefficient, where R (0 < R < 1) is the minimum val-
ue of the eddy viscosity coefficient near the bottom and zm is
the location of the symmetry axis of the parabola. With this
varying eddy viscosity coefficient, the nondimensional linear
tidal equations in a narrow bay are solved analytically in Chen
et al. (2019). Based on the tidal solutions, the present paper
aims at giving the analytical solution to the 3D LRV
governing equations under the same condition.

Integrate (2) from z to 0 using (5) to have

0 ¼ z
∂ζE
∂x

−βυ
∂uL
∂z

þ ∫0zπ1 x; y; z2ð Þdz2 ð11Þ

Integrate (11) from − h to z using (6) to yield

uL ¼ 1

β
∂ζE
∂x

∫z−h
z1
υ

dz1 þ 1

β
∫z−h

1

υ
∫0z1π1 x; y; z2ð Þ dz2dz1 ð12Þ

Then, the depth-integrated uL can be expressed as

UL ¼ ∫0−huLdz ¼
∏1

β
þ K

β

∂ζE
∂x

ð13Þ

where

∏1 ¼ ∫0−h∫
z
−h

1

υ
∫0z1π1 x; y; z2ð Þdz2dz1dz ð14Þ

K yð Þ ¼ ∫0−h∫
z
−h
z1
υ

dz1dz ð15Þ

The same procedure applies to (3) to have

vL ¼ 1

β
∂ζ

0
E

∂y
∫z−h

z1
υ

dz1 þ 1

β
∫z−h

1

υ
∫0z1π2 x; y; z2ð Þ dz2dz1 ð16Þ

The depth-integrated vL is

VL ¼ ∫0−hvL dz ¼ ∏2

β
þ K

β
∂ζ

0
E

∂y
ð17Þ

where

∏2 ¼ ∫0−h∫
z
−h

1

υ
∫0z1π2 x; y; z2ð Þ dz2dz1dz ð18Þ

Then, integrate (1) from − h to 0 by inserting the boundary
conditions (4) and (6) to have

∂UL

∂x
þ ∂VL

∂y
¼ 0 ð19Þ

At the fixed boundary x = L, substitute (12) into (7) and
integrate in y-direction from 0 to 1, to have

∂ζE
∂x

¼ −
∫10∏1 L; yð Þ dy

∫10K dy
ð20Þ

At the fixed boundary y = 0, substitute (16) into (8) to get

∂ζ
0
E

∂y
¼ −

∏2 x; 0ð Þ
K 0ð Þ ð21Þ

At the fixed boundary y = 1, we have

∂ζ
0
E

∂y
¼ −

∏2 x; 1ð Þ
K 1ð Þ ð22Þ

Substitute (13) and (17) into (19) to have

∂
∂y

K
∂ζ

0
E

∂y

 !
þ K

∂2ζE
∂x2

þ ∂∏1

∂x
þ ∂∏2

∂y
¼ 0 ð23Þ

Integrate (23) along the breadth direction, noticing ζE being
independent of y in Eq. (27) in Jiang and Feng (2014a) and the
lateral boundary conditions (21) and (22) to yield

∂2ζE
∂x2

¼ −

∂
∂x

∫10∏1dy

∫10K dy
ð24Þ

Then, integrate (24) from L to x, using (20) to yield

∂ζE
∂x

¼ −
∫10∏1dy

∫10K dy
ð25Þ

Substitute (25) into (23) and then integrate it from 0 to y,
noticing the boundary condition (21), to have

∂ζ
0
E

∂y
¼ 1

K
−∏2 þ

∫y0K dy

∫10K dy
∫10
∂∏1

∂x
dy−∫y0

∂∏1

∂x
dy

 !
ð26Þ

Then, according to (13) and (17), the depth-integrated LRV
in x- and y-directions can be expressed as
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UL ¼ ∏1

β
−
K
β
∫10∏1dy

∫10K dy
ð27Þ

VL ¼ ∫y0K dy

β∫10K dy
∫10
∂∏1

∂x
dy−

1

β
∫y0
∂∏1

∂x
dy ð28Þ

Substitute (25) and (26) into (12) and (16); then, uL and vL
are as follows:

uL ¼ −
1

β
∫z−h

z1
υ
dz1

∫10∏1dy

∫10K dy
−∫z−h

1

υ
∫0z1π1 x; y; z2ð Þdz2dz1

 !

ð29Þ

vL ¼ 1

βK
∫z−h

z1
υ
dz1 −∏2 þ

∫y0K dy

∫10K dy
∫10
∂∏1

∂x
dy−∫y0

∂∏1

∂x
dy

 !

þ 1

β
∫z−h

1

υ
∫0z1π2 x; y; z2ð Þdz2dz1

ð30Þ

Furthermore, integrate (1) from z to 0 and consider the
boundary condition (4) to have

wL ¼ ∫0z
∂uL
∂x

þ ∂vL
∂y

� �
dz1 ¼ 1

β
∫0z ∫

z
−h

1

υ
∫0z1

∂π1 x; y; z2ð Þ
∂x

þ ∂π2 x; y; z2ð Þ
∂y

dz2dz1dz

þ 1

βK2 −
hh

0
yKz

υ −hð Þ þ K
0
y∫
0
z ∫
z
−h
z1
υ
dz1dz

 !
∏2−

∫y0Kdy

∫10Kdy
∫10
∂∏1

∂x
dyþ ∫y0

∂∏1

∂x
dy

 !

−
1

βK
∫0z ∫

z
−h
z1
υ
dz1

∂∏1

∂x
þ ∂∏2

∂y

� �
−

h
0
yz

βυ −hð Þ ∫
0
−hπ2 x; y; z2ð Þdz2dz

ð31Þ

By now, the 3D LRV (uL, vL,wL) under vertically varying
eddy viscosity coefficient has been analytically solved and the
results are exhibited in the following part by inserting the
solutions of the zeroth-order tide from Chen et al. (2019).

3 Results and discussions

The results are presented in a bay with the nondimensional
depth profile being

h ¼ 1−α 2y−1ð Þ2 ð32Þ

The water depth only varies along the transverse direction,
α can reflect the steepness of the topography, and initially it is
taken as α = 0.99.

The length of the bay is set as a wavelength (L = 1) in this
paper. Though the LRV pattern will change as the bay length
changes, it is found that the pattern in a shorter bay seems to keep
the corresponding part of the longer bay (Jiang and Feng 2011,
2014a, also in this study). For a baywith length L > 1, the pattern

of LRV does not exhibit more features than that in bay with
length L = 1. So here only L = 1 is chosen. Then, the solution
of the 3D LRV is decided by three parameters: β, R, and zm. If
β = 1, the eddy viscosity coefficient used in the present paper has
the same magnitude as that in Jiang and Feng (2014a). The
parameters deciding the specific profile of the eddy viscosity
coefficient are initially taken as R = 0.4 and zm= − 0.4.

Details of the LRVare shown in Figs. 2 and 3. It is found that
the result with varying profile differs a little from the constant
eddy viscosity coefficient result. When a varying eddy viscosity
coefficient is adopted, the 3D structure of the LRV (Fig. 2) is
similar to that in Jiang and Feng (2014a). In all sections, the LRV
flows inward through a core area located at the upper layer of the
central deep part, while it flows out at the bottom and along the
banks. Moreover, the core area reaches a deeper area when the
section is closer to the head of the bay.

The depth-averaged and breadth-averaged LRV also keep
similar patterns to that under the constant eddy viscosity co-
efficient condition. As shown in Fig. 3, the depth-averaged
LRV flows into the head through the central deep area and
flows out along the banks. The breadth-averaged LRV con-
sists of two parts: one small gyre near the head and one semi-
gyre at the other part of the bay with the LRV flowing inward
at the upper layer and outward at the lower layer.

3.1 The sensitivities of the LRV to the three
nondimensional parameters

It has been pointed out that the varying eddy viscosity coeffi-
cient used in this paper is decided by three nondimensional
parameters, β, R, and zm. To reveal their influences on the
LRV, several experiments are conducted to diagnose the sen-
sitivities of the LRV to the three parameters.

3.1.1 The influence of the magnitude of the eddy viscosity
coefficient

With a given specific profile of the eddy viscosity coefficient
(R = 0.4, zm = − 0.4), three different values of β are chosen to
test the influence of the magnitude on the LRV. The results are
shown in Figs. 4 and 5.

The 3D structure of the LRV changes a lot with differentβ. As
shown in Fig. 4, the inflow occupies the upper part of the central
deep areawith a largeβ, and the core area reaches deeper near the
head of the bay. As β decreases, the core area shortens and
bifurcates. The outflow invades upward in the center and the
inflow is divided into two branches when β is small; thus, the
central area and the lower layer are occupied by the outflow.

The depth-averaged LRV is shown in Fig. 5a; when β is
small, there are two pairs of symmetric gyres with the outflow
existing in the center, and a weak outflow near each bank. As
β increases, the outflows near the banks become stronger. The
structure of the depth-averaged LRV becomes simpler when β
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is large, and in the whole bay the water flows in through the
central deep area and flows out at the banks.

The breadth-averaged LRV is also sensitive to the parame-
ter β (Fig. 5b). With a small β, the water flows inward at the
upper layer and flows out at the lower layer. As β increases,
the gyre moves toward the entrance and becomes a semi-gyre
with a small gyre in the opposite sense appearing near the head
when β is large.

3.1.2 The influence of the specific profile of the eddy viscosity
coefficient

Now we focus on the influence of the specific profile of the
eddy viscosity coefficient. The magnitude is taken as a con-
stant (β = 0.5), and three groups of different values ofR and zm
are used to examine the structures of the LRV.

The result shows that with a decreasing R, the inflow re-
mains at the central deep part but the occupation area is
prolonged. When R is small enough, the inflow core area
bifurcates from the head to the outer bay. While the increase
of zm nearly has no influence except that the core area be-
comes a little wider, the figures are omitted here.

The depth-averaged LRV is insensitive to R and zm, the
inflow always occupies the central deep area, and the outflow

is at the banks. It is natural to get this result since in the depth-
averaged hydrodynamic governing equations, the eddy vis-
cosity terms are transformed to the difference of the surface
and bottom stress due to the integration over the depth. So the
specific profile of the eddy viscosity coefficient is not impor-
tant to the depth-averaged LRV.

The general structure of the breadth-averaged LRV also
remains almost the same with different R and zm, except that
the gyre near the head extends toward the entrance a little with
a decreasing R or an increasing zm (figures are omitted here).
This result is in accordance with that in Ianniello (1977) when
the breadth-averaged model was studied.

3.2 The LRV induced by each component of the tidal
body force

Since the governing Eqs. (1)–(10) describe a linear system,
each component of the tidal body force term in (9) and (10)
can induce the LRV separately. The πadv-induced LRV can be
ob t a i n ed by r ep l a c i n g π i n ( 2 ) a nd ( 3 ) w i t h
πadv = (πadv1 , πadv2), and we can get the πsto-induced LRV
in the same way. The 3D structure and the depth-averaged and
breadth-averaged structures of the total LRV and the LRV
induced by each component are shown in Figs. 6 and 7, re-
spectively. The depth profile in (32) is adopted and the steep-
ness is taken as α= 0.9. The parameters of the vertical eddy
viscosity coefficient are β = 1, R = 0.4, and zm = − 0.4.

The 3D structures of the LRV induced by the tidal body
force and the two components are exhibited in Fig. 6. It can
be seen that the πsto-induced LRV is the dominant one, and
both the magnitude and pattern of the πsto-induced LRVare
similar to the total LRV, especially in the outer bay. From the
second row in Fig. 6, we can see that the πadv-induced 3D
LRV has a rather stable pattern that keeps a similar pattern in
different sections in the bay with the inflow occupying the
central deep area from the surface to the bottom. In some
areas, the structure of the πadv-induced LRV is inconsistent
with the total LRV. But because of its smaller magnitude,
the πadv-induced LRV only has a minor influence on the
total LRV. This result is consistent with that in Fig. 4 in
Cui et al. (2019a).

Fig. 2 The LRVat four cross
sections. α = 0.99, β = 1, R = 0.4,
zm = − 0.4. x = 0 represents the
entrance of the bay, and the axial
velocity is inward in light area and
outward in dark area

Fig. 3 a The depth-averaged LRV. b The breadth-averaged LRV. x = 0
represents the entrance of the bay. α= 0.99, R = 0.4, zm = − 0.4, β = 1
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The same results can also be seen in Fig. 7. The
πsto-induced LRV dominates both the depth-averaged
and breadth-averaged LRV. The πsto-induced depth or
breadth-averaged LRV is greater in magnitude compared
with the πadv-induced counterpart, but the πsto-induced
depth or breadth-averaged LRV has a similar pattern
with the total depth-averaged or breadth-averaged LRV,
respectively. The πadv-induced depth-averaged LRV has
a pattern that the inflow occupies the central area and
the outflow locates at the banks, which is the same as
the total LRV. The πadv-induced breadth-averaged LRV
has a semi-gyre in Fig. 7b that the water flows inward
at the upper layer and outward at the lower layer, which
is simpler than the total LRV.

By changing the values of the parameters, the sensitivities
of each component to the parameters that control the eddy
viscosity are analyzed, the specific figures are omitted, and
the results are summarized in Table 1. The 3D structure of
the πadv-induced LRV is sensitive to parameter β; when β is
small enough, there will appear a weak outflow. The structure
is also sensitive to parameters R and zm. When R and zm be-
come larger, the inflow in the central area becomes wider and
shorter and it bifurcates obviously near the entrance. The
πadv-induced depth-averaged LRV is only sensitive to β
among the three parameters. And the πadv-induced breadth-
averaged LRV has little sensitivity to all the three parameters.

The πsto-induced 3D LRV is also very sensitive to β; dif-
ferent values of β may lead to a reversed pattern, while the

Fig. 4 The LRVat four cross
sections for three different β. α =
0.99, R = 0.4, zm = − 0.4. x = 0
represents the entrance of the bay,
and the axial velocity is inward in
light area and outward in dark
area

Fig. 5 The LRV for three different β. a Depth-averaged. b Breadth-averaged. x = 0 represents the entrance of the bay. α= 0.99, R = 0.4, zm = − 0.4
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structure is not sensitive to R and zm. The πsto-induced depth-
averaged LRV (Fig. 7a) is sensitive to β, but insensitive to R
and zm. The breadth-averaged LRV (Fig. 7b) contains two
parts, and the gyre in the inner bay is sensitive to β, but is
not sensitive to R and zm.

Thus, the sensitivities of the LRV induced by each compo-
nent of the tidal body force to the parameters (β, R, and zm)
shown in Table 1 can be concluded as follows. Parameter β
that decides the magnitude of the eddy viscosity coefficient is
the most important parameter to the LRV, and nearly all the
structures of the 3D, depth-averaged, and breadth-averaged
LRVare very sensitive to it. R, the minimum value of the eddy
viscosity coefficient, has much weaker influences on LRV.
πsto-induced depth-averaged LRV is not sensitive to it.
Among the three parameters, the location of the symmetry

axis zm only has a little influence except on the πadv-induced
3D LRV. So the magnitude of the eddy viscosity coefficient
has a major influence on the LRV.With a fixed magnitude, the
specific profile of the varying eddy viscosity coefficient af-
fects the pattern of the total LRVmainly by affecting the πadv-
induced LRV. While πadv-induced LRV contributes relatively
small to the total LRV, so the profile of the eddy viscosity is
not less important than the magnitude.

3.3 The effects of different steepness
of the topography

The topography used in this paper only varies along the
breadth direction, and the parameter α (0 < α < 1) in (32)
can reflect the steepness of the topography. To explore the

Fig. 6 The total LRV (first row)
and the LRV induced by each
component of the tidal body force
in four cross sections. α= 0.9,
R = 0.4, zm = − 0.4, β = 1

Fig. 7 The total LRV (first row)
and the LRV induced by each
component. a depth-averaged; b
breadth-averaged. α= 0.9, R =
0.4, zm = −0.4, β = 1
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applicability of the contribution mechanism in Section 3.3,
three values of steepness with α being 0.9, 0.6, and 0.3, re-
spectively, are used to discuss the influence of the steepness
on the LRV.

The 3D structures of the total LRVand the LRV induced by
each component for three different α are shown in Fig. 8, and
only the sections near the entrance are shown for brevity. The
total LRV keeps a similar pattern that the water flows in
through the upper part of the central deep area. As α de-
creases, the core area of the inflow becomes wider and
shallower, and the magnitude reduces significantly.

The πadv-induced LRV is stable with different α, it en-
hances the total LRV except in the bottom part, but the mag-
nitude is relatively small. For different α, both from the as-
pects of magnitude and the pattern, the πsto-induced LRV is
highly similar to the total LRV; thus, it is the dominant one.

In conclusion, when α changes, the vertical structures of
the total LRV, πadv-induced LRV, and πsto-induced LRV
change accordingly. Specifically, their structure changes from
lateral shear to vertical shear with the increase of α which is

consistent with the result in Deng et al. (2019). Moreover, the
πsto-induced LRV is similar to the total LRV and is always
dominant with different α. Thus, the contribution mechanism
of the 3D LRV does not change with different steepness.

Whenα = 0.9, the depth-averaged LRVis shown in Fig. 7a.
Figures 9a and 10a are the results for α = 0.6 and α = 0.3,
respectively. The total depth-averaged LRV has a similar pat-
tern with different α, but the magnitude decreases with the
decreasing α. The πadv-induced depth-averaged LRV has a
stable pattern with different α and always enhances the total
depth-averaged LRV, but the enhancement is small because of
its small magnitude. The πsto term always enhances the total
depth-averaged LRV, too. But as α decreases, its magnitude
decreases sharply as well as the enhancement. Therefore, as
for the contribution mechanism of the depth-averaged LRV,
whenα = 0.6, the conclusion is consistent with that forα = 0.9
and the πsto term has the main contribution to the total depth-
averaged LRV. While α = 0.3, the LRV induced by the πsto

term decreases a lot and the contributions are equal between
the πadv and πsto terms.

Fig. 8 The total LRV (first row)
and the LRV induced by each
component for three different α.
The section is near the entrance of
the bay. R = 0.4, zm = − 0.4, β = 1

Table 1 The sensitivities of the
3D, depth-averaged, and breadth-
averaged Lagrangian residual
current induced by each
component of the tidal body force
to parameters β, R, and zm

LRV β R zm

πadv term 3D Sensitive Sensitive Sensitive

Depth-averaged Sensitive A bit sensitive A bit sensitive

Breadth-averaged A bit sensitive A bit sensitive Insensitive

πsto term 3D Sensitive A bit sensitive A bit sensitive

Depth-averaged Sensitive Insensitive Insensitive

Breadth-averaged Sensitive A bit sensitive A bit sensitive
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The results for the breadth-averaged LRV are shown in
Figs. 7b, 9b, and 10b, respectively. The total breadth-
averaged LRV changes with different α. There is a gyre near
the head when α is relatively large. When α = 0.3, the gyre
disappears, the pattern becomes simple, and the water flows
inward in the upper layer and flows outward in the lower layer.
The change of α also influences the magnitude of LRV, espe-
cially near the entrance.

The patterns of both πadv- and πsto-induced breadth-
averaged LRV change little with different α, but the magni-
tude changes especially near the entrance. The πadv term
mainly enhances the total LRV, but it has a weakening effect
near the head when α is large. The πsto term shows the deci-
sive effect on the total LRV with a large α, when α is small,
and it weakens the total LRV near the head. Therefore, as for
the contribution mechanism of the breadth-averaged LRV,
when α = 0.6 and α = 0.9, the πsto term is the dominant one;

when α = 0.3, the pattern of the total LRV changes and the
πsto effect is weaker near the head, but it is still the main
contributor from the aspect of magnitude.

In conclusion, as the steepness of the topography changes,
the contribution mechanism of the 3D LRV is invariant and
the πsto term is the dominant one. But the contribution mech-
anisms of the depth-averaged and breadth-averaged LRV have
some changes when α varies, and a critical value is found
through repeated experiments at around α = 0.35. With a
sharp steepness (α > 0.35), the depth-averaged and breadth-
averaged LRV are mainly decided by πsto term. But the con-
tribution of πsto is no longer dominant with a gentle steepness
(α < 0.35).

According to the setting of the model bay in this study, the
Coriolis force is neglected naturally. But in many real cases,
the bay width and bay length are of the same order, and the
influence of the rotation on LRV cannot be ignored. In a 2D

Fig. 10 As in Fig. 9, but for α =
0.3

Fig. 9 The total LRV (first row)
and the LRV induced by each
component for α = 0.6. a Depth-
averaged. b Breadth-averaged.
R = 0.4, zm = − 0.4, β = 1
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model bay, Quan et al. (2014) found that the Coriolis effect
can influence LRV if the bay width has the same magnitude as
bay length. In a wide idealized bay with a lateral topography,
the Coriolis force on the residual circulation system can break
symmetry along the central line of the deep channel, and the
rotation effect from the tidal circulation system is weak (Cui
et al. 2019a). In a wide idealized bay with a longitudinal to-
pography, π1 and the rotation effect from the tidal circulation
system codetermine the LRV (Cui et al. 2019b). Compared
with the influence of topography on LRV, the magnitude of
eddy viscosity mildly affects the magnitude and flow pattern
of LRV (Cui et al. 2019b). With the rotation effect introduced
in the residual current system, we can expect that topography
becomes more important to LRV. This is a limitation of the
present study.

4 Conclusion

In this paper the 3D LRV governing equations are solved
analytically with vertically varying eddy viscosity coefficient.
The eddy viscosity coefficient used in the present paper is
time-independent and only varies along the vertical direction
as a parabola. It is decided by three nondimensional parame-
ters: β decides the magnitude, and R and zm together decide
the specific profile where R is the minimum value and zm is the
location of the symmetry axis. Among the three parameters,
the LRV depends mostly on β, less on R, and least on zm. The
structure of the LRVismainly decided by the magnitude of the
eddy viscosity coefficient.

The tidal body force is divided into advection term (πadv)
and Stokes’ drift term (πsto), respectively. It is found that the
total LRV is mainly determined by πsto term. The 3D, depth-
averaged, and breadth-averaged LRV induced by each com-
ponent are all sensitive to the magnitude of the eddy viscosity
coefficient. With a fixed magnitude, the specific profile of the
varying eddy viscosity coefficient affects the total LRV by
affecting the πadv-induced LRV.

The scope of application of the above mechanisms is tested
under different steepness of the topography. We can find that
the structure of LRV changes from lateral shear to vertical
shear with the increase of topographic steepness. The contri-
bution mechanism of the 3D LRV is found invariant with
steepness, and the πsto term always has a decisive effect.
The contribution mechanisms of the depth-averaged and
breadth-averaged LRV change with different steepness, and
the critical value is found at around α = 0.35. πsto is the main
contributor with steep topography, and the contribution effect
is no longer obvious with a gentle topography.
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